Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Am J Hum Genet ; 111(8): 1626-1642, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39013459

ABSTRACT

Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.


Subject(s)
Abnormalities, Multiple , Chromosome Deletion , Chromosomes, Human, Pair 9 , Craniofacial Abnormalities , DNA Methylation , DNA-Binding Proteins , Face , Hematologic Diseases , Intellectual Disability , Neurodevelopmental Disorders , Vestibular Diseases , Humans , Abnormalities, Multiple/genetics , Vestibular Diseases/genetics , Intellectual Disability/genetics , Face/abnormalities , Face/pathology , DNA-Binding Proteins/genetics , Male , Female , Hematologic Diseases/genetics , Neurodevelopmental Disorders/genetics , Craniofacial Abnormalities/genetics , Chromosomes, Human, Pair 9/genetics , Child , DNA Methylation/genetics , Child, Preschool , Neoplasm Proteins/genetics , Adolescent , Hypertrichosis/genetics , Mutation , Failure to Thrive/genetics , Histone-Lysine N-Methyltransferase/genetics , Heart Defects, Congenital
2.
Am J Hum Genet ; 111(8): 1605-1625, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39013458

ABSTRACT

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 9 , Craniofacial Abnormalities , DNA Methylation , Genetic Association Studies , Histone-Lysine N-Methyltransferase , Intellectual Disability , Phenotype , Humans , Histone-Lysine N-Methyltransferase/genetics , Craniofacial Abnormalities/genetics , Intellectual Disability/genetics , Chromosomes, Human, Pair 9/genetics , DNA Methylation/genetics , Female , Male , Child , Child, Preschool , Histocompatibility Antigens/genetics , Adolescent , Heart Defects, Congenital/genetics , Haploinsufficiency/genetics , Mutation
3.
Am J Hum Genet ; 111(7): 1330-1351, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38815585

ABSTRACT

Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.


Subject(s)
Epilepsy , Neurodevelopmental Disorders , Ubiquitin-Protein Ligases , Adolescent , Child , Child, Preschool , Female , Humans , Male , Developmental Disabilities/genetics , DNA Methylation/genetics , Epigenesis, Genetic , Epilepsy/genetics , Histones/metabolism , Histones/genetics , Induced Pluripotent Stem Cells/metabolism , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Ubiquitin-Protein Ligases/metabolism
4.
J Med Genet ; 61(6): 578-585, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38290825

ABSTRACT

OBJECTIVES: Speech and language impairments are core features of the neurodevelopmental genetic condition Kleefstra syndrome. Communication has not been systematically examined to guide intervention recommendations. We define the speech, language and cognitive phenotypic spectrum in a large cohort of individuals with Kleefstra syndrome. METHOD: 103 individuals with Kleefstra syndrome (40 males, median age 9.5 years, range 1-43 years) with pathogenic variants (52 9q34.3 deletions, 50 intragenic variants, 1 balanced translocation) were included. Speech, language and non-verbal communication were assessed. Cognitive, health and neurodevelopmental data were obtained. RESULTS: The cognitive spectrum ranged from average intelligence (12/79, 15%) to severe intellectual disability (12/79, 15%). Language ability also ranged from average intelligence (10/90, 11%) to severe intellectual disability (53/90, 59%). Speech disorders occurred in 48/49 (98%) verbal individuals and even occurred alongside average language and cognition. Developmental regression occurred in 11/80 (14%) individuals across motor, language and psychosocial domains. Communication aids, such as sign and speech-generating devices, were crucial for 61/103 (59%) individuals including those who were minimally verbal, had a speech disorder or following regression. CONCLUSIONS: The speech, language and cognitive profile of Kleefstra syndrome is broad, ranging from severe impairment to average ability. Genotype and age do not explain the phenotypic variability. Early access to communication aids may improve communication and quality of life.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 9 , Cognition , Craniofacial Abnormalities , Intellectual Disability , Phenotype , Humans , Male , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Child , Adolescent , Female , Adult , Child, Preschool , Chromosomes, Human, Pair 9/genetics , Young Adult , Infant , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/physiopathology , Speech , Speech Disorders/genetics , Speech Disorders/physiopathology , Language , Intelligence/genetics , Language Disorders/genetics , Language Disorders/physiopathology , Heart Defects, Congenital
5.
Clin Genet ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923504

ABSTRACT

To comprehensively investigate the neurodevelopmental profile and clinical characteristics associated with SETBP1 haploinsufficiency disorder (SETBP1-HD) and SETBP1-related disorders (SETBP1-RD). We reported genetic results on 34 individuals, with behavior and clinical data from 22 with SETBP1-HD and 5 with SETBP1-RD, by assessing results from medical history interviews and standardized adaptive, clinical, and social measures provided from Simons Searchlight. All individuals with SETBP1-HD and SETBP1-RD exhibited neurological impairments including intellectual disability/developmental delay (IDD), attention-deficit/hyperactivity disorder, autism spectrum disorder, and/or seizures, as well as speech and language delays. While restricted interests and repetitive behaviors present challenges, a relative strength was observed in social motivation within both cohorts. Individuals with SETBP1-RD reported a risk for heart issues and compared to SETBP1-HD greater risks for orthopedic and somatic issues with greater difficulty in bowel control. Higher rates for neonatal feeding difficulties and febrile seizures were reported for individuals with SETBP1-HD. Additional prominent characteristics included sleep, vision, and gastrointestinal issues, hypotonia, and high pain tolerance. This characterization of phenotypic overlap (IDD, speech challenges, autistic, and attention deficit traits) and differentiation (somatic and heart issue risks for SETBP1-RD) between the distinct neurodevelopmental disorders SETBP1-HD and SETBP1-RD is critical for medical management and diagnosis.

6.
Europace ; 26(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38195854

ABSTRACT

AIMS: Kleefstra syndrome (KS), often diagnosed in early childhood, is a rare genetic disorder due to haploinsufficiency of EHMT1 and is characterized by neuromuscular and intellectual developmental abnormalities. Although congenital heart disease (CHD) is common, the prevalence of arrhythmias and CHD subtypes in KS is unknown. METHODS AND RESULTS: Inspired by a novel case series of KS patients with atrial tachyarrhythmias in the USA, we evaluate the two largest known KS registries for arrhythmias and CHD: Radboudumc (50 patients) based on health record review at Radboud University Medical Center in the Netherlands and GenIDA (163 patients) based on worldwide surveys of patient families. Three KS patients (aged 17-25 years) presented with atrial tachyarrhythmias without manifest CHD. In the international KS registries, the median [interquartile range (IQR)] age was considerably younger: GenIDA/Radboudumc at 10/13.5 (12/13) years, respectively. Both registries had a 40% prevalence of cardiovascular abnormalities, the majority being CHD, including septal defects, vascular malformations, and valvular disease. Interestingly, 4 (8%) patients in the Radboudumc registry reported arrhythmias without CHD, including one atrial fibrillation (AF), two with supraventricular tachycardias, and one with non-sustained ventricular tachycardia. The GenIDA registry reported one patient with AF and another with chronic ectopic atrial tachycardia (AT). In total, atrial tachyarrhythmias were noted in six young KS patients (6/213 or 3%) with at least four (three AF and one AT) without structural heart disease. CONCLUSION: In addition to a high prevalence of CHD, evolving data reveal early-onset atrial tachyarrhythmias in young KS patients, including AF, even in the absence of structural heart disease.


Subject(s)
Atrial Fibrillation , Chromosome Deletion , Craniofacial Abnormalities , Heart Defects, Congenital , Intellectual Disability , Humans , Child, Preschool , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Atrial Fibrillation/genetics , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/genetics , Tachycardia , Epigenesis, Genetic , Chromosomes, Human, Pair 9
7.
Pediatr Neurol ; 157: 79-86, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901369

ABSTRACT

BACKGROUND: Although there are established connections between genetic epilepsies and neurodevelopmental disorders like intellectual disability, the presence of cerebral palsy (CP) in genetic epilepsies is undercharacterized. We performed a retrospective chart review evaluating the motor phenotype of patients with genetic epilepsies. METHODS: Patients were ascertained through a research exome sequencing study to identify genetic causes of epilepsy. We analyzed data from the first 100 individuals with molecular diagnoses. We determined motor phenotype by reviewing medical records for muscle tone and motor function data. We characterized patients according to CP subtypes: spastic diplegic, spastic quadriplegic, spastic hemiplegic, dyskinetic, hypotonic-ataxic. RESULTS: Of 100 individuals with genetic epilepsies, 14% had evidence of possible CP, including 5% characterized as hypotonic-ataxic CP, 5% spastic quadriplegic CP, 3% spastic diplegic CP, and 1% hemiplegic CP. Presence of CP did not correlate with seizure onset age (P = 0.63) or seizure control (P = 0.07). CP occurred in 11% (n = 3 of 27) with focal epilepsy, 9% (n = 5 of 54) with generalized epilepsy, and 32% (n = 6 of 19) with combined focal/generalized epilepsy (P = 0.06). CONCLUSIONS: In this retrospective analysis of patients with genetic epilepsies, we identified a substantial portion with CP phenotypes, representing an under-recognized comorbidity. These findings underscore the many neurodevelopmental features associated with neurogenetic conditions, regardless of the feature for which they were ascertained for sequencing. Detailed motor phenotyping is needed to determine the prevalence of CP and its subtypes among genetic epilepsies. These motor phenotypes require clinical management and represent important targeted outcomes in trials for patients with genetic epilepsies.


Subject(s)
Cerebral Palsy , Epilepsy , Phenotype , Humans , Male , Female , Child , Retrospective Studies , Child, Preschool , Adolescent , Epilepsy/genetics , Epilepsy/physiopathology , Cerebral Palsy/genetics , Cerebral Palsy/physiopathology , Adult , Young Adult , Infant
8.
Bioengineering (Basel) ; 11(5)2024 May 12.
Article in English | MEDLINE | ID: mdl-38790349

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for elucidating the molecular makeup of materials. It possesses the unique characteristics of single-molecule sensitivity and extremely high specificity. However, the true potential of SERS, particularly in capturing the biochemical content of particles, remains underexplored. In this study, we harnessed transformer neural networks to interpret SERS spectra, aiming to discern the amino acid profiles within proteins. By training the network on the SERS profiles of 20 amino acids of human proteins, we explore the feasibility of predicting the predominant proteins within the µL-scale detection volume of SERS. Our results highlight a consistent alignment between the model's predictions and the protein's known amino acid compositions, deepening our understanding of the inherent information contained within SERS spectra. For instance, the model achieved low root mean square error (RMSE) scores and minimal deviation in the prediction of amino acid compositions for proteins such as Bovine Serum Albumin (BSA), ACE2 protein, and CD63 antigen. This novel methodology offers a robust avenue not only for protein analytics but also sets a precedent for the broader realm of spectral analyses across diverse material categories. It represents a solid step forward to establishing SERS-based proteomics.

9.
Contemp Clin Trials Commun ; 37: 101254, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38269047

ABSTRACT

Neurological medical devices have revolutionized the management of neurological disorders, providing diagnostic, therapeutic, and monitoring solutions. High-risk neurological devices, such as deep brain stimulation and neurostimulators, offer groundbreaking treatments, emphasizing patient benefits while considering risks. To gain FDA approval, high-risk Class III devices necessitate premarket approval (PMA) applications with pivotal clinical trials, often assessing patient-reported outcomes (PROs). This article analyzes FDA-approved high-risk neurological devices from 2001 to 2022 via the PMA pathway. It explores device characteristics and pivotal clinical trials, and PRO incorporation. Of the 23 identified devices, pain neurology devices (30.4 %) predominated. All devices were therapeutic, with varying study designs. Pain neurology devices notably emphasized PRO endpoints as expected. This study underscores the significance of PROs in assessing device efficacy and safety, offering insights into regulatory processes and patient-centered care in neurological disorder management.

10.
Article in English | MEDLINE | ID: mdl-38600673

ABSTRACT

Backgrounds/Aims: The published data had contradictory information on the role of adjuvant therapy on resected periampullary carcinomas (PACA). The study was performed to evaluate the survival benefit of adjuvant treatment. Methods: This was a propensity score matched case-control study from a prospectively maintained database from 2004-2019. The study included patients with nonpancreatic PACA who underwent curative resection. The patients (cases) who received adjuvant chemotherapy were compared with patients (controls) who were observed alone after surgery. Results: Of 510 patients with PACA, 230 patients (cases = 107, controls = 123) formed the unmatched study cohort. After propensity score matching, 140 patients (cases = 70, controls = 70) formed the matched study cohort. The median overall survival (OS) was similar in cases than controls in the unmatched population but doubled non-significantly in cases after matching (unmatched population, 54 months vs. 54 months, p-value = 0.624; matched population, 71 months vs. 36 months, p-value = 0.087). However, the median recurrence-free survival (RFS) was non significantly higher in the control group (unmatched population, 59 months vs. 38 months, p-value = 0.195; matched population, 53 months vs. 40 months, p-value = 0.797). In cox regression analysis, age < 60 years, advanced T stage, and presence of perineural invasion were independent factors for worse RFS, while tumor recurrence was an independent factor for poor OS. Conclusions: Patients with nonpancreatic PACA may have an OS benefit from adjuvant chemotherapy, and this needs to be validated with large prospective randomized studies.

11.
Ann Clin Transl Neurol ; 11(2): 251-262, 2024 02.
Article in English | MEDLINE | ID: mdl-38168508

ABSTRACT

OBJECTIVE: Evaluation of the clinical utility of a genetic diagnosis in CP remains limited. We aimed to characterize the clinical utility of a genetic diagnosis by exome sequencing (ES) in patients with CP and related motor disorders. METHODS: We enrolled participants with CP and "CP masquerading" conditions in an institutional ES initiative. In those with genetic diagnoses who had clinical visits to discuss results, we retrospectively reviewed medical charts, evaluating recommendations based on the genetic diagnosis pertaining to medication intervention, surveillance initiation, variant-specific testing, and patient education. RESULTS: We included 30 individuals with a molecular diagnosis and clinical follow-up. Nearly all (28 out of 30) had clinical impact resulting from the genetic diagnosis. Medication interventions included recommendation of mitochondrial multivitamin supplementation (6.67%, n = 2), ketogenic diet (3.33%, n = 1), and fasting avoidance (3.33%, n = 1). Surveillance-related actions included recommendations for investigating systemic complications (40%, n = 12); referral to new specialists to screen for systemic manifestations (33%, n = 10); continued follow-up with established specialists to focus on specific manifestations (16.67%, n = 5); referral to clinical genetics (16.67%, n = 5) to oversee surveillance recommendations. Variant-specific actions included carrier testing (10%, n = 3) and testing of potentially affected relatives (3.33%, n = 1). Patient education-specific actions included referral to experts in the genetic disorder (30%, n = 9); and counseling about possible changes in prognosis, including recognition of disease progression and early mortality (36.67%, n = 11). INTERPRETATION: This study highlights the clinical utility of a genetic diagnosis for CP and "CP masquerading" conditions, evident by medication interventions, surveillance impact, family member testing, and patient education, including possible prognostic changes.


Subject(s)
Cerebral Palsy , Diet, Ketogenic , Motor Disorders , Humans , Retrospective Studies , Cognition
12.
Cureus ; 16(1): e52342, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38361713

ABSTRACT

Introduction Wire-guided bougienage of the upper esophageal sphincter (UES) was performed routinely before per-oral motorized power spiral enteroscopy (MSE). In the present study, we aimed to answer the clinical question of whether routine bougienage of UES is required. Methods This was a retrospective study that included 20 patients who underwent antegrade spiral enteroscopy for various indications. The feasibility and safety of anterograde MSE without prior bougie dilatation of the upper esophageal sphincter were assessed. The technical success rate (TSR), diagnostic yield, and adverse events (AEs) were also assessed. Results In 16 out of the 20 patients, a spiral enteroscope was taken directly across UES into the esophagus without a prior bougie dilatation. The spiral enteroscope could not be negotiated across UES only in one patient, and bougie dilatation was done. The technical success rate was 100%. The diagnostic yield was 80%. Four patients reported AEs. Conclusions MSE had a good technical success rate and diagnostic yield. Routine dilatation of the UES before the procedure may be unnecessary.

13.
PLoS One ; 19(6): e0305418, 2024.
Article in English | MEDLINE | ID: mdl-38889139

ABSTRACT

Small extracellular vesicles (sEVs) are cell-released vesicles ranging from 30-150nm in size. They have garnered increasing attention because of their potential for both the diagnosis and treatment of disease. The diversity of sEVs derives from their biological composition and cargo content. Currently, the isolation of sEV subpopulations is primarily based on bio-physical and affinity-based approaches. Since a standardized definition for sEV subpopulations is yet to be fully established, it is important to further investigate the correlation between the biomolecular composition of sEVs and their physical properties. In this study, we employed a platform combining single-vesicle surface-enhanced Raman spectroscopy (SERS) and machine learning to examine individual sEVs isolated by size-exclusion chromatography (SEC). The biomolecular composition of each vesicle examined was reflected by its corresponding SERS spectral features (biomolecular "fingerprints"), with their roots in the composition of their collective Raman-active bonds. Origins of the SERS spectral features were validated through a comparative analysis between SERS and mass spectrometry (MS). SERS fingerprinting of individual vesicles was effective in overcoming the challenges posed by EV population averaging, allowing for the possibility of analyzing the variations in biomolecular composition between the vesicles of similar and/or different sizes. Using this approach, we uncovered that each of the size-based fractions of sEVs contained particles with predominantly similar SERS spectral features. Indeed, more than 84% of the vesicles residing within a particular group were clearly distinguishable from that of the other EV sub-populations, despite some spectral variations within each sub-population. Our results suggest the possibility that size-based EV fractionation methods produce samples where similarly eluted sEVs are correlated with their respective biochemical contents, as reflected by their SERS spectra. Our findings therefore highlight the possibility that the biogenesis and respective biological functionalities of the various sEV fractions may be inherently different.


Subject(s)
Extracellular Vesicles , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Humans , Chromatography, Gel/methods , Machine Learning , Mass Spectrometry/methods
14.
J Child Neurol ; 39(5-6): 178-189, 2024 May.
Article in English | MEDLINE | ID: mdl-38751192

ABSTRACT

Background: Abnormalities in white matter development may influence development of autism spectrum disorder in tuberous sclerosis complex (TSC). Our goals for this study were as follows: (1) use data from a longitudinal neuroimaging study of tuberous sclerosis complex (TACERN) to develop optimized linear mixed effects models for analyzing longitudinal, repeated diffusion tensor imaging metrics (fractional anisotropy, mean diffusivity) pertaining to select white matter tracts, in relation to positive Autism Diagnostic Observation Schedule-Second Edition classification at 36 months, and (2) perform an exploratory analysis using optimized models applied to all white matter tracts from these data. Methods: Eligible participants (3-12 months) underwent brain magnetic resonance imaging (MRI) at repeated time points from ages 3 to 36 months. Positive Autism Diagnostic Observation Schedule-Second Edition classification at 36 months was used. Linear mixed effects models were fine-tuned separately for fractional anisotropy values (using fractional anisotropy corpus callosum as test outcome) and mean diffusivity values (using mean diffusivity right posterior limb internal capsule as test outcome). Fixed effects included participant age, within-participant longitudinal age, and autism spectrum disorder diagnosis. Results: Analysis included data from n = 78. After selecting separate optimal models for fractional anisotropy and mean diffusivity values, we applied these models to fractional anisotropy and mean diffusivity of all 27 white matter tracts. Fractional anisotropy corpus callosum was related to positive Autism Diagnostic Observation Schedule-Second Edition classification (coefficient = 0.0093, P = .0612), and mean diffusivity right inferior cerebellar peduncle was related to positive Autism Diagnostic Observation Schedule-Second Edition classification (coefficient = -0.00002071, P = .0445), though these findings were not statistically significant after multiple comparisons correction. Conclusion: These optimized linear mixed effects models possibly implicate corpus callosum and cerebellar pathology in development of autism spectrum disorder in tuberous sclerosis complex, but future studies are needed to replicate these findings and explore contributors of heterogeneity in these models.


Subject(s)
Autism Spectrum Disorder , Diffusion Tensor Imaging , Tuberous Sclerosis , White Matter , Humans , Tuberous Sclerosis/diagnostic imaging , Tuberous Sclerosis/complications , Tuberous Sclerosis/pathology , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Diffusion Tensor Imaging/methods , Male , Female , White Matter/diagnostic imaging , White Matter/pathology , Longitudinal Studies , Child, Preschool , Infant , Brain/diagnostic imaging , Brain/pathology , Brain/growth & development , Anisotropy
15.
Ann Clin Transl Neurol ; 11(5): 1301-1309, 2024 May.
Article in English | MEDLINE | ID: mdl-38501559

ABSTRACT

OBJECTIVE: PTEN, a known tumor suppressor gene, is a mediator of neurodevelopment. Individuals with germline pathogenic variants in the PTEN gene, molecularly defined as PTEN hamartoma tumor syndrome (PHTS), experience a variety of neurological and neuropsychiatric challenges during childhood, including autism spectrum disorder (ASD). However, the frequency and nature of seizures and the utilization of allied health services have not been described. METHODS: Young patients with PHTS and sibling controls were recruited across five centers in the United States and followed every 6-12 months for a mean of 2.1 years. In addition to the history obtained from caregivers, neurodevelopmental evaluations and structured dysmorphology examinations were conducted, and brain MRI findings, received therapies, and epilepsy characteristics were reported. RESULTS: One hundred and seven patients with PHTS (median age 8.7 years; range 3-21 years) and 38 controls were enrolled. ASD and epilepsy were frequent among patients with PHTS (51% and 15%, respectively), with generalized epilepsy strongly associated with ASD. Patients with epilepsy often required two antiseizure medications. Neuroimaging revealed prominent perivascular spaces and decreased peritrigonal myelination in individuals with PHTS-ASD. Allied therapy use was frequent and involved physical, occupational, speech, and social skills therapies, with 89% of all patients with PHTS, regardless of ASD diagnosis, utilizing at least one service. INTERPRETATION: This prospective, longitudinal study highlights the wide neurological spectrum seen in young individuals with PHTS. ASD is common in PHTS, comorbid with epilepsy, and allied health services are used universally. Our findings inform care discussions with families about neurological outcomes in PHTS.


Subject(s)
Autism Spectrum Disorder , Epilepsy , Germ-Line Mutation , PTEN Phosphohydrolase , Humans , Male , Female , Adolescent , Child , Child, Preschool , Young Adult , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Epilepsy/genetics , PTEN Phosphohydrolase/genetics , Adult , Hamartoma Syndrome, Multiple/genetics
16.
J Bone Miner Res ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088537

ABSTRACT

Bruck syndrome is an autosomal recessive form of osteogenesis imperfecta (OI) caused by biallelic variants in PLOD2 or FKBP10 and is characterized by joint contractures, bone fragility, short stature, and scoliosis. PLOD2 encodes LH2, which hydroxylates type I collagen telopeptide lysines, a critical step for collagen crosslinking. The Plod2 global knockout mouse model is limited by early embryonic lethality, thus the role of PLOD2 in skeletogenesis is not well understood. We generated a novel Plod2 mouse line modeling a variant identified in two unrelated individuals with Bruck syndrome: PLOD2 c.1559dupC, predicting a frameshift and loss of the long isoform LH2b. In the mouse, the duplication led to loss of LH2b mRNA as well as significantly reduced total LH2 protein. This model, Plod2fs/fs, survived up to E18.5 although in non-Mendelian genotype frequencies. The homozygous frameshift model recapitulated the joint contractures seen in Bruck syndrome and had indications of absent type I collagen telopeptide lysine hydroxylation in bone. Genetically labeling tendons with Scleraxis-GFP in Plod2fs/fs mice revealed the loss of extensor tendons in the forelimb by E18.5 and developmental studies showed extensor tendons developed through E14.5 but were absent starting at E16.5. Second harmonic generation showed abnormal tendon type I collagen fiber organization, suggesting structurally abnormal tendons. Characterization of the skeleton by µCT and Raman spectroscopy showed normal bone mineralization levels. This work highlights the importance of properly crosslinked type I collagen in tendon and bone, providing a promising new mouse model to further our understanding of Bruck syndrome.


Bruck syndrome is a rare disease where individuals have brittle bone as well as contracted or stiff joints. Mutations in two genes are associated with Bruck syndrome and, in this work, we focus on PLOD2. Mice without Plod2 die at an early embryonic stage, before they have a chance to fully develop. In this work, we created a mouse with a PLOD2 mutation seen in people with Bruck syndrome. Some of these new Bruck syndrome model mice survived to a later gestational age, but all died at birth. The Bruck syndrome mice were small and had contracted joints. We found they were missing tendons in their arms and had structurally abnormal tendons in their knees. Bone mineralization was normal, but there were indications that the modifications needed for normal type I collagen structure were absent. Overall, this is an advantageous new mouse model of Bruck syndrome that can be used to study this rare disease and highlights the importance of Plod2 in tendon.

17.
J Neurodev Disord ; 16(1): 17, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632549

ABSTRACT

Monogenic disorders account for a large proportion of population-attributable risk for neurodevelopmental disabilities. However, the data necessary to infer a causal relationship between a given genetic variant and a particular neurodevelopmental disorder is often lacking. Recognizing this scientific roadblock, 13 Intellectual and Developmental Disabilities Research Centers (IDDRCs) formed a consortium to create the Brain Gene Registry (BGR), a repository pairing clinical genetic data with phenotypic data from participants with variants in putative brain genes. Phenotypic profiles are assembled from the electronic health record (EHR) and a battery of remotely administered standardized assessments collectively referred to as the Rapid Neurobehavioral Assessment Protocol (RNAP), which include cognitive, neurologic, and neuropsychiatric assessments, as well as assessments for attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Co-enrollment of BGR participants in the Clinical Genome Resource's (ClinGen's) GenomeConnect enables display of variant information in ClinVar. The BGR currently contains data on 479 participants who are 55% male, 6% Asian, 6% Black or African American, 76% white, and 12% Hispanic/Latine. Over 200 genes are represented in the BGR, with 12 or more participants harboring variants in each of these genes: CACNA1A, DNMT3A, SLC6A1, SETD5, and MYT1L. More than 30% of variants are de novo and 43% are classified as variants of uncertain significance (VUSs). Mean standard scores on cognitive or developmental screens are below average for the BGR cohort. EHR data reveal developmental delay as the earliest and most common diagnosis in this sample, followed by speech and language disorders, ASD, and ADHD. BGR data has already been used to accelerate gene-disease validity curation of 36 genes evaluated by ClinGen's BGR Intellectual Disability (ID)-Autism (ASD) Gene Curation Expert Panel. In summary, the BGR is a resource for use by stakeholders interested in advancing translational research for brain genes and continues to recruit participants with clinically reported variants to establish a rich and well-characterized national resource to promote research on neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Neurodevelopmental Disorders , Humans , Male , Female , Autism Spectrum Disorder/genetics , Brain , Registries , Methyltransferases
18.
J Neurodev Disord ; 16(1): 25, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730350

ABSTRACT

BACKGROUND: Phelan-McDermid syndrome (PMS) is a genetic neurodevelopmental disorder caused by SHANK3 haploinsufficiency and is associated with an increased risk for seizures. Previous literature indicates that around one third of individuals with PMS also have epilepsy or seizures, with a wide range of types and ages of onset. Investigating the impact of seizures on intellectual and adaptive functioning for PMS is a primary concern for caregivers and is important to understanding the natural history of this syndrome. METHODS: We report on results from 98 individuals enrolled in a prospective, longitudinal study. We detailed seizure frequency, type, and age of onset, and we analyzed seizure occurrence with best estimate IQ, adaptive functioning, clinical features, and genotype. We conducted multiple linear regression analyses to assess the relationship between the presence of seizures and the Vineland Adaptive Behavior Scale, Second Edition (VABS-II) Adaptive Behavior Composite score and the best estimate full-scale IQ. We also performed Chi-square tests to explore associations between seizure prevalence and genetic groupings. Finally, we performed Chi-square tests and t-tests to explore the relationship between seizures and demographic features, features that manifest in infancy, and medical features. RESULTS: Seizures were present in 41% of the cohort, and age of onset was widely variable. The presence of seizures was associated with significantly lower adaptive and intellectual functioning. Genotype-phenotype analyses were discrepant, with no differences in seizure prevalence across genetic classes, but with more genes included in deletions of participants with 22q13 deletions and seizures compared to those with 22q13 deletions and no seizures. No clinical associations were found between the presence of seizures and sex, history of pre- or neonatal complications, early infancy, or medical features. In this cohort, generalized seizures were associated with developmental regression, which is a top concern for PMS caregivers. CONCLUSIONS: These results begin to eludicate correlates of seizures in individuals with PMS and highlight the importance of early seizure management. Importantly, presence of seizures was associated with adaptive and cognitive functioning. A larger cohort might be able to identify additional associations with medical features. Genetic findings suggest an increased capability to realize genotype-phenotype relationships when deletion size is taken into account.


Subject(s)
Chromosome Deletion , Chromosome Disorders , Chromosomes, Human, Pair 22 , Seizures , Humans , Male , Female , Seizures/genetics , Chromosome Disorders/complications , Chromosome Disorders/genetics , Chromosome Disorders/physiopathology , Chromosomes, Human, Pair 22/genetics , Child , Child, Preschool , Adolescent , Longitudinal Studies , Young Adult , Adult , Prospective Studies , Infant , Nerve Tissue Proteins/genetics
19.
medRxiv ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38496416

ABSTRACT

The ADAT2/ADAT3 complex catalyzes the adenosine to inosine modification at the wobble position of eukaryotic tRNAs. Mutations in ADAT3 , the catalytically inactive subunit of the ADAT2/ADAT3 complex, have been identified in patients presenting with severe neurodevelopmental disorders (NDDs). Yet, the physiological function of ADAT2/ADAT3 complex during brain development remains totally unknown. Here we showed that maintaining a proper level of ADAT2/ADAT3 catalytic activity is required for correct radial migration of projection neurons in the developing mouse cortex. In addition, we not only reported 7 new NDD patients carrying biallelic variants in ADAT3 but also deeply characterize the impact of those variants on ADAT2/ADAT3 structure, biochemical properties, enzymatic activity and tRNAs editing and abundance. We demonstrated that all the identified variants alter both the expression and the activity of the complex leading to a significant decrease of I 34 with direct consequence on their steady-state. Using in vivo complementation assays, we correlated the severity of the migration phenotype with the degree of the loss of function caused by the variants. Altogether, our results indicate a critical role of ADAT2/ADAT3 during cortical development and provide cellular and molecular insights into the pathogenicity of ADAT3-related neurodevelopmental disorder.

20.
HGG Adv ; 5(2): 100273, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38297832

ABSTRACT

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.


Subject(s)
De Lange Syndrome , Intellectual Disability , Humans , Cell Cycle Proteins/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/genetics , De Lange Syndrome/genetics , Heterozygote , Intellectual Disability/genetics , Mutation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL