Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 602
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 177(5): 1201-1216.e19, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31031005

ABSTRACT

Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.


Subject(s)
Cellular Microenvironment/immunology , Dendritic Cells/immunology , Immunity, Innate , Mitochondria/immunology , Reactive Oxygen Species/immunology , Unfolded Protein Response/immunology , Animals , Cellular Microenvironment/genetics , Citric Acid Cycle/genetics , Citric Acid Cycle/immunology , Dendritic Cells/pathology , Hexokinase/genetics , Hexokinase/immunology , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Mice , Mice, Knockout , Mitochondria/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Unfolded Protein Response/genetics , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/immunology
3.
Circ Res ; 133(10): 826-841, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37883587

ABSTRACT

BACKGROUND: Thrombocytopenia has been consistently described in patients with extracorporeal membrane oxygenation (ECMO) and associated with poor outcome. However, the prevalence and underlying mechanisms remain largely unknown, and a device-related role of ECMO in thrombocytopenia has been hypothesized. This study aims to investigate the mechanisms underlying thrombocytopenia in ECMO patients. METHODS: In a prospective cohort of 107 ECMO patients, we investigated platelet count, functions, and glycoprotein shedding. In an ex vivo mock circulatory ECMO loop, we assessed platelet responses and VWF (von Willebrand factor)-GP Ibα (glycoprotein Ibα) interactions at low- and high-flow rates, in the presence or absence of red blood cells. The clearance of human platelets subjected or not to ex vivo perfusion was studied using an in vivo transfusion model in NOD/SCID (nonobese diabetic/severe combined Immunodeficient) mice. RESULTS: In ECMO patients, we observed a time-dependent decrease in platelet count starting 1 hour after device onset, with a mean drop of 7%, 35%, and 41% at 1, 24, and 48 hours post-ECMO initiation (P=0.00013, P<0.0001, and P<0.0001, respectively), regardless of the type of ECMO. This drop in platelet count was associated with a decrease in platelet GP Ibα expression (before: 47.8±9.1 versus 24 hours post-ECMO: 42.3±8.9 mean fluorescence intensity; P=0.002) and an increase in soluble GP Ibα plasma levels (before: 5.6±3.3 versus 24 hours post-ECMO: 10.8±4.1 µg/mL; P<0.0001). GP Ibα shedding was also observed ex vivo and was unaffected by (1) red blood cells, (2) the coagulation potential, (3) an antibody blocking VWF-GP Ibα interaction, (4) an antibody limiting VWF degradation, and (5) supraphysiological VWF plasma concentrations. In contrast, GP Ibα shedding was dependent on rheological conditions, with a 2.8-fold increase at high- versus low-flow rates. Platelets perfused at high-flow rates before being transfused to immunodeficient mice were eliminated faster in vivo with an accelerated clearance of GP Ibα-negative versus GP Ibα-positive platelets. CONCLUSIONS: ECMO-associated shear forces induce GP Ibα shedding and thrombocytopenia due to faster clearance of GP Ibα-negative platelets. Inhibiting GP Ibα shedding could represent an approach to reduce thrombocytopenia during ECMO.


Subject(s)
Thrombocytopenia , von Willebrand Factor , Humans , Animals , Mice , von Willebrand Factor/metabolism , Prospective Studies , Mice, Inbred NOD , Mice, SCID , Blood Platelets/metabolism , Thrombocytopenia/therapy , Thrombocytopenia/metabolism
4.
EMBO Rep ; 24(9): e57020, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37424431

ABSTRACT

Cell identity is specified by a core transcriptional regulatory circuitry (CoRC), typically limited to a small set of interconnected cell-specific transcription factors (TFs). By mining global hepatic TF regulons, we reveal a more complex organization of the transcriptional regulatory network controlling hepatocyte identity. We show that tight functional interconnections controlling hepatocyte identity extend to non-cell-specific TFs beyond the CoRC, which we call hepatocyte identity (Hep-ID)CONNECT TFs. Besides controlling identity effector genes, Hep-IDCONNECT TFs also engage in reciprocal transcriptional regulation with TFs of the CoRC. In homeostatic basal conditions, this translates into Hep-IDCONNECT TFs being involved in fine tuning CoRC TF expression including their rhythmic expression patterns. Moreover, a role for Hep-IDCONNECT TFs in the control of hepatocyte identity is revealed in dedifferentiated hepatocytes where Hep-IDCONNECT TFs are able to reset CoRC TF expression. This is observed upon activation of NR1H3 or THRB in hepatocarcinoma or in hepatocytes subjected to inflammation-induced loss of identity. Our study establishes that hepatocyte identity is controlled by an extended array of TFs beyond the CoRC.


Subject(s)
Gene Expression Regulation , Transcription Factors , Transcription Factors/metabolism , Hepatocytes/metabolism , Liver/metabolism , Gene Regulatory Networks
5.
Gut ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862216

ABSTRACT

Nuclear receptors (NRs) are ligand-dependent transcription factors required for liver development and function. As a consequence, NRs have emerged as attractive drug targets in a wide range of liver diseases. However, liver dysfunction and failure are linked to loss of hepatocyte identity characterised by deficient NR expression and activities. This might at least partly explain why several pharmacological NR modulators have proven insufficiently efficient to improve liver functionality in advanced stages of diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). In this perspective, we review the most recent advances in the hepatic NR field and discuss the contribution of multiomic approaches to our understanding of their role in the molecular organisation of an intricated transcriptional regulatory network, as well as in liver intercellular dialogues and interorgan cross-talks. We discuss the potential benefit of novel therapeutic approaches simultaneously targeting multiple NRs, which would not only reactivate the hepatic NR network and restore hepatocyte identity but also impact intercellular and interorgan interplays whose importance to control liver functions is further defined. Finally, we highlight the need of considering individual parameters such as sex and disease stage in the development of NR-based clinical strategies.

6.
J Hepatol ; 80(2): 209-219, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061448

ABSTRACT

BACKGROUND & AIMS: Strategies to reduce liver biopsy (LB) screen failures through better patient selection are needed for clinical trials. Standard fibrosis biomarkers were not derived to detect "at-risk" metabolic dysfunction-associated steatohepatitis (MASH; MASH with metabolic dysfunction-associated steatotic liver disease score ≥4 and fibrosis stage ≥2). We compared the performance of screening pathways that incorporate NIS2+™, an optimized version of the blood-based NIS4® technology designed to identify at-risk MASH, with those incorporating fibrosis (FIB)-4 within the RESOLVE-IT clinical trial (NCT02704403), aiming for optimized selection of patients for LB. METHODS: A retrospective simulation analysis was conducted in the RESOLVE-IT screening pathway (RSP) cohort. LB failure rate (LBFR), number of patients needed to screen, and overall cost estimations of different pathways were calculated for a range of NIS2+™ and FIB-4 cut-offs and compared with those of the RSP, which relied on investigators' local practices. An analysis of potential recruitment bias based on histology, sex, age, or comorbidities was performed. RESULTS: The analysis cohort included 1,929 patients, 765 (40%) with at-risk MASH. The NIS2+™ pathway resulted in a significantly lower LBFR (39%) compared with the FIB-4 pathway (58%) or the RSP (60%) when using cost-optimized cut-offs (NIS2+™, 0.53; FIB-4, 0.58). For every 1,000 inclusions, NIS2+™ significantly reduced unnecessary LBs (632 vs. 1,522; -58%) and screening costs (US$12.7 million vs. US$15.0 million) vs. the RSP, while the number of patients needed to screen increased moderately (3,220 to 4,033). NIS2+™ alone is better than FIB-4 alone or combined with FIB-4. CONCLUSIONS: This analysis demonstrated that patient selection for LB using NIS2+™ significantly reduced unnecessary biopsies and screening costs, which could greatly improve the feasibility of MASH clinical trials. IMPACT AND IMPLICATIONS: Simple and accurate non-invasive strategies to optimize the selection of patients who should be referred for liver biopsy for inclusion in MASH clinical trials is critical to reduce the high liver biopsy failure rates. While the use of the Fibrosis-4 index alone did not lead to a significant improvement of the screening process, selecting patients using NIS2+™, a recently developed optimization of the NIS4® technology for the detection of at-risk MASH, showed improved performance by simultaneously reducing liver biopsy failure rates and the overall cost of the trial, while maintaining the number of patients needed to screen at a manageable level and not generating any bias in included patients' characteristics. This makes NIS2+™ an accurate and reliable screening tool that could improve the recruitment of patients in future MASH clinical trials, and would lead to increased patient comfort and security, ensuring timely and cost-efficient trial completion.


Subject(s)
Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Humans , Patient Selection , Liver Cirrhosis/complications , Retrospective Studies , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/pathology , Biopsy
7.
Hepatology ; 77(4): 1287-1302, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35735979

ABSTRACT

BACKGROUND: NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS: To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION: These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Lipoproteins/metabolism , Apolipoproteins/metabolism , Apolipoproteins/pharmacology , Triglycerides/metabolism , Liver/metabolism , Lipoproteins, VLDL/metabolism
8.
Circ Res ; 130(1): 80-95, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34809444

ABSTRACT

BACKGROUND: The LDLR (low-density lipoprotein receptor) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease. METHODS: We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of data sets on gene expression and variants in human populations. RESULTS: The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in nontransfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in nonalcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and 3 rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared with overexpression of wild-type RBM25, overexpression of the 3 rare RBM25 mutants in Huh-7 cells led to lower LDL uptake. CONCLUSIONS: We identified a novel mechanism of posttranscriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels.


Subject(s)
Nuclear Proteins/metabolism , RNA Splicing , Receptors, LDL/genetics , Cholesterol/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Lipoproteins, LDL/metabolism , Liver/metabolism , Mutation , Nuclear Proteins/genetics , Receptors, LDL/metabolism , Spliceosomes/metabolism
9.
Pharmacol Res ; 204: 107207, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734193

ABSTRACT

In recent years several experimental observations demonstrated that the gut microbiome plays a role in regulating positively or negatively metabolic homeostasis. Indole-3-propionic acid (IPA), a Tryptophan catabolic product mainly produced by C. Sporogenes, has been recently shown to exert either favorable or unfavorable effects in the context of metabolic and cardiovascular diseases. We performed a study to delineate clinical and multiomics characteristics of human subjects characterized by low and high IPA levels. Subjects with low IPA blood levels showed insulin resistance, overweight, low-grade inflammation, and features of metabolic syndrome compared to those with high IPA. Metabolomics analysis revealed that IPA was negatively correlated with leucine, isoleucine, and valine metabolism. Transcriptomics analysis in colon tissue revealed the enrichment of several signaling, regulatory, and metabolic processes. Metagenomics revealed several OTU of ruminococcus, alistipes, blautia, butyrivibrio and akkermansia were significantly enriched in highIPA group while in lowIPA group Escherichia-Shigella, megasphera, and Desulfovibrio genus were more abundant. Next, we tested the hypothesis that treatment with IPA in a mouse model may recapitulate the observations of human subjects, at least in part. We found that a short treatment with IPA (4 days at 20/mg/kg) improved glucose tolerance and Akt phosphorylation in the skeletal muscle level, while regulating blood BCAA levels and gene expression in colon tissue, all consistent with results observed in human subjects stratified for IPA levels. Our results suggest that treatment with IPA may be considered a potential strategy to improve insulin resistance in subjects with dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Humans , Male , Animals , Female , Middle Aged , Insulin Resistance , Indoles , Mice, Inbred C57BL , Metabolomics , Mice , Adult , Metabolic Syndrome/blood , Metabolic Syndrome/metabolism , Metabolic Syndrome/microbiology , Comorbidity , Muscle, Skeletal/metabolism , Muscle, Skeletal/microbiology , Multiomics
10.
Bioorg Med Chem Lett ; 106: 129770, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38677560

ABSTRACT

We have previously reported the total synthesis and structure-activity relationships (SAR) of 2-prenylated benzopyrans with PPAR agonist activity. Herein, we have described the synthesis and PPAR activity of 2-prenylated benzopyrans and 2-prenylated quinolines. The benzopyran nucleus was generated via enamine-catalyzed Kabbe condensation, and the quinoline nucleus via Friedländer condensation. Results demonstrated that both benzopyran (5a) and quinoline (4b) derivatives bearing a γ,δ-unsaturated ester displayed a pan-PPAR agonism. They were full PPARα agonists, but showed different preferences for PPARγ and PPARß/δ activation. It was noteworthy that quinoline 4b displayed full hPPARα activation (2-fold than WY-14,643), weak PPARß/δ and partial PPARγ activation. In addition, quinoline 4b showed anti-inflammatory effects on macrophages by reducing LPS-induced expression of both MCP-1 and IL-6. Therefore, 4b emerges as a first-in-class promising hit compound for the development of potential therapeutics aimed at treating metabolic syndrome, metabolic dysfunction-associated fatty liver disease (MAFLD), and its associated cardiovascular comorbidities.


Subject(s)
Metabolic Syndrome , Quinolines , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Structure-Activity Relationship , Humans , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Molecular Structure , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Macrophages/drug effects , Macrophages/metabolism , Dose-Response Relationship, Drug , Benzopyrans/pharmacology , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Animals , Mice
11.
Circulation ; 146(5): 383-397, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35722876

ABSTRACT

BACKGROUND: Cerebral microbleeds (CMBs) have been observed in healthy elderly people undergoing systematic brain magnetic resonance imaging. The potential role of acute triggers on the appearance of CMBs remains unknown. We aimed to describe the incidence of new CMBs after transcatheter aortic valve replacement (TAVR) and to identify clinical and procedural factors associated with new CMBs including hemostatic measures and anticoagulation management. METHODS: We evaluated a prospective cohort of patients with symptomatic aortic stenosis referred for TAVR for CMBs (METHYSTROKE [Identification of Epigenetic Risk Factors for Ischemic Complication During the TAVR Procedure in the Elderly]). Standardized neurologic assessment, brain magnetic resonance imaging, and analysis of hemostatic measures including von Willebrand factor were performed before and after TAVR. Numbers and location of microbleeds on preprocedural magnetic resonance imaging and of new microbleeds on postprocedural magnetic resonance imaging were reported by 2 independent neuroradiologists blinded to clinical data. Measures associated with new microbleeds and postprocedural outcome including neurologic functional outcome at 6 months were also examined. RESULTS: A total of 84 patients (47% men, 80.9±5.7 years of age) were included. On preprocedural magnetic resonance imaging, 22 patients (26% [95% CI, 17%-37%]) had at least 1 microbleed. After TAVR, new microbleeds were observed in 19 (23% [95% CI, 14%-33%]) patients. The occurrence of new microbleeds was independent of the presence of microbleeds at baseline and of diffusion-weighted imaging hypersignals. In univariable analysis, a previous history of bleeding (P=0.01), a higher total dose of heparin (P=0.02), a prolonged procedure (P=0.03), absence of protamine reversion (P=0.04), higher final activated partial thromboplastin time (P=0.05), lower final von Willebrand factor high-molecular-weight:multimer ratio (P=0.007), and lower final closure time with adenosine-diphosphate (P=0.02) were associated with the occurrence of new postprocedural microbleeds. In multivariable analysis, a prolonged procedure (odds ratio, 1.22 [95% CI, 1.03-1.73] for every 5 minutes of fluoroscopy time; P=0.02) and postprocedural acquired von Willebrand factor defect (odds ratio, 1.42 [95% CI, 1.08-1.89] for every lower 0.1 unit of high-molecular-weight:multimer ratio; P=0.004) were independently associated with the occurrence of new postprocedural microbleeds. New CMBs were not associated with changes in neurologic functional outcome or quality of life at 6 months. CONCLUSIONS: One out of 4 patients undergoing TAVR has CMBs before the procedure and 1 out of 4 patients develops new CMBs. Procedural or antithrombotic management and persistence of acquired von Willebrand factor defect were associated with the occurrence of new CMBs. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT02972008.


Subject(s)
Cerebral Hemorrhage , Transcatheter Aortic Valve Replacement , Aged , Aortic Valve/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/epidemiology , Cerebral Hemorrhage/etiology , Female , Fluoroscopy , Hemostatics , Humans , Magnetic Resonance Imaging , Male , Prospective Studies , Quality of Life , Risk Factors , Transcatheter Aortic Valve Replacement/adverse effects , Treatment Outcome , von Willebrand Factor
12.
J Hepatol ; 79(5): 1302-1316, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37459921

ABSTRACT

The pathophysiology of non-alcoholic steatohepatitis (NASH) encompasses a complex set of intra- and extrahepatic driving mechanisms, involving numerous metabolic, inflammatory, vascular and fibrogenic pathways. The peroxisome proliferator-activated receptors (PPARs) α, ß/δ and γ belong to the nuclear receptor family of ligand-activated transcription factors. Activated PPARs modulate target tissue transcriptomic profiles, enabling the body's adaptation to changing nutritional, metabolic and inflammatory environments. PPARs hence regulate several pathways involved in NASH pathogenesis. Whereas single PPAR agonists exert robust anti-NASH activity in several preclinical models, their clinical effects on histological endpoints of NASH resolution and fibrosis regression appear more modest. Simultaneous activation of several PPAR isotypes across different organs and within-organ cell types, resulting in pleiotropic actions, enhances the therapeutic potential of PPAR agonists as pharmacological agents for NASH and NASH-related hepatic and extrahepatic morbidity, with some compounds having already shown clinical efficacy on histological endpoints.

13.
J Hepatol ; 79(3): 758-767, 2023 09.
Article in English | MEDLINE | ID: mdl-37224923

ABSTRACT

BACKGROUND & AIMS: NIS4® is a blood-based non-invasive test designed to effectively rule in/rule out at-risk non-alcoholic steatohepatitis (NASH), defined as non-alcoholic fatty liver disease activity score ≥4 and significant fibrosis (stage ≥2), among patients with metabolic risk factors. Robustness of non-invasive test scores across characteristics of interest including age, type 2 diabetes mellitus, and sex, and optimised analytical aspects are critical for large-scale implementation in clinical practice. We developed and validated NIS2+™, an optimisation of NIS4®, specifically designed to improve score robustness. METHODS: A well-balanced training cohort (n = 198) included patients from the GOLDEN-505 trial. The validation (n = 684) and test (n = 2,035) cohorts included patients from the RESOLVE-IT trial. Well-matched subgroups were created to avoid potential confounding effects during modelling and analysis of score robustness. Models were trained using logistic regressions for at-risk NASH detection and compared using Bayesian information criteria. Performance of NIS2+™ was compared with that of NIS4®, Fibrosis-4, and alanine aminotransferase using area under the receiver operating characteristic curve, and robustness was analysed through score distribution. RESULTS: Using the training cohort to compare all combinations of NIS4® biomarkers, NIS2 (miR-34a-5p, YKL-40) was identified as the best combination of parameters. To correct for the sex effect on miR-34a-5p (validation cohort), sex and sex ∗ miR-34a-5p parameters were added, creating NIS2+™. In the test cohort, NIS2+™ exhibited a statistically higher area under the receiver operating characteristic curve (0.813) vs. NIS4® (0.792; p = 0.0002), Fibrosis-4 (0.653; p <0.0001), and alanine aminotransferase (0.699; p <0.0001). NIS2+™ scores were not affected by age, sex, BMI, or type 2 diabetes mellitus status, providing robust clinical performances irrespective of patient characteristics. CONCLUSION: NIS2+™ constitutes a robust optimisation of NIS4® technology for the detection of at-risk NASH. IMPACT AND IMPLICATIONS: The development of non-invasive tests for accurate, large-scale detection of patients with at-risk non-alcoholic steatohepatitis (NASH; defined as NASH with non-alcoholic fatty liver disease activity score ≥4 and fibrosis stage ≥2) - who are at higher risk for disease progression and for developing liver-related life-threatening outcomes - is critical for identifying this patient population in the clinical setting and improving the screening process of NASH clinical trials. We report the development and validation of NIS2+™, a diagnostic test designed as an optimisation of NIS4® technology, a blood-based panel currently used to detect at-risk NASH in patients with metabolic risk factors. NIS2+™ showed improved performance for the detection of at-risk NASH compared with NIS4® and other non-invasive liver tests that was not impacted by patients' characteristics of interest, such as age, sex, type 2 diabetes mellitus, BMI, dyslipidaemia, and hypertension. This makes NIS2+™ a robust and reliable tool for the diagnosis of at-risk NASH among patients with metabolic risk factors, and an effective candidate for large-scale implementation in clinical practice and clinical trials.


Subject(s)
Diagnostic Tests, Routine , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/diagnosis , Humans , Reproducibility of Results , Obesity/complications , Diabetes Mellitus, Type 2/complications , Biomarkers , MicroRNAs
14.
J Hepatol ; 79(4): 898-909, 2023 10.
Article in English | MEDLINE | ID: mdl-37230231

ABSTRACT

BACKGROUND & AIMS: Roux-en-Y gastric bypass (RYGB), the most effective surgical procedure for weight loss, decreases obesity and ameliorates comorbidities, such as non-alcoholic fatty liver (NAFLD) and cardiovascular (CVD) diseases. Cholesterol is a major CVD risk factor and modulator of NAFLD development, and the liver tightly controls its metabolism. How RYGB surgery modulates systemic and hepatic cholesterol metabolism is still unclear. METHODS: We studied the hepatic transcriptome of 26 patients with obesity but not diabetes before and 1 year after undergoing RYGB. In parallel, we measured quantitative changes in plasma cholesterol metabolites and bile acids (BAs). RESULTS: RYGB surgery improved systemic cholesterol metabolism and increased plasma total and primary BA levels. Transcriptomic analysis revealed specific alterations in the liver after RYGB, with the downregulation of a module of genes implicated in inflammation and the upregulation of three modules, one associated with BA metabolism. A dedicated analysis of hepatic genes related to cholesterol homeostasis pointed towards increased biliary cholesterol elimination after RYGB, associated with enhancement of the alternate, but not the classical, BA synthesis pathway. In parallel, alterations in the expression of genes involved in cholesterol uptake and intracellular trafficking indicate improved hepatic free cholesterol handling. Finally, RYGB decreased plasma markers of cholesterol synthesis, which correlated with an improvement in liver disease status after surgery. CONCLUSIONS: Our results identify specific regulatory effects of RYGB on inflammation and cholesterol metabolism. RYGB alters the hepatic transcriptome signature, likely improving liver cholesterol homeostasis. These gene regulatory effects are reflected by systemic post-surgery changes of cholesterol-related metabolites, corroborating the beneficial effects of RYGB on both hepatic and systemic cholesterol homeostasis. IMPACT AND IMPLICATIONS: Roux-en-Y gastric bypass (RYGB) is a widely used bariatric surgery procedure with proven efficacy in body weight management, combatting cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). RYGB exerts many beneficial metabolic effects, by lowering plasma cholesterol and improving atherogenic dyslipidemia. Using a cohort of patients undergoing RYGB, studied before and 1 year after surgery, we analyzed how RYGB modulates hepatic and systemic cholesterol and bile acid metabolism. The results of our study provide important insights on the regulation of cholesterol homeostasis after RYGB and open avenues that could guide future monitoring and treatment strategies targeting CVD and NAFLD in obesity.


Subject(s)
Gastric Bypass , Non-alcoholic Fatty Liver Disease , Obesity, Morbid , Humans , Gastric Bypass/methods , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/surgery , Transcriptome , Obesity/complications , Cholesterol , Homeostasis , Inflammation/complications , Obesity, Morbid/complications
15.
Pharmacol Res ; 187: 106638, 2023 01.
Article in English | MEDLINE | ID: mdl-36586645

ABSTRACT

BACKGROUND AND PURPOSE: Selective peroxisome proliferator-activated receptors (PPARs) are widely used to treat metabolic complications; however, the limited effect of PPARα agonists on glucose metabolism and the adverse effects associated with selective PPARγ activators have stimulated the development of novel pan-PPAR agonists to treat metabolic disorders. Here, we synthesized a new prenylated benzopyran (BP-2) and evaluated its PPAR-activating properties, anti-inflammatory effects and impact on metabolic derangements. EXPERIMENTAL APPROACH: BP-2 was used in transactivation assays to evaluate its agonism to PPARα, PPARß/δ and PPARγ. A parallel-plate flow chamber was employed to investigate its effect on TNFα-induced leukocyte-endothelium interactions. Flow cytometry and immunofluorescence were used to determine its effects on the expression of endothelial cell adhesion molecules (CAMs) and chemokines and p38-MAPK/NF-κB activation. PPARs/RXRα interactions were determined using a gene silencing approach. Analysis of its impact on metabolic abnormalities and inflammation was performed in ob/ob mice. KEY RESULTS: BP-2 displayed strong PPARα activity, with moderate and weak activity against PPARß/δ and PPARγ, respectively. In vitro, BP-2 reduced TNFα-induced endothelial ICAM-1, VCAM-1 and fractalkine/CX3CL1 expression, suppressed mononuclear cell arrest via PPARß/δ-RXRα interactions and decreased p38-MAPK/NF-κB activation. In vivo, BP-2 improved the circulating levels of glucose and triglycerides in ob/ob mice, suppressed T-lymphocyte/macrophage infiltration and proinflammatory markers in the liver and white adipose tissue, but increased the expression of the M2-like macrophage marker CD206. CONCLUSION AND IMPLICATIONS: BP-2 emerges as a novel pan-PPAR lead candidate to normalize glycemia/triglyceridemia and minimize inflammation in metabolic disorders, likely preventing the development of further cardiovascular complications.


Subject(s)
Metabolic Diseases , PPAR delta , PPAR-beta , Mice , Animals , PPAR gamma/metabolism , PPAR alpha/metabolism , PPAR-beta/metabolism , Tumor Necrosis Factor-alpha , Benzopyrans , NF-kappa B , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy
16.
Gut ; 71(4): 807-821, 2022 04.
Article in English | MEDLINE | ID: mdl-33903148

ABSTRACT

OBJECTIVE: We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans. DESIGN: Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver. RESULTS: The different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα. CONCLUSIONS: These findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target. TRIAL REGISTRATION NUMBER: NCT02390232.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Humans , Lipid Metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/metabolism
17.
Hepatology ; 73(3): 920-936, 2021 03.
Article in English | MEDLINE | ID: mdl-32394476

ABSTRACT

BACKGROUND AND AIMS: Nonalcoholic steatohepatitis (NASH) is considered as a pivotal stage in nonalcoholic fatty liver disease (NAFLD) progression, given that it paves the way for severe liver injuries such as fibrosis and cirrhosis. The etiology of human NASH is multifactorial, and identifying reliable molecular players and/or biomarkers has proven difficult. Together with the inappropriate consideration of risk factors revealed by epidemiological studies (altered glucose homeostasis, obesity, ethnicity, sex, etc.), the limited availability of representative NASH cohorts with associated liver biopsies, the gold standard for NASH diagnosis, probably explains the poor overlap between published "omics"-defined NASH signatures. APPROACH AND RESULTS: Here, we have explored transcriptomic profiles of livers starting from a 910-obese-patient cohort, which was further stratified based on stringent histological characterization, to define "NoNASH" and "NASH" patients. Sex was identified as the main factor for data heterogeneity in this cohort. Using powerful bootstrapping and random forest (RF) approaches, we identified reliably differentially expressed genes participating in distinct biological processes in NASH as a function of sex. RF-calculated gene signatures identified NASH patients in independent cohorts with high accuracy. CONCLUSIONS: This large-scale analysis of transcriptomic profiles from human livers emphasized the sexually dimorphic nature of NASH and its link with fibrosis, calling for the integration of sex as a major determinant of liver responses to NASH progression and responses to drugs.


Subject(s)
Non-alcoholic Fatty Liver Disease/metabolism , Female , Humans , Liver/metabolism , Liver/pathology , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Obesity/complications , Obesity/metabolism , Risk Factors , Sex Factors , Transcriptome
18.
Arterioscler Thromb Vasc Biol ; 41(1): 415-429, 2021 01.
Article in English | MEDLINE | ID: mdl-33147990

ABSTRACT

OBJECTIVE: The study's aim was to analyze the capacity of human valve interstitial cells (VICs) to participate in aortic valve angiogenesis. Approach and Results: VICs were isolated from human aortic valves obtained after surgery for calcific aortic valve disease and from normal aortic valves unsuitable for grafting (control VICs). We examined VIC in vitro and in vivo potential to differentiate in endothelial and perivascular lineages. VIC paracrine effect was also examined on human endothelial colony-forming cells. A pathological VIC (VICp) mesenchymal-like phenotype was confirmed by CD90+/CD73+/CD44+ expression and multipotent-like differentiation ability. When VICp were cocultured with endothelial colony-forming cells, they formed microvessels by differentiating into perivascular cells both in vivo and in vitro. VICp and control VIC conditioned media were compared using serial ELISA regarding quantification of endothelial and angiogenic factors. Higher expression of VEGF (vascular endothelial growth factor)-A was observed at the protein level in VICp-conditioned media and confirmed at the mRNA level in VICp compared with control VIC. Conditioned media from VICp induced in vitro a significant increase in endothelial colony-forming cell proliferation, migration, and sprouting compared with conditioned media from control VIC. These effects were inhibited by blocking VEGF-A with blocking antibody or siRNA approach, confirming VICp involvement in angiogenesis by a VEGF-A dependent mechanism. CONCLUSIONS: We provide here the first proof of an angiogenic potential of human VICs isolated from patients with calcific aortic valve disease. These results point to a novel function of VICp in valve vascularization during calcific aortic valve disease, with a perivascular differentiation ability and a VEGF-A paracrine effect. Targeting perivascular differentiation and VEGF-A to slow calcific aortic valve disease progression warrants further investigation.


Subject(s)
Aortic Valve Stenosis/metabolism , Aortic Valve/metabolism , Aortic Valve/pathology , Calcinosis/metabolism , Cell Differentiation , Cell Lineage , Endothelial Progenitor Cells/metabolism , Neovascularization, Pathologic , Vascular Endothelial Growth Factor A/metabolism , Adult , Aged , Aged, 80 and over , Animals , Aortic Valve Stenosis/pathology , Calcinosis/pathology , Case-Control Studies , Cells, Cultured , Coculture Techniques , Endothelial Progenitor Cells/pathology , Endothelial Progenitor Cells/transplantation , Female , Humans , Male , Mice, Nude , Middle Aged , Osteogenesis , Paracrine Communication , Phenotype , Signal Transduction , Vascular Endothelial Growth Factor A/genetics
20.
Bioorg Med Chem ; 53: 116532, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34863066

ABSTRACT

2-Prenylated benzopyrans represent a class of natural and synthetic compounds showing a wide range of significant activities. Polycerasoidol is a natural prenylated benzopyran isolated from the stem bark of Polyalthia cerasoides (Annonaceae) that exhibits dual PPARα/γ agonism and an anti-inflammatory effect by inhibiting mononuclear leukocyte adhesion to the dysfunctional endothelium. Herein, we report the synthesis of three new series of prenylated benzopyrans containing one (series 1), two (series 2, "polycerasoidol" analogs) and three (series 3, "trans-δ-tocotrienolic acid" analogs) isoprenoid units in the hydrocarbon side chain at the 2-position of the chroman-6-ol (6-hydroxy-dihydrobenzopyran) scaffold. Isoprenoid moieties were introduced through a Grignard reaction sequence, followed by Johnson-Claisen rearrangement and subsequent Wittig olefination. hPPAR transactivation activity and the structure activity relationships (SAR) of eleven novel synthesized 2-prenylated benzopyrans were explored. PPAR transactivation activity demonstrated that the seven-carbon side chain analogs (series 1) displayed selectivity for hPPARα, while the nine-carbon side chain analogs (polycerasoidol analogs, series 2) did so for hPPARγ. The side chain elongation to 11 or 13 carbons (series 3) resulted in weak dual PPARα/γ activation. Therefore, 2-prenylated benzopyrans of seven- and nine-carbon side chain (polycerasoidol analogs) are good lead compounds for developing useful candidates to prevent cardiovascular diseases associated with metabolic disorders.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzopyrans/pharmacology , PPAR alpha/agonists , PPAR gamma/agonists , Vitamin E/analogs & derivatives , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship , Vitamin E/chemical synthesis , Vitamin E/chemistry , Vitamin E/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL