Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38797883

ABSTRACT

BACKGROUND: Both healthy plasma and cytoprotective aPC (3K3A-aPC) have been shown to mitigate the endotheliopathy of trauma (EoT), but optimal therapeutics remain unknown. Our aim was therefore to determine optimal therapies to mitigate EoT by investigating the effectiveness of 3K3A-aPC with and without plasma-based resuscitation strategies. METHODS: Electric cell-substrate impedance sensing (ECIS) was used to measure real-time permeability changes in endothelial cells. Cells were treated with a 2 µg/mL solution of aPC 30 minutes prior to stimulation with plasma taken from severely injured trauma patients (ISS > 15 and BD < -6) (TP). Healthy plasma, or plasma frozen within 24 hours (FP24), was added concomitantly with TP. Cells treated with thrombin and untreated cells were included in this study as control groups. RESULTS: A dose-dependent difference was found between the 5% and 10% plasma-treated groups when HUVECs were simultaneously stimulated with TP (µd 7.346 95%CI 4.574 to 10.12). There was no difference when compared to TP alone in the 5% (µd 5.713 95%CI -1.751 to 13.18) or 10% group (µd -1.633 95%CI -9.097 to 5.832). When 3K3A-aPC was added to plasma and TP, the 5% group showed improvement in permeability compared to TP alone (µd 10.11 95%CI 2.642 to 17.57), but there was no difference in the 10% group (µd -1.394 95%CI -8.859 to 6.070). The combination of 3K3A-aPC, plasma, and TP at both the 5% plasma (µd -28.52 95%CI-34.72 to -22.32) and 10% plasma concentrations (µd -40.02 95%CI -46.22 to -33.82) had higher inter-cellular permeability than the 3K3A-aPC pre-incubation group. CONCLUSION: Our data shows that FP24, in a post-trauma environment, pre-treatment with 3K3A-aPC can potentially mitigate the EoT to a greater degree than FP24 with or without 3K3A-aPC. Although further exploration is needed, this represents a potentially ideal and perhaps superior therapeutic treatment for the dysregulated thromboinflammation of injured patients. LEVEL OF EVIDENCE: Prognostic/Epidemiological, Therapeutic/Care Management, Level III.

2.
J Trauma Acute Care Surg ; 97(1): 48-56, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38548690

ABSTRACT

INTRODUCTION: Smoking is a public health threat because of its well-described link to increased oxidative stress-related diseases including peripheral vascular disease and coronary artery disease. Tobacco use has been linked to risk of inpatient trauma morbidity including acute respiratory distress syndrome; however, its mechanistic effect on comprehensive metabolic heterogeneity has yet to be examined. METHODS: Plasma was obtained on arrival from injured patients at a Level 1 trauma center and analyzed with modern mass spectrometry-based metabolomics. Patients were stratified by nonsmoker, passive smoker, and active smoker by lower, interquartile, and upper quartile ranges of cotinine intensity peaks. Patients were substratified by high injury/high shock (Injury Severity Score, ≥15; base excess, <-6) and compared with healthy controls. p Value of <0.05 following false discovery rate correction of t test was considered significant. RESULTS: Forty-eight patients with high injury/high shock (7 nonsmokers [15%], 25 passive smokers [52%], and 16 active smokers [33%]) and 95 healthy patients who served as controls (30 nonsmokers [32%], 43 passive smokers [45%], and 22 active smokers [23%]) were included. Elevated metabolites in our controls who were active smokers include enrichment in chronic inflammatory and oxidative processes. Elevated metabolites in active smokers in high injury/high shock include enrichment in the malate-aspartate shuttle, tyrosine metabolism, carnitine synthesis, and oxidation of very long-chain fatty acids. CONCLUSION: Smoking promotes a state of oxidative stress leading to mitochondrial dysfunction, which is additive to the inflammatory milieu of trauma. Smoking is associated with impaired mitochondrial substrate utilization of long-chain fatty acids, aspartate, and tyrosine, all of which accentuate oxidative stress following injury. This altered expression represents an ideal target for therapies to reduce oxidative damage toward the goal of personalized treatment of trauma patients. LEVEL OF EVIDENCE: Prognostic and Epidemiological; Level IV.


Subject(s)
Metabolomics , Wounds and Injuries , Humans , Male , Female , Adult , Wounds and Injuries/metabolism , Wounds and Injuries/blood , Wounds and Injuries/complications , Middle Aged , Metabolomics/methods , Smoking/adverse effects , Smoking/metabolism , Smoking/blood , Oxidative Stress/physiology , Case-Control Studies , Injury Severity Score , Trauma Centers , Cotinine/blood , Cotinine/metabolism , Biomarkers/blood , Biomarkers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL