Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Appl Environ Microbiol ; 82(15): 4696-4704, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27235435

ABSTRACT

UNLABELLED: Phytophthora species were isolated from rivers and streams in the southwestern United States by leaf baiting and identified by sequence analysis of internal transcribed spacer (ITS) ribosomal DNA (rDNA). The major waterways examined included the Rio Grande River, Gila River, Colorado River, and San Juan River. The most prevalent species identified in rivers and streams were Phytophthora lacustris and P. riparia, both members of Phytophthora ITS clade 6. P. gonapodyides, P. cinnamomi, and an uncharacterized Phytophthora species in clade 9 were also recovered. In addition, six isolates recovered from the Rio Grande River were shown to be hybrids of P. lacustris × P. riparia Pathogenicity assays using P. riparia and P. lacustris failed to produce any disease symptoms on commonly grown crops in the southwestern United States. Inoculation of Capsicum annuum with P. riparia was shown to inhibit disease symptom development when subsequently challenged with P. capsici, a pathogenic Phytophthora species. IMPORTANCE: Many Phytophthora species are significant plant pathogens causing disease on a large variety of crops worldwide. Closer examinations of streams, rivers, and forest soils have also identified numerous Phytophthora species that do not appear to be phytopathogens and likely act as early saprophytes in aquatic and saturated environments. To date, the Phytophthora species composition in rivers and streams of the southwestern United States has not been evaluated. This article details a study to determine the identity and prevalence of Phytophthora species in rivers and streams located in New Mexico, Arizona, Colorado, Utah, and Texas. Isolated species were evaluated for pathogenicity on crop plants and for their potential to act as biological control agents.


Subject(s)
Phytophthora/isolation & purification , Rivers/parasitology , Capsicum/parasitology , Phylogeny , Phytophthora/classification , Phytophthora/genetics , Plant Diseases/parasitology , Southwestern United States
2.
Plant Dis ; 99(11): 1468-1476, 2015 Nov.
Article in English | MEDLINE | ID: mdl-30695969

ABSTRACT

'UCB-1' (Pistacia atlantica × Pistacia integerrima) rootstock is a hybrid cultivar widely used by the U.S. pistachio industry. In the last three years, a large number of micropropagated UCB-1 pistachio rootstocks planted in California and Arizona orchards exhibited shortened internodes, stunted growth, swollen lateral buds, bushy/bunchy growth, stem galls with multiple buds, and twisted roots with minimal lateral branching. Field T-budding success in affected orchards was reduced to approximately 30% with unusual bark cracking often observed around the bud-union. The percentage of abnormal rootstocks within affected orchards varied from 10 to 90%. We have termed the cumulative symptoms "pistachio bushy top syndrome" (PBTS) to describe these affected trees. Two isolates, both containing virulence factors from the phytopathogen Rhodococcus fascians, were identified on symptomatic trees in field and nursery samples. Micropropagated UCB-1 trees inoculated with the Rhodococcus isolates exhibited stunted growth, shortened internode length, swollen lateral buds, sylleptic branching, and differences in root morphology, compared with control UCB-1 trees. To our knowledge, this is the first report of Rhodococcus isolates, related to Rhodococcus fascians, causing disease on a commercial tree crop and the results presented indicate that this organism is responsible at least in part for PBTS in California and Arizona.

3.
Front Plant Sci ; 13: 780335, 2022.
Article in English | MEDLINE | ID: mdl-35463450

ABSTRACT

Pecan bacterial leaf scorch, caused by Xylella fastidiosa subsp. multiplex, is an economically significant disease of pecan with known detrimental effects on the yield of susceptible cultivars. In this study, endosperm was harvested from developing pecan seeds, and direct qPCR and sequencing were used to detect and confirm the presence of X. fastidiosa. DNA was isolated from mature seeds originating from seven trees, revealing a positivity rate up to 90%, and transmission of X. fastidiosa from infected seed to the germinated seedlings was found to be over 80%. Further epidemiological analyses were performed to determine where X. fastidiosa localizes in mature seed and seedlings. The highest concentrations of X. fastidiosa DNA were found in the hilum and outer integument of the seeds and the petioles, respectively. High-, medium-, and low-density seeds were harvested to determine the impact of the bacterium on seed density and seedling growth rate. The growth rate of seedlings originating from low-density seeds was significantly reduced compared to the medium- and high-density seeds. Despite the increased growth and germination rates, the high-density seed group had a greater proportion of samples that tested positive for the presence of X. fastidiosa by qPCR. The results demonstrate the ability of X. fastidiosa to colonize developing seeds and be efficiently transmitted from well-developed seeds to germinated seedlings. Continued research is needed to understand the plant-microbe interactions involved in the colonization of pecan seeds by X. fastidiosa and to develop effective phytosanitary approaches to reduce the risks posed by seed transmission.

4.
Front Microbiol ; 11: 14, 2020.
Article in English | MEDLINE | ID: mdl-32082278

ABSTRACT

Pistachio Bushy Top Syndrome (PBTS) is a recently emerged disease that has strongly impacted the pistachio industry in California, Arizona, and New Mexico. The disease is caused by two bacteria, designated PBTS1 that is related to Rhodococcus corynebacterioides and PBTS2 that belongs to the species R. fascians. Here, we assessed the pathogenic character of the causative agents and examined their chromosomal sequences to predict the presence of particular functions that might contribute to the observed co-occurrence and their effect on plant hosts. In diverse assays, we confirmed the pathogenicity of the strains on "UCB-1" pistachio rootstock and showed that they can also impact the development of tobacco species, but concurrently inconsistencies in the ability to induce symptoms were revealed. We additionally evidence that fas genes are present only in a subpopulation of pure PBTS1 and PBTS2 cultures after growth on synthetic media, that these genes are easily lost upon cultivation in rich media, and that they are enriched for in an in planta environment. Analysis of the chromosomal sequences indicated that PBTS1 and PBTS2 might have complementary activities that would support niche partitioning. Growth experiments showed that the nutrient utilization pattern of both PBTS bacteria was not identical, thus avoiding co-inhabitant competition. PBTS2 appeared to have the potential to positively affect the habitat fitness of PBTS1 by improving its resistance against increased concentrations of copper and penicillins. Finally, mining the chromosomes of PBTS1 and PBTS2 suggested that the bacteria could produce cytokinins, auxins, and plant growth-stimulating volatiles and that PBTS2 might interfere with ethylene levels, in support of their impact on plant development. Subsequent experimentation supported these in silico predictions. Altogether, our data provide an explanation for the observed pathogenic behavior and unveil part of the strategies used by PBTS1 and PBTS2 to interact with plants.

6.
Genome Announc ; 4(3)2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27284129

ABSTRACT

Rhodococcus fascians, a phytopathogen that alters plant development, inflicts significant losses in plant production around the world. We report here the complete genome sequence of R. fascians D188, a well-characterized model isolate, and Rhodococcus species PBTS (pistachio bushy top syndrome) 1 and 2, which were shown to be responsible for a disease outbreak in pistachios.

7.
PLoS One ; 10(5): e0128327, 2015.
Article in English | MEDLINE | ID: mdl-26020237

ABSTRACT

Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay.


Subject(s)
Aminobutyrates/pharmacology , Capsicum/metabolism , Disease Resistance/drug effects , Phytophthora/metabolism , Plant Diseases/microbiology , Capsicum/microbiology , Citric Acid Cycle/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL