Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
Add more filters

Publication year range
1.
Cell ; 181(2): 424-441.e21, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32234521

ABSTRACT

KRAS mutant pancreatic ductal adenocarcinoma (PDAC) is characterized by a desmoplastic response that promotes hypovascularity, immunosuppression, and resistance to chemo- and immunotherapies. We show that a combination of MEK and CDK4/6 inhibitors that target KRAS-directed oncogenic signaling can suppress PDAC proliferation through induction of retinoblastoma (RB) protein-mediated senescence. In preclinical mouse models of PDAC, this senescence-inducing therapy produces a senescence-associated secretory phenotype (SASP) that includes pro-angiogenic factors that promote tumor vascularization, which in turn enhances drug delivery and efficacy of cytotoxic gemcitabine chemotherapy. In addition, SASP-mediated endothelial cell activation stimulates the accumulation of CD8+ T cells into otherwise immunologically "cold" tumors, sensitizing tumors to PD-1 checkpoint blockade. Therefore, in PDAC models, therapy-induced senescence can establish emergent susceptibilities to otherwise ineffective chemo- and immunotherapies through SASP-dependent effects on the tumor vasculature and immune system.


Subject(s)
Aging/physiology , Carcinoma, Pancreatic Ductal/pathology , Vascular Remodeling/physiology , Animals , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Pancreatic Ductal/microbiology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Gene Expression Regulation, Neoplastic/genetics , Genes, ras/genetics , Humans , Immunotherapy/methods , MAP Kinase Signaling System/physiology , Mice , Pancreatic Neoplasms/pathology , Retinoblastoma Protein/immunology , Signal Transduction/genetics , Tumor Microenvironment , Vascular Remodeling/genetics
3.
Cell ; 157(6): 1324-1338, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24906150

ABSTRACT

The Hippo-signaling pathway is an important regulator of cellular proliferation and organ size. However, little is known about the role of this cascade in the control of cell fate. Employing a combination of lineage tracing, clonal analysis, and organoid culture approaches, we demonstrate that Hippo pathway activity is essential for the maintenance of the differentiated hepatocyte state. Remarkably, acute inactivation of Hippo pathway signaling in vivo is sufficient to dedifferentiate, at very high efficiencies, adult hepatocytes into cells bearing progenitor characteristics. These hepatocyte-derived progenitor cells demonstrate self-renewal and engraftment capacity at the single-cell level. We also identify the NOTCH-signaling pathway as a functional important effector downstream of the Hippo transducer YAP. Our findings uncover a potent role for Hippo/YAP signaling in controlling liver cell fate and reveal an unprecedented level of phenotypic plasticity in mature hepatocytes, which has implications for the understanding and manipulation of liver regeneration.


Subject(s)
Cell Dedifferentiation , Liver/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins , Hepatocytes/metabolism , Hippo Signaling Pathway , Liver/cytology , Mice , Phosphoproteins/metabolism , Receptors, Notch/metabolism , Stem Cells/cytology , Stem Cells/metabolism , YAP-Signaling Proteins
4.
Genes Dev ; 35(7-8): 528-541, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33737385

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers worldwide and evolves often to lung metastasis. P53R175H (homologous to Trp53R172H in mice) is a common hot spot mutation. How metastasis is regulated by p53R175H in ESCC remains to be investigated. To investigate p53R175H-mediated molecular mechanisms, we used a carcinogen-induced approach in Trp53R172H/- mice to model ESCC. In the primary Trp53R172H/- tumor cell lines, we depleted Trp53R172H (shTrp53) and observed a marked reduction in cell invasion in vitro and lung metastasis burden in a tail-vein injection model in comparing isogenic cells (shCtrl). Furthermore, we performed bulk RNA-seq to compare gene expression profiles of metastatic and primary shCtrl and shTrp53 cells. We identified the YAP-BIRC5 axis as a potential mediator of Trp53R172H -mediated metastasis. We demonstrate that expression of Survivin, an antiapoptotic protein encoded by BIRC5, increases in the presence of Trp53R172H Furthermore, depletion of Survivin specifically decreases Trp53R172H-driven lung metastasis. Mechanistically, Trp53R172H but not wild-type Trp53, binds with YAP in ESCC cells, suggesting their cooperation to induce Survivin expression. Furthermore, Survivin high expression level is associated with increased metastasis in several GI cancers. Taken together, this study unravels new insights into how mutant p53 mediates metastasis.


Subject(s)
Lung Neoplasms/physiopathology , Survivin/genetics , Survivin/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Neoplastic/genetics , Lung Neoplasms/genetics , Mice , Mutation , Neoplasm Metastasis , Transcriptome , Tumor Suppressor Protein p53/metabolism
5.
Nat Rev Mol Cell Biol ; 17(7): 413-25, 2016 07.
Article in English | MEDLINE | ID: mdl-26979497

ABSTRACT

Biologists have long been intrigued by the possibility that cells can change their identity, a phenomenon known as cellular plasticity. The discovery that terminally differentiated cells can be experimentally coaxed to become pluripotent has invigorated the field, and recent studies have demonstrated that changes in cell identity are not limited to the laboratory. Specifically, certain adult cells retain the capacity to de-differentiate or transdifferentiate under physiological conditions, as part of an organ's normal injury response. Recent studies have highlighted the extent to which cell plasticity contributes to tissue homeostasis, findings that have implications for cell-based therapy.


Subject(s)
Adult Stem Cells/physiology , Cell Dedifferentiation , Cell Transdifferentiation , Animals , Cell Transformation, Neoplastic , Humans , Neoplasms/pathology , Regeneration , Signal Transduction
6.
Immunity ; 49(1): 178-193.e7, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29958801

ABSTRACT

The biological and functional heterogeneity between tumors-both across and within cancer types-poses a challenge for immunotherapy. To understand the factors underlying tumor immune heterogeneity and immunotherapy sensitivity, we established a library of congenic tumor cell clones from an autochthonous mouse model of pancreatic adenocarcinoma. These clones generated tumors that recapitulated T cell-inflamed and non-T-cell-inflamed tumor microenvironments upon implantation in immunocompetent mice, with distinct patterns of infiltration by immune cell subsets. Co-injecting tumor cell clones revealed the non-T-cell-inflamed phenotype is dominant and that both quantitative and qualitative features of intratumoral CD8+ T cells determine response to therapy. Transcriptomic and epigenetic analyses revealed tumor-cell-intrinsic production of the chemokine CXCL1 as a determinant of the non-T-cell-inflamed microenvironment, and ablation of CXCL1 promoted T cell infiltration and sensitivity to a combination immunotherapy regimen. Thus, tumor cell-intrinsic factors shape the tumor immune microenvironment and influence the outcome of immunotherapy.


Subject(s)
Adenocarcinoma/therapy , Immunologic Factors/immunology , Immunotherapy , Lymphocyte Subsets/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Pancreatic Neoplasms/therapy , Tumor Microenvironment/immunology , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Aged , Aged, 80 and over , Animals , CD8-Positive T-Lymphocytes/immunology , Epigenomics , Female , Gene Expression Profiling , Humans , Immunologic Factors/genetics , Male , Mice , Middle Aged , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Primary Cell Culture , Pancreatic Neoplasms
7.
Cell ; 148(1-2): 349-61, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22265420

ABSTRACT

Metastasis is the leading cause of cancer-associated death but has been difficult to study because it involves a series of rare, stochastic events. To capture these events, we developed a sensitive method to tag and track pancreatic epithelial cells in a mouse model of pancreatic cancer. Tagged cells invaded and entered the bloodstream unexpectedly early, before frank malignancy could be detected by rigorous histologic analysis; this behavior was widely associated with epithelial-to-mesenchymal transition (EMT). Circulating pancreatic cells maintained a mesenchymal phenotype, exhibited stem cell properties, and seeded the liver. EMT and invasiveness were most abundant at inflammatory foci, and induction of pancreatitis increased the number of circulating pancreatic cells. Conversely, treatment with the immunosuppressive agent dexamethasone abolished dissemination. These results provide insight into the earliest events of cellular invasion in situ and suggest that inflammation enhances cancer progression in part by facilitating EMT and entry into the circulation.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Epithelial-Mesenchymal Transition , Neoplasm Invasiveness , Pancreatic Neoplasms/pathology , Animals , Carcinoma, Pancreatic Ductal/immunology , Disease Models, Animal , Humans , Mice , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/immunology , Pancreatitis/pathology
8.
Hepatology ; 78(2): 486-502, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36037289

ABSTRACT

BACKGROUND AND AIMS: Assessing mammalian gene function in vivo has traditionally relied on manipulation of the mouse genome in embryonic stem cells or perizygotic embryos. These approaches are time-consuming and require extensive breeding when simultaneous mutations in multiple genes is desired. The aim of this study is to introduce a rapid in vivo multiplexed editing (RIME) method and provide proof of concept of this system. APPROACH AND RESULTS: RIME, a system wherein CRISPR/caspase 9 technology, paired with adeno-associated viruses (AAVs), permits the inactivation of one or more genes in the adult mouse liver. The method is quick, requiring as little as 1 month from conceptualization to knockout, and highly efficient, enabling editing in >95% of target cells. To highlight its use, we used this system to inactivate, alone or in combination, genes with functions spanning metabolism, mitosis, mitochondrial maintenance, and cell proliferation. CONCLUSIONS: RIME enables the rapid, efficient, and inexpensive analysis of multiple genes in the mouse liver in vivo .


Subject(s)
CRISPR-Cas Systems , Gene Editing , Mice , Animals , Gene Editing/methods , Clustered Regularly Interspaced Short Palindromic Repeats , Liver , Mammals
9.
EMBO J ; 38(19): e103148, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31475380

ABSTRACT

It is now recognized that cell identity is more fluid, and tissues more plastic, than previously thought. The plasticity of cells is relevant to diverse fields, most notably developmental and stem cell biology, regenerative medicine, and cancer biology. To date, a comprehensive and uniform nomenclature to define distinct cell states and their injury-induced interconversions has been elusive. The first Keystone Symposium devoted exclusively to cellular plasticity in regeneration and tumorigenesis was held on January 2019 in Keystone, Colorado, and featured a workshop on terminology in the cell plasticity field. Definitions for terms such as plasticity, de- and transdifferentiation, reversion, and paligenosis were discussed. Here, we summarize the content and tenor of the symposium and nomenclature-focused workshop with regard to terms in the field. We outline the challenges with current definitions and recommend best practices and approaches to developing an accurate and acceptable nomenclature in the future.


Subject(s)
Cell Plasticity , Terminology as Topic , Animals , Carcinogenesis , Congresses as Topic , Humans , Plastics , Regenerative Medicine
10.
Trends Immunol ; 41(10): 859-863, 2020 10.
Article in English | MEDLINE | ID: mdl-32800703

ABSTRACT

Reciprocal interactions between tumor cells and immune cells shape the tumor microenvironment. Recent studies indicate that enhanced cell cycle activity in cancer cells suppresses antitumor immunity. Herein we discuss potential mechanisms by which cell cycle programs intrinsic to tumor cells are coupled to immune behavior, with consequences for immunotherapy.


Subject(s)
Cell Cycle , Immunosuppression Therapy , Neoplasms , Cell Cycle/immunology , Humans , Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment/immunology
11.
Immunity ; 40(1): 51-65, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24374193

ABSTRACT

Autophagy has been implicated as a component of host defense, but the significance of antimicrobial autophagy in vivo and the mechanism by which it is regulated during infection are poorly defined. Here we found that antiviral autophagy was conserved in flies and mammals during infection with Rift Valley fever virus (RVFV), a mosquito-borne virus that causes disease in humans and livestock. In Drosophila, Toll-7 limited RVFV replication and mortality through activation of autophagy. RVFV infection also elicited autophagy in mouse and human cells, and viral replication was increased in the absence of autophagy genes. The mammalian Toll-like receptor adaptor, MyD88, was required for anti-RVFV autophagy, revealing an evolutionarily conserved requirement for pattern-recognition receptors in antiviral autophagy. Pharmacologic activation of autophagy inhibited RVFV infection in mammalian cells, including primary hepatocytes and neurons. Thus, autophagy modulation might be an effective strategy for treating RVFV infection, which lacks approved vaccines and therapeutics.


Subject(s)
Autophagy/immunology , Rift Valley Fever/immunology , Rift Valley fever virus/immunology , Allyl Compounds/pharmacology , Animals , Antiviral Agents/pharmacology , Autophagy/drug effects , Cells, Cultured , Drosophila , Evolution, Molecular , Hepatocytes/drug effects , Hepatocytes/immunology , Hepatocytes/virology , Humans , Infection Control/methods , Mammals , Mice , Myeloid Differentiation Factor 88/metabolism , Neurons/drug effects , Neurons/immunology , Neurons/virology , Quinazolines/pharmacology , Rats , Rift Valley Fever/drug therapy , Toll-Like Receptor 7/metabolism , Virus Replication
12.
EMBO Rep ; 22(9): e51872, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34324787

ABSTRACT

Epithelial plasticity, or epithelial-to-mesenchymal transition (EMT), is a well-recognized form of cellular plasticity, which endows tumor cells with invasive properties and alters their sensitivity to various agents, thus representing a major challenge to cancer therapy. It is increasingly accepted that carcinoma cells exist along a continuum of hybrid epithelial-mesenchymal (E-M) states and that cells exhibiting such partial EMT (P-EMT) states have greater metastatic competence than those characterized by either extreme (E or M). We described recently a P-EMT program operating in vivo by which carcinoma cells lose their epithelial state through post-translational programs. Here, we investigate the underlying mechanisms and report that prolonged calcium signaling induces a P-EMT characterized by the internalization of membrane-associated E-cadherin (ECAD) and other epithelial proteins as well as an increase in cellular migration and invasion. Signaling through Gαq-associated G-protein-coupled receptors (GPCRs) recapitulates these effects, which operate through the downstream activation of calmodulin-Camk2b signaling. These results implicate calcium signaling as a trigger for the acquisition of hybrid/partial epithelial-mesenchymal states in carcinoma cells.


Subject(s)
Calcium Signaling , Epithelial-Mesenchymal Transition , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Cell Movement , Cell Plasticity
13.
Hepatology ; 74(1): 444-457, 2021 07.
Article in English | MEDLINE | ID: mdl-33423324

ABSTRACT

BACKGROUND AND AIMS: Following liver injury, a fraction of hepatocytes adopt features of biliary epithelial cells (BECs) in a process known as biliary reprogramming. The aim of this study was to elucidate the molecular events accompanying this dramatic shift in cellular identity. APPROACH AND RESULTS: We applied the techniques of bulk RNA-sequencing (RNA-seq), single-cell RNA-seq, and assay for transposase-accessible chromatin with high-throughput sequencing to define the epigenetic and transcriptional changes associated with biliary reprogramming. In addition, we examined the role of TGF-ß signaling by profiling cells undergoing reprogramming in mice with hepatocyte-specific deletion in the downstream TGF-ß signaling component mothers against decapentaplegic homolog 4 (Smad4). Biliary reprogramming followed a stereotyped pattern of altered gene expression consisting of robust induction of biliary genes and weaker repression of hepatocyte genes. These changes in gene expression were accompanied by corresponding modifications at the chromatin level. Although some reprogrammed cells had molecular features of "fully differentiated" BECs, most lacked some biliary characteristics and retained some hepatocyte characteristics. Surprisingly, single-cell analysis of Smad4 mutant mice revealed a dramatic increase in reprogramming. CONCLUSION: Hepatocytes undergo widespread chromatin and transcriptional changes during biliary reprogramming, resulting in epigenetic and gene expression profiles that are similar to, but distinct from, native BECs. Reprogramming involves a progressive accumulation of biliary molecular features without discrete intermediates. Paradoxically, canonical TGF-ß signaling through Smad4 appears to constrain biliary reprogramming, indicating that TGF-ß can either promote or inhibit biliary differentiation depending on which downstream components of the pathway are engaged. This work has implications for the formation of BECs and bile ducts in the adult liver.


Subject(s)
Cell Plasticity/genetics , Liver Regeneration/genetics , Liver/physiology , Animals , Bile Ducts/cytology , Cell Differentiation/genetics , Epigenesis, Genetic , Epithelial Cells/physiology , Hepatocytes/physiology , Hepatocytes/transplantation , Humans , Liver/cytology , Male , Mice , Mice, Transgenic , RNA-Seq , Single-Cell Analysis , Smad4 Protein/genetics
14.
PLoS Biol ; 17(7): e3000382, 2019 07.
Article in English | MEDLINE | ID: mdl-31323030

ABSTRACT

The Hippo pathway directs cell differentiation during organogenesis, in part by restricting proliferation. How Hippo signaling maintains a proliferation-differentiation balance in developing tissues via distinct molecular targets is only beginning to be understood. Our study makes the unexpected finding that Hippo suppresses nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling in pancreatic progenitors to permit cell differentiation and epithelial morphogenesis. We find that pancreas-specific deletion of the large tumor suppressor kinases 1 and 2 (Lats1/2PanKO) from mouse progenitor epithelia results in failure to differentiate key pancreatic lineages: acinar, ductal, and endocrine. We carried out an unbiased transcriptome analysis to query differentiation defects in Lats1/2PanKO. This analysis revealed increased expression of NFκB activators, including the pantetheinase vanin1 (Vnn1). Using in vivo and ex vivo studies, we show that VNN1 activates a detrimental cascade of processes in Lats1/2PanKO epithelium, including (1) NFκB activation and (2) aberrant initiation of epithelial-mesenchymal transition (EMT), which together disrupt normal differentiation. We show that exogenous stimulation of VNN1 or NFκB can trigger this cascade in wild-type (WT) pancreatic progenitors. These findings reveal an unexpected requirement for active suppression of NFκB by LATS1/2 during pancreas development, which restrains a cell-autonomous deleterious transcriptional program and thereby allows epithelial differentiation.


Subject(s)
Cell Differentiation/genetics , Epithelial-Mesenchymal Transition/genetics , NF-kappa B/genetics , Pancreas/metabolism , Protein Serine-Threonine Kinases/genetics , Stem Cells/metabolism , Tumor Suppressor Proteins/genetics , Animals , Cell Proliferation/genetics , Gene Expression Profiling/methods , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , NF-kappa B/metabolism , Pancreas/cytology , Pancreas/embryology , Protein Serine-Threonine Kinases/metabolism , Tissue Culture Techniques , Tumor Suppressor Proteins/metabolism
15.
Genes Dev ; 27(3): 288-300, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23355395

ABSTRACT

Pancreatic exocrine cell plasticity can be observed during development, pancreatitis with subsequent regeneration, and also transformation. For example, acinar-ductal metaplasia (ADM) occurs during acute pancreatitis and might be viewed as a prelude to pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDAC) development. To elucidate regulatory processes that overlap ductal development, ADM, and the progression of normal cells to PanIN lesions, we undertook a systematic approach to identify the Prrx1 paired homeodomain Prrx1 transcriptional factor as a highly regulated gene in these processes. Prrx1 annotates a subset of pancreatic ductal epithelial cells in Prrx1creER(T2)-IRES-GFP mice. Furthermore, sorted Prrx1(+) cells have the capacity to self-renew and expand during chronic pancreatitis. The two isoforms, Prrx1a and Prrx1b, regulate migration and invasion, respectively, in pancreatic cancer cells. In addition, Prrx1b is enriched in circulating pancreatic cells (Pdx1cre;LSL-Kras(G12D/+);p53(fl/+);R26YFP). Intriguingly, the Prrx1b isoform, which is also induced in ADM, binds the Sox9 promoter and positively regulates Sox9 expression. This suggests a new hierarchical scheme whereby a Prrx1-Sox9 axis may influence the emergence of acinar-ductal metaplasia and regeneration. Furthermore, our data provide a possible explanation of why pancreatic cancer is skewed toward a ductal fate.


Subject(s)
Homeodomain Proteins/metabolism , Pancreas/pathology , Pancreas/physiology , Pancreatic Neoplasms/physiopathology , Regeneration/physiology , Animals , Cell Line, Tumor , Cells, Cultured , Gene Expression Profiling , Gene Expression Regulation , Homeodomain Proteins/genetics , Mice , Mice, Inbred C57BL , Pancreas/cytology , Promoter Regions, Genetic/genetics , Protein Binding , Protein Isoforms/metabolism , SOX9 Transcription Factor/genetics
16.
Genes Dev ; 27(7): 719-24, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23520387

ABSTRACT

Cellular reprogramming-the ability to interconvert distinct cell types with defined factors-is transforming the field of regenerative medicine. However, this phenomenon has rarely been observed in vivo without exogenous factors. Here, we report that activation of Notch, a signaling pathway that mediates lineage segregation during liver development, is sufficient to reprogram hepatocytes into biliary epithelial cells (BECs). Moreover, using lineage tracing, we show that hepatocytes undergo widespread hepatocyte-to-BEC reprogramming following injuries that provoke a biliary response, a process requiring Notch. These results provide direct evidence that mammalian regeneration prompts extensive and dramatic changes in cellular identity under injury conditions.


Subject(s)
Epithelial Cells/cytology , Hepatocytes/cytology , Liver Regeneration/physiology , Animals , Cell Lineage , Epithelial Cells/metabolism , Hepatocytes/metabolism , Mice , Receptors, Notch/metabolism , Signal Transduction , Stem Cells/cytology
17.
Genes Dev ; 27(20): 2233-45, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24142874

ABSTRACT

The RNA-binding proteins LIN28A and LIN28B have diverse functions in embryonic stem cells, cellular reprogramming, growth, and oncogenesis. Many of these effects occur via direct inhibition of Let-7 microRNAs (miRNAs), although Let-7-independent effects have been surmised. We report that intestine targeted expression of LIN28B causes intestinal hypertrophy, crypt expansion, and Paneth cell loss. Furthermore, LIN28B fosters intestinal polyp and adenocarcinoma formation. To examine potential Let-7-independent functions of LIN28B, we pursued ribonucleoprotein cross-linking, immunoprecipitation, and high-throughput sequencing (CLIP-seq) to identify direct RNA targets. This revealed that LIN28B bound a substantial number of mRNAs and modestly augmented protein levels of these target mRNAs in vivo. Conversely, Let-7 had a profound effect; modulation of Let-7 levels via deletion of the mirLet7c2/mirLet7b genes recapitulated effects of Lin28b overexpression. Furthermore, intestine-specific Let-7 expression could reverse hypertrophy and Paneth cell depletion caused by Lin28b. This was independent of effects on insulin-PI3K-mTOR signaling. Our study reveals that Let-7 miRNAs are critical for repressing intestinal tissue growth and promoting Paneth cell differentiation. Let-7-dependent effects of LIN28B may supersede Let-7-independent effects on intestinal tissue growth. In summary, LIN28B can definitively act as an oncogene in the absence of canonical genetic alterations.


Subject(s)
Carcinogenesis/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation , Intestinal Mucosa/physiopathology , MicroRNAs/genetics , Animals , Cell Differentiation , DNA-Binding Proteins/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/growth & development , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Inbred BALB C , MicroRNAs/metabolism , Paneth Cells/cytology , Protein Binding , Protein Biosynthesis , RNA, Messenger/metabolism , RNA-Binding Proteins , Signal Transduction
18.
Gastroenterology ; 157(3): 823-837, 2019 09.
Article in English | MEDLINE | ID: mdl-31078621

ABSTRACT

BACKGROUND & AIMS: Most pancreatic ductal adenocarcinomas (PDACs) express an activated form of KRAS, become hypoxic and dysplastic, and are refractory to chemo and radiation therapies. To survive in the hypoxic environment, PDAC cells upregulate enzymes and transporters involved in pH regulation, including the extracellular facing carbonic anhydrase 9 (CA9). We evaluated the effect of blocking CA9, in combination with administration of gemcitabine, in mouse models of pancreatic cancer. METHODS: We knocked down expression of KRAS in human (PK-8 and PK-1) PDAC cells with small hairpin RNAs. Human and mouse (KrasG12D/Pdx1-Cre/Tp53/RosaYFP) PDAC cells were incubated with inhibitors of MEK (trametinib) or extracellular signal-regulated kinase (ERK), and some cells were cultured under hypoxic conditions. We measured levels and stability of the hypoxia-inducible factor 1 subunit alpha (HIF1A), endothelial PAS domain 1 protein (EPAS1, also called HIF2A), CA9, solute carrier family 16 member 4 (SLC16A4, also called MCT4), and SLC2A1 (also called GLUT1) by immunoblot analyses. We analyzed intracellular pH (pHi) and extracellular metabolic flux. We knocked down expression of CA9 in PDAC cells, or inhibited CA9 with SLC-0111, incubated them with gemcitabine, and assessed pHi, metabolic flux, and cytotoxicity under normoxic and hypoxic conditions. Cells were also injected into either immune-compromised or immune-competent mice and growth of xenograft tumors was assessed. Tumor fragments derived from patients with PDAC were surgically ligated to the pancreas of mice and the growth of tumors was assessed. We performed tissue microarray analyses of 205 human PDAC samples to measure levels of CA9 and associated expression of genes that regulate hypoxia with outcomes of patients using the Cancer Genome Atlas database. RESULTS: Under hypoxic conditions, PDAC cells had increased levels of HIF1A and HIF2A, upregulated expression of CA9, and activated glycolysis. Knockdown of KRAS in PDAC cells, or incubation with trametinib, reduced the posttranscriptional stabilization of HIF1A and HIF2A, upregulation of CA9, pHi, and glycolysis in response to hypoxia. CA9 was expressed by 66% of PDAC samples analyzed; high expression of genes associated with metabolic adaptation to hypoxia, including CA9, correlated with significantly reduced survival times of patients. Knockdown or pharmacologic inhibition of CA9 in PDAC cells significantly reduced pHi in cells under hypoxic conditions, decreased gemcitabine-induced glycolysis, and increased their sensitivity to gemcitabine. PDAC cells with knockdown of CA9 formed smaller xenograft tumors in mice, and injection of gemcitabine inhibited tumor growth and significantly increased survival times of mice. In mice with xenograft tumors grown from human PDAC cells, oral administration of SLC-0111 and injection of gemcitabine increased intratumor acidosis and increased cell death. These tumors, and tumors grown from PDAC patient-derived tumor fragments, grew more slowly than xenograft tumors in mice given control agents, resulting in longer survival times. In KrasG12D/Pdx1-Cre/Tp53/RosaYFP genetically modified mice, oral administration of SLC-0111 and injection of gemcitabine reduced numbers of B cells in tumors. CONCLUSIONS: In response to hypoxia, PDAC cells that express activated KRAS increase expression of CA9, via stabilization of HIF1A and HIF2A, to regulate pH and glycolysis. Disruption of this pathway slows growth of PDAC xenograft tumors in mice and might be developed for treatment of pancreatic cancer.


Subject(s)
Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/metabolism , Carcinoma, Pancreatic Ductal/enzymology , Pancreatic Neoplasms/enzymology , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Microenvironment , Animals , Antigens, Neoplasm/genetics , Antimetabolites, Antineoplastic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/genetics , Carbonic Anhydrase Inhibitors/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Glycolysis/drug effects , Humans , Hydrogen-Ion Concentration , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phenotype , Phenylurea Compounds/pharmacology , Signal Transduction , Sulfonamides/pharmacology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , Gemcitabine
19.
Genes Dev ; 26(12): 1263-7, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22713867

ABSTRACT

The Hippo pathway is an evolutionarily conserved signaling module that plays multiple roles in embryonic development. Components of the pathway, which includes a kinase cascade and a downstream complex composed of YAP and TEAD transcription factors, are dysregulated in a significant fraction of human cancers. In this issue of Genes & Development, Liu-Chittenden and colleagues (pp. 1300-1305) use genetic and pharmacological means to disrupt the active YAP-TEAD complex. As this intervention impedes tumorigenesis in the liver with no apparent effect on normal liver homeostasis, the work paves the way for the development of new strategies to target this pervasive oncogenic pathway.

20.
Annu Rev Physiol ; 77: 179-200, 2015.
Article in English | MEDLINE | ID: mdl-25668020

ABSTRACT

The mammalian liver is one of the most regenerative tissues in the body, capable of fully recovering mass and function after a variety of injuries. This factor alone makes the liver unusual among mammalian tissues, but even more atypical is the widely held notion that the method of repair depends on the manner of injury. Specifically, the liver is believed to regenerate via replication of existing cells under certain conditions and via differentiation from specialized cells--so-called facultative stem cells--under others. Nevertheless, despite the liver's dramatic and unique regenerative response, the cellular and molecular features of liver homeostasis and regeneration are only now starting to come into relief. This review provides an overview of normal liver function and development and focuses on the evidence for and against various models of liver homeostasis and regeneration.


Subject(s)
Homeostasis/physiology , Liver Regeneration/physiology , Liver/cytology , Liver/physiology , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Hepatocytes/cytology , Hepatocytes/physiology , Humans , Liver Diseases/physiopathology , Stem Cells/cytology , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL