Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
2.
Immunity ; 53(4): 805-823.e15, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33053330

ABSTRACT

The activating receptor CD226 is expressed on lymphocytes, monocytes, and platelets and promotes anti-tumor immunity in pre-clinical models. Here, we examined the role of CD226 in the function of tumor-infiltrating lymphocytes (TILs) and resistance to immunotherapy. In murine tumors, a large proportion of CD8+ TILs had decreased surface expression of CD226 and exhibited features of dysfunction, whereas CD226hi TILs were highly functional. This correlation was seen also in TILs isolated from HNSCC patients. Mutation of CD226 at tyrosine 319 (Y319) led to increased CD226 surface expression, enhanced anti-tumor immunity and improved efficacy of immune checkpoint blockade (ICB). Mechanistically, tumor-derived CD155, the ligand for CD226, initiated phosphorylation of Y319 by Src kinases, thereby enabling ubiquitination of CD226 by CBL-B, internalization, and proteasomal degradation. In pre-treatment samples from melanoma patients, CD226+CD8+ T cells correlated with improved progression-free survival following ICB. Our findings argue for the development of therapies aimed at maintaining the expression of CD226.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , CD8-Positive T-Lymphocytes/immunology , Receptors, Virus/immunology , Animals , Cell Line , Cell Line, Tumor , HEK293 Cells , Humans , Immune Checkpoint Inhibitors/immunology , Immunotherapy/methods , Jurkat Cells , Lymphocytes, Tumor-Infiltrating/immunology , Male , Melanoma/immunology , Mice , Mice, Inbred C57BL
3.
Nat Immunol ; 17(7): 816-24, 2016 07.
Article in English | MEDLINE | ID: mdl-27213690

ABSTRACT

The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish(-/-) mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.


Subject(s)
Immunotherapy/methods , Killer Cells, Natural/immunology , Neoplasms/therapy , Suppressor of Cytokine Signaling Proteins/metabolism , Animals , Cell Proliferation/genetics , Cytotoxicity, Immunologic/genetics , Immunologic Surveillance , Interferon-gamma/metabolism , Interleukin-15/metabolism , Janus Kinase 1/metabolism , Lymphocyte Activation/genetics , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , Neoplasms/immunology , Signal Transduction/genetics , Suppressor of Cytokine Signaling Proteins/genetics
4.
Immunol Cell Biol ; 99(1): 65-83, 2021 01.
Article in English | MEDLINE | ID: mdl-32748462

ABSTRACT

Type 2 innate lymphoid cells (ILC2s) are important producers of type 2 cytokines whose role in hematological cancers remains unclear. ILC2s are a heterogeneous population encompassing distinct subsets with different tissue localization and cytokine responsiveness. In this study, we investigated the role of bone marrow (BM) ILC2s and interleukin (IL)-33-stimulated ILC2s in multiple myeloma, a plasma cell malignancy that develops in the BM. We found that myeloma growth was associated with phenotypic and functional alterations of BM ILC2s, characterized by an increased expression of maturation markers and reduced cytokine response to IL-2/IL-33. We identified a population of KLRG1hi ILC2s that preferentially accumulated in the liver and spleen of Il2rg-/- Rag2-/- mice reconstituted with BM ILC2s. A similar population of KLRG1hi ILC2s was observed in the blood, liver and spleen of IL-33-treated wild-type mice. The presence of KLRG1hi ILC2s in ILC2-reconstituted Il2rg-/- Rag2-/- mice or in IL-33-treated wild-type mice was associated with increased eosinophil numbers but had no effect on myeloma progression. Interestingly, while decreased myeloma growth was observed following treatment of Rag-deficient mice with the type 1 cytokines IL-12 and IL-18, this protection was reversed when mice received a combined treatment of IL-33 together with IL-12 and IL-18. In summary, our data indicate that IL-33 treatment induces a population of circulating inflammatory KLRG1hi ILC2s and inhibits type 1 immunity against multiple myeloma. These results argue against therapeutic administration of IL-33 to myeloma patients.


Subject(s)
Immunity, Innate , Multiple Myeloma , Animals , Cytokines , Humans , Interleukin-33 , Lectins, C-Type , Lymphocytes , Mice , Multiple Myeloma/drug therapy , Receptors, Immunologic
5.
Blood ; 132(16): 1689-1694, 2018 10 18.
Article in English | MEDLINE | ID: mdl-29986909

ABSTRACT

Immune-based therapies hold promise for the treatment of multiple myeloma (MM), but so far, immune checkpoint blockade targeting programmed cell death protein 1 has not proven effective as single agent in this disease. T-cell immunoglobulin and ITIM domains (TIGIT) is another immune checkpoint receptor known to negatively regulate T-cell functions. In this study, we investigated the therapeutic potential of TIGIT blockade to unleash immune responses against MM. We observed that, in both mice and humans, MM progression was associated with high levels of TIGIT expression on CD8+ T cells. TIGIT+ CD8+ T cells from MM patients exhibited a dysfunctional phenotype characterized by decreased proliferation and inability to produce cytokines in response to anti-CD3/CD28/CD2 or myeloma antigen stimulation. Moreover, when challenged with Vk*MYC mouse MM cells, TIGIT-deficient mice showed decreased serum monoclonal immunoglobulin protein levels associated with reduced tumor burden and prolonged survival, indicating that TIGIT limits antimyeloma immune responses. Importantly, blocking TIGIT using monoclonal antibodies increased the effector function of MM patient CD8+ T cells and suppressed MM development. Altogether our data provide evidence for an immune-inhibitory role of TIGIT in MM and support the development of TIGIT-blocking strategies for the treatment of MM patients.


Subject(s)
Antibodies, Monoclonal/pharmacology , CD8-Positive T-Lymphocytes/immunology , Multiple Myeloma/prevention & control , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptors, Immunologic/antagonists & inhibitors , Animals , CD8-Positive T-Lymphocytes/drug effects , Cells, Cultured , Humans , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Multiple Myeloma/etiology , Multiple Myeloma/pathology , Programmed Cell Death 1 Receptor/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/physiology
6.
Immunol Cell Biol ; 97(2): 152-164, 2019 02.
Article in English | MEDLINE | ID: mdl-30222899

ABSTRACT

CD96 has recently been shown to be a potent immune checkpoint molecule in mice, but a similar role in humans is not known. In this study, we provide a detailed map of CD96 expression across human lymphocyte lineages, the kinetics of CD96 regulation on T-cell activation and co-expression with other conventional and emerging immune checkpoint molecules. We show that CD96 is predominantly expressed by T cells and has a unique lymphocyte expression profile. CD96high T cells exhibited distinct effector functions on activation. Of note, CD96 expression was highly correlated with T-cell markers in primary and metastatic human tumors and was elevated on antigen-experienced T cells and tumor-infiltrating lymphocytes. Collectively, these data demonstrate that CD96 may be a promising immune checkpoint to enhance T-cell function against human cancer and infectious disease.


Subject(s)
Antigens, CD/immunology , Lymphocytes, Tumor-Infiltrating/immunology , T-Lymphocytes/immunology , Antigens, CD/biosynthesis , Humans , Immunophenotyping , Lymphocyte Activation , Lymphocyte Subsets/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasm Metastasis/immunology , Neoplasms/immunology , Neoplasms/pathology , T-Lymphocytes/metabolism , Transcriptome
7.
Cancer Metastasis Rev ; 31(3-4): 763-78, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22706847

ABSTRACT

The microenvironment of a tumor is a highly complex milieu, primarily characterized by immunosuppression, abnormal angiogenesis, and hypoxic regions. These features promote tumor progression and metastasis, resulting in poor prognosis and greater resistance to existing cancer therapies. Galectin-1 is a ß-galactoside binding protein that is abundantly secreted by almost all types of malignant tumor cells. The expression of galectin-1 is regulated by hypoxia-inducible factor-1 (HIF-1) and it plays vital pro-tumorigenic roles within the tumor microenvironment. In particular, galectin-1 suppresses T cell-mediated cytotoxic immune responses and promotes tumor angiogenesis. However, since galectin-1 displays many different activities by binding to a number of diverse N- or O-glycan modified target proteins, it has been difficult to fully understand how galectin-1 supports tumor growth and metastasis. This review explores the importance of galectin-1 and glycan expression patterns in the tumor microenvironment and the potential effects of inhibiting galectin-1 as a therapeutic target for cancer treatment.


Subject(s)
Galectin 1/antagonists & inhibitors , Galectin 1/physiology , Neoplasms/drug therapy , Tumor Microenvironment , Animals , Cell Hypoxia , Galectin 1/chemistry , Humans , Immune Tolerance , Neoplasm Metastasis , Neoplasms/immunology , Neovascularization, Pathologic/etiology , T-Lymphocytes/immunology , Thiogalactosides/pharmacology
8.
Blood Adv ; 3(11): 1681-1694, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31167820

ABSTRACT

Natural killer (NK) cells are a heterogeneous population of innate lymphocytes whose potent anticancer properties make them ideal candidates for cellular therapeutic application. However, our lack of understanding of the role of NK cell diversity in antitumor responses has hindered advances in this area. In this study, we describe a new CD56dim NK cell subset characterized by the lack of expression of DNAX accessory molecule-1 (DNAM-1). Compared with CD56bright and CD56dimDNAM-1pos NK cell subsets, CD56dimDNAM-1neg NK cells displayed reduced motility, poor proliferation, lower production of interferon-γ, and limited killing capacities. Soluble factors secreted by CD56dimDNAM-1neg NK cells impaired CD56dimDNAM-1pos NK cell-mediated killing, indicating a potential inhibitory role for the CD56dimDNAM-1neg NK cell subset. Transcriptome analysis revealed that CD56dimDNAM-1neg NK cells constitute a new mature NK cell subset with a specific gene signature. Upon in vitro cytokine stimulation, CD56dimDNAM-1neg NK cells were found to differentiate from CD56dimDNAM-1pos NK cells. Finally, we report a dysregulation of NK cell subsets in the blood of patients diagnosed with Hodgkin lymphoma and diffuse large B-cell lymphoma, characterized by decreased CD56dimDNAM-1pos/CD56dimDNAM-1neg NK cell ratios and reduced cytotoxic activity of CD56dimDNAM-1pos NK cells. Altogether, our data offer a better understanding of human peripheral blood NK cell populations and have important clinical implications for the design of NK cell-targeting therapies.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , CD56 Antigen/immunology , Cell Differentiation/immunology , Hodgkin Disease/immunology , Killer Cells, Natural/immunology , Lymphoma, Large B-Cell, Diffuse/immunology , Neoplasm Proteins/immunology , Hodgkin Disease/pathology , Humans , Killer Cells, Natural/pathology , Lymphoma, Large B-Cell, Diffuse/pathology
9.
Cancer Immunol Res ; 7(4): 559-571, 2019 04.
Article in English | MEDLINE | ID: mdl-30894377

ABSTRACT

CD96 is a novel target for cancer immunotherapy shown to regulate NK cell effector function and metastasis. Here, we demonstrated that blocking CD96 suppressed primary tumor growth in a number of experimental mouse tumor models in a CD8+ T cell-dependent manner. DNAM-1/CD226, Batf3, IL12p35, and IFNγ were also critical, and CD96-deficient CD8+ T cells promoted greater tumor control than CD96-sufficient CD8+ T cells. The antitumor activity of anti-CD96 therapy was independent of Fc-mediated effector function and was more effective in dual combination with blockade of a number of immune checkpoints, including PD-1, PD-L1, TIGIT, and CTLA-4. We consistently observed coexpression of PD-1 with CD96 on CD8+ T lymphocytes in tumor-infiltrating leukocytes both in mouse and human cancers using mRNA analysis, flow cytometry, and multiplex IHF. The combination of anti-CD96 with anti-PD-1 increased the percentage of IFNγ-expressing CD8+ T lymphocytes. Addition of anti-CD96 to anti-PD-1 and anti-TIGIT resulted in superior antitumor responses, regardless of the ability of the anti-TIGIT isotype to engage FcR. The optimal triple combination was also dependent upon CD8+ T cells and IFNγ. Overall, these data demonstrate that CD96 is an immune checkpoint on CD8+ T cells and that blocking CD96 in combination with other immune-checkpoint inhibitors is a strategy to enhance T-cell activity and suppress tumor growth.


Subject(s)
Antigens, CD/immunology , CD8-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/immunology , Adoptive Transfer , Animals , Antigens, CD/genetics , Cell Line, Tumor , Humans , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/therapy
10.
JCI Insight ; 52019 06 13.
Article in English | MEDLINE | ID: mdl-31194697

ABSTRACT

Immunotherapy holds promise for multiple myeloma (MM) patients but little is known about how MM-induced immunosuppression influences response to therapy. Here, we investigated the impact of disease progression on immunotherapy efficacy in the Vk*MYC mouse model. Treatment with agonistic anti-CD137 (4-1BB) mAbs efficiently protected mice when administered early but failed to contain MM growth when delayed more than three weeks after Vk*MYC tumor cell challenge. The quality of CD8+ T cell response to CD137 stimulation was not altered by the presence of MM, but CD8+ T cell numbers were profoundly reduced at the time of treatment. Our data suggest that an insufficient ratio of CD8+ T cells over MM cells (CD8/MM) accounts for the loss of anti-CD137 mAb efficacy. We established serum M-protein levels prior to therapy as a predictive factor of response. Moreover, we developed an in silico model to capture the dynamic interactions between CD8+ T cells and MM cells. Finally, we explored two methods to improve the CD8/MM ratio: anti-CD137 mAb immunotherapy combined with Treg-depletion or administered after chemotherapy treatment with cyclophosphamide or melphalan efficiently reduced MM burden and prolonged survival. Altogether, our data indicate that consolidation treatment with anti-CD137 mAbs might prevent MM relapse.


Subject(s)
4-1BB Ligand/metabolism , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Immunotherapy/methods , Multiple Myeloma/drug therapy , Animals , Antibodies, Monoclonal/therapeutic use , Antigens, Neoplasm/immunology , Antineoplastic Agents/therapeutic use , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Knockout , Multiple Myeloma/pathology , T-Lymphocytes, Regulatory
11.
Oncoimmunology ; 7(5): e1424677, 2018.
Article in English | MEDLINE | ID: mdl-29721390

ABSTRACT

CD96 is a transmembrane glycoprotein Ig superfamily receptor, expressed on various T cell subsets and NK cells, that interacts with nectin and nectin-like proteins, including CD155/polio virus receptor (PVR). Here, we have compared three rat anti-mouse CD96 mAbs, including two that block CD96-CD155 (3.3 and 6A6) and one that does not block CD96-CD155 (8B10). Using flow cytometry, we demonstrated that both mAbs 3.3 and 6A6 bind to the first Ig domain of mouse CD96 and compete with CD155 binding, while mAb 8B10 binds to the second Ig domain and does not block CD155. While Fc isotype was irrelevant concerning the anti-metastatic activity of 3.3 mAb, in four different experimental metastases models and one spontaneous metastasis model, the relative order of anti-metastatic potency was 6A6 > 3.3 > 8B10. The metastatic burden control of all of the anti-CD96 clones was highly dependent on NK cells and IFN-γ. Consistent with its inability to block CD96-CD155 interactions, 8B10 retained anti-metastatic activity in CD155-deficient mice, whereas 3.3 and 6A6 lost potency in CD155-deficient mice. Furthermore, 8B10 retained most of its anti-metastatic activity in IL-12p35-deficient mice whereas the activity of 3.3 and 6A6 were partially lost. All three mAbs were inactive in CD226-deficient mice. Altogether, these data demonstrate anti-CD96 need not block CD96-CD155 interactions (ie. immune checkpoint blockade) to promote NK cell anti-metastatic activity.

12.
Cancer Res ; 78(4): 1003-1016, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29229601

ABSTRACT

Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell-specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell-based therapies may heighten therapeutic benefits by augmenting NK cell-mediated antitumor immunity.Significance: Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. Cancer Res; 78(4); 1003-16. ©2017 AACR.


Subject(s)
Killer Cells, Natural/pathology , Melanoma, Experimental/metabolism , Receptor, Adenosine A2A/metabolism , Animals , Cell Line, Tumor , Heterografts , Humans , Killer Cells, Natural/immunology , Male , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptor, Adenosine A2A/deficiency , Receptor, Adenosine A2A/immunology , Signal Transduction/immunology , Tumor Microenvironment/immunology
13.
J Clin Invest ; 128(6): 2613-2625, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29757192

ABSTRACT

Critical immune-suppressive pathways beyond programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) require greater attention. Nectins and nectin-like molecules might be promising targets for immunotherapy, since they play critical roles in cell proliferation and migration and exert immunomodulatory functions in pathophysiological conditions. Here, we show CD155 expression in both malignant cells and tumor-infiltrating myeloid cells in humans and mice. Cd155-/- mice displayed reduced tumor growth and metastasis via DNAM-1 upregulation and enhanced effector function of CD8+ T and NK cells, respectively. CD155-deleted tumor cells also displayed slower tumor growth and reduced metastases, demonstrating the importance of a tumor-intrinsic role of CD155. CD155 absence on host and tumor cells exerted an even greater inhibition of tumor growth and metastasis. Blockade of PD-1 or both PD-1 and CTLA4 was more effective in settings in which CD155 was limiting, suggesting the clinical potential of cotargeting PD-L1 and CD155 function.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunity, Cellular , Killer Cells, Natural/immunology , Neoplasm Proteins/deficiency , Neoplasms, Experimental/immunology , Receptors, Virus/deficiency , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/pathology , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Cell Line, Tumor , Killer Cells, Natural/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Neoplasm Proteins/immunology , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Receptors, Virus/immunology
14.
Oncoimmunology ; 6(2): e1267892, 2017.
Article in English | MEDLINE | ID: mdl-28344878

ABSTRACT

The cytokine-induced SH2-containing protein CIS belongs to the suppressor of cytokine signaling (SOCS) protein family. Here, we show the critical role of CIS in suppressing natural killer (NK) cell control of tumor initiation and metastasis. Cish-deficient mice were highly resistant to methylcholanthrene-induced sarcoma formation and protected from lung metastasis of B16F10 melanoma and RM-1 prostate carcinoma cells. In contrast, the growth of primary subcutaneous tumors, including those expressing the foreign antigen OVA, was unchanged in Cish-deficient mice. The combination of Cish deficiency and relevant targeted and immuno-therapies such as combined BRAF and MEK inhibitors, immune checkpoint blockade antibodies, IL-2 and type I interferon revealed further improved control of metastasis. The data clearly indicate that targeting CIS promotes NK cell antitumor functions and CIS holds great promise as a novel target in NK cell immunotherapy.

15.
Oncoimmunology ; 6(5): e1312044, 2017.
Article in English | MEDLINE | ID: mdl-28638737

ABSTRACT

The emerging role for CD73 in driving cancer growth and metastasis has presented opportunities to develop anti-CD73 monoclonal antibodies (mAbs) in the treatment of human cancers. Blockade of CD73 by antagonistic CD73 mAbs ameliorates tumor growth and metastasis via the inhibition of enzymatic and non-enzymatic CD73 pathways. In this study, we investigated whether Fc-receptor cross-linking represented a non-redundant mechanism by which anti-CD73 mAbs exert potent suppression of solid tumors and metastases. We engineered four anti-CD73 mAbs, each different in their ability to modulate CD73 enzymatic function and bind Fc receptors. mAbs recognizing a similar epitope of CD73 (CD73-04, TY/23 and 2C5) displayed the greatest antitumor activity. Importantly, we observed that the optimal control of metastasis by anti-CD73 mAbs involved primarily Fc receptor engagement, while suppression of solid tumors required both, enzyme inhibition and activation of Fc receptors. Engagement of Fc-receptors was also essential for optimal anti-metastatic effect in combination with either A2AR inhibitor or anti-PD-1 mAb treatment. The control of experimental metastases relied on the activation of host NK cells and IFNγ, while NK cells, CD8+ T cells and IFNγ were needed for effective antitumor effect in the spontaneous metastases model. These observations advance our understanding of the enzymatic and non-enzymatic functions of anti-CD73 mAbs in solid tumors and metastases. Altogether, these findings will greatly assist in the design of anti-CD73 mAbs to be used as either single agents or in combination with other immunotherapeutic molecules or targeted therapies.

17.
Oncoimmunology ; 5(3): e1089381, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27141346

ABSTRACT

The presence of colony stimulating factor-1 (CSF1)/CSF1 receptor (CSF1R)-driven tumor-infiltrating macrophages and myeloid-derived suppressor cells (MDSCs) is shown to promote targeted therapy resistance. In this study, we demonstrate the superior effect of a combination of CSF1R inhibitor, PLX3397 and BRAF inhibitor, PLX4720, in suppressing primary and metastatic mouse BRAFV600E melanoma. Using flow cytometry to assess SM1WT1 melanoma-infiltrating leukocytes immediately post therapy, we found that PLX3397 reduced the recruitment of CD11b+ Gr1lo and CD11b+ Gr1int M2-like macrophages, but this was accompanied by an accumulation of CD11b+ Gr1hi cells. PDL1 expression on remaining myeloid cells potentially dampened the antitumor efficacy of PLX3397 and PLX4720 in combination, since PD1/PDL1 axis blockade improved outcome. We also reveal a role for PLX3397 in reducing tumor-infiltrating lymphocytes, and interestingly, this feature was rescued by the co-administration of PLX4720. Our findings, from three different mouse models of BRAF-mutated melanoma, support clinical approaches that co-target BRAF oncogene and CSF1R.

18.
Cancer Res ; 76(15): 4372-82, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27221704

ABSTRACT

Adenosine plays an important role in inflammation and tumor development, progression, and responses to therapy. We show that an adenosine 2B receptor inhibitor (A2BRi) decreases both experimental and spontaneous metastasis and combines with chemotherapy or immune checkpoint inhibitors in mouse models of melanoma and triple-negative breast cancer (TNBC) metastasis. Decreased metastasis upon A2BR inhibition is independent of host A2BR and lymphocytes and myeloid cells. Knockdown of A2BR on mouse and human cancer cells reduces their metastasis in vivo and decreases their viability and colony-forming ability, while transiently delaying cell-cycle arrest in vitro The prometastatic activity of adenosine is partly tumor A2BR dependent and independent of host A2BR expression. In humans, TNBC cell lines express higher A2BR than luminal and Her2(+) breast cancer cell lines, and high expression of A2BR is associated with worse prognosis in TNBC. Collectively, high A2BR on mouse and human tumors promotes cancer metastasis and is an ideal candidate for therapeutic intervention. Cancer Res; 76(15); 4372-82. ©2016 AACR.


Subject(s)
Receptor, Adenosine A2B/metabolism , Animals , Cell Line, Tumor , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Metastasis , Signal Transduction
19.
Cancer Discov ; 6(4): 446-59, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26787820

ABSTRACT

UNLABELLED: CD96 has recently been shown as a negative regulator of mouse natural killer (NK)-cell activity, with Cd96(-/-)mice displaying hyperresponsive NK cells upon immune challenge. In this study, we have demonstrated that blocking CD96 with a monoclonal antibody inhibited experimental metastases in three different tumor models. The antimetastatic activity of anti-CD96 was dependent on NK cells, CD226 (DNAM-1), and IFNγ, but independent of activating Fc receptors. Anti-CD96 was more effective in combination with anti-CTLA-4, anti-PD-1, or doxorubicin chemotherapy. Blocking CD96 in Tigit(-/-)mice significantly reduced experimental and spontaneous metastases compared with its activity in wild-type mice. Co-blockade of CD96 and PD-1 potently inhibited lung metastases, with the combination increasing local NK-cell IFNγ production and infiltration. Overall, these data demonstrate that blocking CD96 is a new and complementary immunotherapeutic strategy to reduce tumor metastases. SIGNIFICANCE: This article illustrates the antimetastatic activity and mechanism of action of an anti-CD96 antibody that inhibits the CD96-CD155 interaction and stimulates NK-cell function. Targeting host CD96 is shown to complement surgery and conventional immune checkpoint blockade.


Subject(s)
Immunotherapy , Lymphocytes/drug effects , Lymphocytes/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacology , Antigens, CD/metabolism , Antineoplastic Agents/pharmacology , CTLA-4 Antigen/antagonists & inhibitors , Cell Line, Tumor , Disease Models, Animal , Immunotherapy/methods , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lymphocytes/metabolism , Male , Melanoma, Experimental , Mice , Mice, Knockout , Molecular Targeted Therapy , Neoplasm Metastasis , Neoplasms/metabolism , Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
20.
Cancer Res ; 74(14): 3652-8, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24986517

ABSTRACT

Adenosine targeting is an attractive new approach to cancer treatment, but no clinical study has yet examined adenosine inhibition in oncology despite the safe clinical profile of adenosine A2A receptor inhibitors (A2ARi) in Parkinson disease. Metastasis is the main cause of cancer-related deaths worldwide, and therefore we have studied experimental and spontaneous mouse models of melanoma and breast cancer metastasis to demonstrate the efficacy and mechanism of a combination of A2ARi in combination with anti-PD-1 monoclonal antibody (mAb). This combination significantly reduces metastatic burden and prolongs the life of mice compared with either monotherapy alone. Importantly, the combination was only effective when the tumor expressed high levels of CD73, suggesting a tumor biomarker that at a minimum could be used to stratify patients that might receive this combination. The mechanism of the combination therapy was critically dependent on NK cells and IFNγ, and to a lesser extent, CD8(+) T cells and the effector molecule, perforin. Overall, these results provide a strong rationale to use A2ARi with anti-PD-1 mAb for the treatment of minimal residual and metastatic disease.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Receptor, Adenosine A2A/metabolism , Adenosine A2 Receptor Antagonists/administration & dosage , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Antibodies, Blocking/administration & dosage , Antibodies, Blocking/pharmacology , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/administration & dosage , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Disease Models, Animal , Female , Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Melanoma, Experimental , Mice , Neoplasm Metastasis , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/mortality , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL