ABSTRACT
Genomic data from millions of individuals have been generated worldwide to drive discovery and clinical impact in precision medicine. Lowering the barriers to using these data collectively is needed to equitably realize the benefits of the diversity and scale of population data. We examine the current landscape of global genomic data sharing, including the evolution of data sharing models from data aggregation through to data visiting, and for certain use cases, cross-cohort analysis using federated approaches across multiple environments. We highlight emerging examples of best practice relating to participant, patient and community engagement; evolution of technical standards, tools and infrastructure; and impact of research and health-care policy. We outline 12 actions we can all take together to scale up efforts to enable safe global data sharing and move beyond projects demonstrating feasibility to routinely cross-analysing research and clinical data sets, optimizing benefit.
ABSTRACT
Rare diseases are a leading cause of infant mortality and lifelong disability. To improve outcomes, timely diagnosis and effective treatments are needed. Genomic sequencing has transformed the traditional diagnostic process, providing rapid, accurate and cost-effective genetic diagnoses to many. Incorporating genomic sequencing into newborn screening programmes at the population scale holds the promise of substantially expanding the early detection of treatable rare diseases, with stored genomic data potentially benefitting health over a lifetime and supporting further research. As several large-scale newborn genomic screening projects launch internationally, we review the challenges and opportunities presented, particularly the need to generate evidence of benefit and to address the ethical, legal and psychosocial issues that genomic newborn screening raises.
ABSTRACT
The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes-CAMK2A, CAMK2B, CAMK2G, and CAMK2D-of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now. Here we show that CAMK2D plays an important role in neurodevelopment not only in mice but also in humans. We identified eight individuals harboring heterozygous variants in CAMK2D who display symptoms of intellectual disability, delayed speech, behavioral problems, and dilated cardiomyopathy. The majority of the variants tested lead to a gain of function (GoF), which appears to cause both neurological problems and dilated cardiomyopathy. In contrast, loss-of-function (LoF) variants appear to induce only neurological symptoms. Together, we describe a cohort of individuals with neurodevelopmental disorders and cardiac anomalies, harboring pathogenic variants in CAMK2D, confirming an important role for the CAMK2D isozyme in both heart and brain function.
Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Cardiomyopathy, Dilated , Intellectual Disability , Neurodevelopmental Disorders , Animals , Humans , Mice , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Heart , Neurodevelopmental Disorders/geneticsABSTRACT
Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.
Subject(s)
DNA Copy Number Variations , Exome Sequencing , Exome , Rare Diseases , Humans , DNA Copy Number Variations/genetics , Rare Diseases/genetics , Rare Diseases/diagnosis , Exome/genetics , Male , Female , Cohort Studies , Genetic Testing/methodsABSTRACT
Heterozygous pathogenic variants in POLR1A, which encodes the largest subunit of RNA Polymerase I, were previously identified as the cause of acrofacial dysostosis, Cincinnati-type. The predominant phenotypes observed in the cohort of 3 individuals were craniofacial anomalies reminiscent of Treacher Collins syndrome. We subsequently identified 17 additional individuals with 12 unique heterozygous variants in POLR1A and observed numerous additional phenotypes including neurodevelopmental abnormalities and structural cardiac defects, in combination with highly prevalent craniofacial anomalies and variable limb defects. To understand the pathogenesis of this pleiotropy, we modeled an allelic series of POLR1A variants in vitro and in vivo. In vitro assessments demonstrate variable effects of individual pathogenic variants on ribosomal RNA synthesis and nucleolar morphology, which supports the possibility of variant-specific phenotypic effects in affected individuals. To further explore variant-specific effects in vivo, we used CRISPR-Cas9 gene editing to recapitulate two human variants in mice. Additionally, spatiotemporal requirements for Polr1a in developmental lineages contributing to congenital anomalies in affected individuals were examined via conditional mutagenesis in neural crest cells (face and heart), the second heart field (cardiac outflow tract and right ventricle), and forebrain precursors in mice. Consistent with its ubiquitous role in the essential function of ribosome biogenesis, we observed that loss of Polr1a in any of these lineages causes cell-autonomous apoptosis resulting in embryonic malformations. Altogether, our work greatly expands the phenotype of human POLR1A-related disorders and demonstrates variant-specific effects that provide insights into the underlying pathogenesis of ribosomopathies.
Subject(s)
Craniofacial Abnormalities , Mandibulofacial Dysostosis , Humans , Mice , Animals , Mandibulofacial Dysostosis/genetics , Apoptosis , Mutagenesis , Ribosomes/genetics , Phenotype , Neural Crest/pathology , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathologyABSTRACT
Australian Genomics is a national collaborative partnership of more than 100 organizations piloting a whole-of-system approach to integrating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated the outcomes of genomic testing in more than 5,200 individuals across 19 rare disease and cancer flagship studies. Comprehensive analyses of the health economic, policy, ethical, legal, implementation and workforce implications of incorporating genomics in the Australian context have informed evidence-based change in policy and practice, resulting in national government funding and equity of access for a range of genomic tests. Simultaneously, Australian Genomics has built national skills, infrastructure, policy, and data resources to enable effective data sharing to drive discovery research and support improvements in clinical genomic delivery.
Subject(s)
Genomics , Health Policy , Humans , Australia , Rare Diseases , Delivery of Health CareABSTRACT
MRPL39 encodes one of 52 proteins comprising the large subunit of the mitochondrial ribosome (mitoribosome). In conjunction with 30 proteins in the small subunit, the mitoribosome synthesizes the 13 subunits of the mitochondrial oxidative phosphorylation (OXPHOS) system encoded by mitochondrial Deoxyribonucleic acid (DNA). We used multi-omics and gene matching to identify three unrelated individuals with biallelic variants in MRPL39 presenting with multisystem diseases with severity ranging from lethal, infantile-onset (Leigh syndrome spectrum) to milder with survival into adulthood. Clinical exome sequencing of known disease genes failed to diagnose these patients; however quantitative proteomics identified a specific decrease in the abundance of large but not small mitoribosomal subunits in fibroblasts from the two patients with severe phenotype. Re-analysis of exome sequencing led to the identification of candidate single heterozygous variants in mitoribosomal genes MRPL39 (both patients) and MRPL15. Genome sequencing identified a shared deep intronic MRPL39 variant predicted to generate a cryptic exon, with transcriptomics and targeted studies providing further functional evidence for causation. The patient with the milder disease was homozygous for a missense variant identified through trio exome sequencing. Our study highlights the utility of quantitative proteomics in detecting protein signatures and in characterizing gene-disease associations in exome-unsolved patients. We describe Relative Complex Abundance analysis of proteomics data, a sensitive method that can identify defects in OXPHOS disorders to a similar or greater sensitivity to the traditional enzymology. Relative Complex Abundance has potential utility for functional validation or prioritization in many hundreds of inherited rare diseases where protein complex assembly is disrupted.
Subject(s)
Leigh Disease , Mitochondrial Diseases , Humans , DNA, Mitochondrial/genetics , Leigh Disease/genetics , Leigh Disease/pathology , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/pathology , Mitochondrial Proteins/genetics , Multiomics , Mutation , Ribosomal Proteins/geneticsABSTRACT
BACKGROUND: Implementing genomic sequencing into newborn screening programs allows for significant expansion in the number and scope of conditions detected. We sought to explore public preferences and perspectives on which conditions to include in genomic newborn screening (gNBS). METHODS: We recruited English-speaking members of the Australian public over 18 years of age, using social media, and invited them to participate in online focus groups. RESULTS: Seventy-five members of the public aged 23-72 participated in one of fifteen focus groups. Participants agreed that if prioritisation of conditions was necessary, childhood-onset conditions were more important to include than later-onset conditions. Despite the purpose of the focus groups being to elicit public preferences, participants wanted to defer to others, such as health professionals or those with a lived experience of each condition, to make decisions about which conditions to include. Many participants saw benefit in including conditions with no available treatment. Participants agreed that gNBS should be fully publicly funded. CONCLUSION: How many and which conditions are included in a gNBS program will be a complex decision requiring detailed assessment of benefits and costs alongside public and professional engagement. Our study provides support for implementing gNBS for treatable childhood-onset conditions.
Subject(s)
Neonatal Screening , Humans , Infant, Newborn , Australia , Adult , Female , Male , Middle Aged , Aged , Genomics , Focus Groups , Public Opinion , Genetic Testing , Young AdultABSTRACT
The KidGen Collaborative's Policy Implementation Workshop 2023 celebrated the 10th anniversary of Australia's first kidney genetics clinic in Brisbane. This event marked the establishment of a national network now comprising 19 kidney genetics clinics across Australia, all dedicated to providing equitable access to genomic testing for families affected by genetic kidney diseases. The workshop reflected on past progress and outlined future objectives for kidney genetics in Australia, recognising the collaborative efforts of clinical teams, researchers, and patients. Key insights from the workshop are documented in the proceedings.
Subject(s)
Kidney Diseases , Humans , Australia , Kidney Diseases/genetics , Genetic Testing/trendsABSTRACT
SHQ1 is essential for biogenesis of H/ACA ribonucleoproteins, a class of molecules important for processing ribosomal RNAs, modifying spliceosomal small nuclear RNAs and stabilizing telomerase. Components of the H/ACA ribonucleoprotein complex have been linked to neurological developmental defects. Here, we report two sibling pairs from unrelated families with compound heterozygous variants in SHQ1. Exome sequencing was used to detect disease causing variants, which were submitted to 'matching' platforms linked to MatchMaker Exchange. Phenotype comparisons supported these matches. The affected individuals present with early-onset dystonia, with individuals from one family displaying additional neurological phenotypes, including neurodegeneration. As a result of cerebrospinal fluid studies suggesting possible abnormal dopamine metabolism, a trial of levodopa replacement therapy was started but no clear response was noted. We show that fibroblasts from affected individuals have dramatic loss of SHQ1 protein. Variants from both families were expressed in Saccharomyces cerevisiae, resulting in a strong reduction in H/ACA snoRNA production and remarkable defects in rRNA processing and ribosome formation. Our study identifies SHQ1 as associated with neurological disease, including early-onset dystonia, and begins to delineate the molecular etiology of this novel condition.
Subject(s)
Dystonia , Dystonic Disorders , Intracellular Signaling Peptides and Proteins , Saccharomyces cerevisiae Proteins , Dystonia/genetics , Dystonic Disorders/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/geneticsABSTRACT
Mitochondrial diseases are a group of inherited diseases with highly varied and complex clinical presentations. Here, we report four individuals, including two siblings, affected by a progressive mitochondrial encephalopathy with biallelic variants in the cardiolipin biosynthesis gene CRLS1. Three affected individuals had a similar infantile presentation comprising progressive encephalopathy, bull's eye maculopathy, auditory neuropathy, diabetes insipidus, autonomic instability, cardiac defects and early death. The fourth affected individual presented with chronic encephalopathy with neurodevelopmental regression, congenital nystagmus with decreased vision, sensorineural hearing loss, failure to thrive and acquired microcephaly. Using patient-derived fibroblasts, we characterized cardiolipin synthase 1 (CRLS1) dysfunction that impaired mitochondrial morphology and biogenesis, providing functional evidence that the CRLS1 variants cause mitochondrial disease. Lipid profiling in fibroblasts from two patients further confirmed the functional defect demonstrating reduced cardiolipin levels, altered acyl-chain composition and significantly increased levels of phosphatidylglycerol, the substrate of CRLS1. Proteomic profiling of patient cells and mouse Crls1 knockout cell lines identified both endoplasmic reticular and mitochondrial stress responses, and key features that distinguish between varying degrees of cardiolipin insufficiency. These findings support that deleterious variants in CRLS1 cause an autosomal recessive mitochondrial disease, presenting as a severe encephalopathy with multi-systemic involvement. Furthermore, we identify key signatures in cardiolipin and proteome profiles across various degrees of cardiolipin loss, facilitating the use of omics technologies to guide future diagnosis of mitochondrial diseases.
Subject(s)
Brain Diseases , Mitochondrial Diseases , Animals , Mice , Brain Diseases/genetics , Brain Diseases/metabolism , Cardiolipins/genetics , Cardiolipins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , ProteomicsABSTRACT
Clinical validity assessments of gene-disease associations underpin analysis and reporting in diagnostic genomics, and yet wide variability exists in practice, particularly in use of these assessments for virtual gene panel design and maintenance. Harmonization efforts are hampered by the lack of agreed terminology, agreed gene curation standards, and platforms that can be used to identify and resolve discrepancies at scale. We undertook a systematic comparison of the content of 80 virtual gene panels used in two healthcare systems by multiple diagnostic providers in the United Kingdom and Australia. The process was enabled by a shared curation platform, PanelApp, and resulted in the identification and review of 2,144 discordant gene ratings, demonstrating the utility of sharing structured gene-disease validity assessments and collaborative discordance resolution in establishing national and international consensus.
Subject(s)
Consensus , Data Curation/standards , Genetic Diseases, Inborn/genetics , Genomics/standards , Molecular Sequence Annotation/standards , Australia , Biomarkers/metabolism , Data Curation/methods , Delivery of Health Care , Gene Expression , Gene Ontology , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/pathology , Genomics/methods , Humans , Mobile Applications/supply & distribution , Terminology as Topic , United KingdomABSTRACT
Kainate receptors (KARs) are glutamate-gated cation channels with diverse roles in the central nervous system. Bi-allelic loss of function of the KAR-encoding gene GRIK2 causes a nonsyndromic neurodevelopmental disorder (NDD) with intellectual disability and developmental delay as core features. The extent to which mono-allelic variants in GRIK2 also underlie NDDs is less understood because only a single individual has been reported previously. Here, we describe an additional eleven individuals with heterozygous de novo variants in GRIK2 causative for neurodevelopmental deficits that include intellectual disability. Five children harbored recurrent de novo variants (three encoding p.Thr660Lys and two p.Thr660Arg), and four children and one adult were homozygous for a previously reported variant (c.1969G>A [p.Ala657Thr]). Individuals with shared variants had some overlapping behavioral and neurological dysfunction, suggesting that the GRIK2 variants are likely pathogenic. Analogous mutations introduced into recombinant GluK2 KAR subunits at sites within the M3 transmembrane domain (encoding p.Ala657Thr, p.Thr660Lys, and p.Thr660Arg) and the M3-S2 linker domain (encoding p.Ile668Thr) had complex effects on functional properties and membrane localization of homomeric and heteromeric KARs. Both p.Thr660Lys and p.Thr660Arg mutant KARs exhibited markedly slowed gating kinetics, similar to p.Ala657Thr-containing receptors. Moreover, we observed emerging genotype-phenotype correlations, including the presence of severe epilepsy in individuals with the p.Thr660Lys variant and hypomyelination in individuals with either the p.Thr660Lys or p.Thr660Arg variant. Collectively, these results demonstrate that human GRIK2 variants predicted to alter channel function are causative for early childhood development disorders and further emphasize the importance of clarifying the role of KARs in early nervous system development.
Subject(s)
Brain/metabolism , Developmental Disabilities/genetics , Epilepsy/genetics , Intellectual Disability/genetics , Mutation , Receptors, Kainic Acid/genetics , Adolescent , Adult , Alleles , Brain/diagnostic imaging , Brain/pathology , Child , Child, Preschool , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Epilepsy/diagnostic imaging , Epilepsy/metabolism , Epilepsy/pathology , Evoked Potentials/physiology , Gene Expression Regulation, Developmental , Genetic Association Studies , Heterozygote , Homozygote , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/metabolism , Intellectual Disability/pathology , Ion Channel Gating , Male , Models, Molecular , Neurons/metabolism , Neurons/pathology , Protein Conformation , Receptors, Kainic Acid/chemistry , Receptors, Kainic Acid/metabolism , GluK2 Kainate ReceptorABSTRACT
PURPOSE: Determining the value of genomic tests in rare disease necessitates a broader conceptualization of genomic utility beyond diagnostic yield. Despite widespread discussion, consensus toward which aspects of value to consider is lacking. This study aimed to use expert opinion to identify and refine priority indicators of utility in rare disease genomic testing. METHODS: We used 2 survey rounds following Delphi methodology to obtain consensus on indicators of utility among experts involved in policy, clinical, research, and consumer advocacy leadership in Australia. We analyzed quantitative and qualitative data to identify, define, and determine priority indicators. RESULTS: Twenty-five experts completed round 1 and 18 completed both rounds. Twenty indicators reached consensus as a priority in value assessment, including those relating to prognostic information, timeliness of results, practical and health care outcomes, clinical accreditation, and diagnostic yield. Whereas indicators pertaining to discovery research, disutility, and factors secondary to primary reason for testing were considered less of a priority and were removed. CONCLUSION: This study obtained expert consensus on different utility indicators that are considered a priority in determining the value of genomic testing in rare disease in Australia. Indicators may inform a standardized approach to evidence generation and assessment to guide future research, decision making, and implementation efforts.
Subject(s)
Delphi Technique , Genetic Testing , Genomics , Rare Diseases , Humans , Rare Diseases/genetics , Rare Diseases/diagnosis , Genetic Testing/standards , Genetic Testing/methods , Genomics/methods , Genomics/standards , Australia , Consensus , Surveys and QuestionnairesABSTRACT
PURPOSE: Rare disease genomic testing is a complex process involving various resources. Accurate resource estimation is required for informed prioritization and reimbursement decisions. This study aims to analyze the costs and cost drivers of clinical genomic testing. METHODS: Based on genomic sequencing workflows we microcosted limited virtual panel analysis on exome sequencing backbone, proband and trio exome, and genome testing for proband and trio analysis in 2023 Australian Dollars ($). Deterministic and probabilistic sensitivity analyses were undertaken. RESULTS: Panel testing costs AUD $2373 ($733-$6166), and exome sequencing costs $2823 ($802-$7206) and $5670 ($2006-$11,539) for proband and trio analysis, respectively. Genome sequencing costs $4840 ($2153-$9890) and $11,589 ($5842-$16,562) for proband and trio analysis. The most expensive cost component of genomic testing was sequencing (36.9%-69.4% of total cost), with labor accounting for 27.1%-63.2% of total cost. CONCLUSION: We provide a comprehensive analysis of rare disease genomic testing costs, for a range of clinical testing types and contexts. This information will accurately inform economic evaluations of rare disease genomic testing and decision making on policy settings that assist with implementation, such as genomic testing reimbursement.
Subject(s)
Exome , Rare Diseases , Humans , Exome/genetics , Rare Diseases/diagnosis , Rare Diseases/genetics , Australia , Genomics , FamilyABSTRACT
PURPOSE: Gene selection for genomic newborn screening (gNBS) underpins the validity, acceptability, and ethical application of this technology. Existing gNBS gene lists are highly variable despite being based on shared principles of gene-disease validity, treatability, and age of onset. This study aimed to curate a gNBS gene list that builds upon existing efforts and provide a core consensus list of gene-disease pairs assessed by multiple expert groups worldwide. METHODS: Our multidisciplinary expert team curated a gene list using an open platform and multiple existing curated resources. We included severe treatable disorders with age of disease onset <5 years with established gene-disease associations and reliable variant detection. We compared the final list with published lists from 5 other gNBS projects to determine consensus genes and to identify areas of discrepancy. RESULTS: We reviewed 1279 genes and 604 met our inclusion criteria. Metabolic conditions comprised the largest group (25%), followed by immunodeficiencies (21%) and endocrine disorders (15%). We identified 55 consensus genes included by all 6 gNBS research projects. Common reasons for discrepancy included variable definitions of treatability and strength of gene-disease association. CONCLUSION: We have identified a consensus gene list for gNBS that can be used as a basis for systematic harmonization efforts internationally.
Subject(s)
Genetic Testing , Genomics , Neonatal Screening , Humans , Neonatal Screening/methods , Infant, Newborn , Genetic Testing/methods , Genetic Testing/standards , Genomics/methods , ConsensusABSTRACT
PURPOSE: To develop and evaluate a scalable national program to build confidence, competence and capability in the use of rapid genomic testing (rGT) in the acute pediatric setting. METHODS: We used theory-informed approaches to design a modular, adaptive program of blended learning aimed at diverse professional groups involved in acute pediatric care. The program comprised 4 online learning modules and an online workshop and was centered on case-based learning. We evaluated the program using the Kirkpatrick 4-level model of training evaluation and report our findings using the Reporting Item Standards for Education and its Evaluation (RISE2) guidelines for genomics education and evaluation. RESULTS: Two hundred and two participants engaged with at least 1 component of the program. Participants self-reported increased confidence in using rGT, (P < .001), and quiz responses objectively demonstrated increased competence (eg, correct responses to a question on pretest counseling increased from 30% to 64%; P < .001). Additionally, their capability in applying genomic principles to simulated clinical cases increased (P < .001), as did their desire to take on more responsibility for performing rGT. The clinical interpretation of more complex test results (such as negative results or variants of uncertain significance) appeared to be more challenging, indicating a need for targeted education in this area. CONCLUSION: The program format was effective in delivering multidisciplinary and wide-scale genomics education in the acute care context. The modular approach we have developed now lends itself to application in other medical specialties or areas of health care.
Subject(s)
Genomics , Pediatrics , Humans , Genomics/education , Genomics/methods , Pediatrics/education , Clinical Competence , Genetic Testing/methods , Male , Female , Curriculum , ChildABSTRACT
PURPOSE: To characterize the diagnostic and clinical outcomes of a cohort of critically ill infants and children with suspected mitochondrial disorders (MD) undergoing ultra-rapid genomic testing as part of a national program. METHODS: Ultra-rapid genomic sequencing was performed in 454 families (genome sequencing: n=290, exome sequencing +/- mitochondrial DNA sequencing: n=164). In 91 individuals, MD was considered, prompting analysis using an MD virtual gene panel. These individuals were reviewed retrospectively and scored according to modified Nijmegen Mitochondrial Disease Criteria. RESULTS: A diagnosis was achieved in 47% (43/91) of individuals, 40% (17/43) of whom had an MD. Seven additional individuals in whom an MD was not suspected were diagnosed with an MD following broader analysis. Gene-agnostic analysis led to the discovery of two novel disease genes, with pathogenicity validated through targeted functional studies (CRLS1 and MRPL39). Functional studies enabled diagnosis in another four individuals. Of the 24 individuals ultimately diagnosed with an MD, 79% had a change in management, which included 53% whose care was redirected to palliation. CONCLUSION: Ultra-rapid genetic diagnosis of MD in acutely unwell infants and children is critical for guiding decisions about the need for additional investigations and clinical management.
ABSTRACT
PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here, we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both Sequence Ontology (SO) and Human Phenotype Ontology (HPO) ontologies. Gene Curation Coalition member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.
Subject(s)
Genetic Testing , Genetic Variation , Humans , Alleles , Databases, GeneticABSTRACT
PURPOSE: Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS: ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS: The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION: Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.