Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Publication year range
1.
Bioinformatics ; 35(4): 560-570, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30084929

ABSTRACT

MOTIVATION: A synoptic view of the human genome benefits chiefly from the application of nucleic acid sequencing and microarray technologies. These platforms allow interrogation of patterns such as gene expression and DNA methylation at the vast majority of canonical loci, allowing granular insights and opportunities for validation of original findings. However, problems arise when validating against a "gold standard" measurement, since this immediately biases all subsequent measurements towards that particular technology or protocol. Since all genomic measurements are estimates, in the absence of a "gold standard" we instead empirically assess the measurement precision and sensitivity of a large suite of genomic technologies via a consensus modelling method called the row-linear model. This method is an application of the American Society for Testing and Materials Standard E691 for assessing interlaboratory precision and sources of variability across multiple testing sites. Both cross-platform and cross-locus comparisons can be made across all common loci, allowing identification of technology- and locus-specific tendencies. RESULTS: We assess technologies including the Infinium MethylationEPIC BeadChip, whole genome bisulfite sequencing (WGBS), two different RNA-Seq protocols (PolyA+ and Ribo-Zero) and five different gene expression array platforms. Each technology thus is characterised herein, relative to the consensus. We showcase a number of applications of the row-linear model, including correlation with known interfering traits. We demonstrate a clear effect of cross-hybridisation on the sensitivity of Infinium methylation arrays. Additionally, we perform a true interlaboratory test on a set of samples interrogated on the same platform across twenty-one separate testing laboratories. AVAILABILITY AND IMPLEMENTATION: A full implementation of the row-linear model, plus extra functions for visualisation, are found in the R package consensus at https://github.com/timpeters82/consensus. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology , DNA Methylation , Genomics , Genome, Human , Humans , Oligonucleotide Array Sequence Analysis , Software
2.
Genet Med ; 21(3): 650-662, 2019 03.
Article in English | MEDLINE | ID: mdl-29961767

ABSTRACT

PURPOSE: We evaluated genome sequencing (GS) as an alternative to multigene panel sequencing (PS) for genetic testing in dilated cardiomyopathy (DCM). METHODS: Forty-two patients with familial DCM underwent PS and GS, and detection rates of rare single-nucleotide variants and small insertions/deletions in panel genes were compared. Loss-of-function variants in 406 cardiac-enriched genes were evaluated, and an assessment of structural variation was performed. RESULTS: GS provided broader and more uniform coverage than PS, with high concordance for rare variant detection in panel genes. GS identified all PS-identified pathogenic or likely pathogenic variants as well as two additional likely pathogenic variants: one was missed by PS due to low coverage, the other was a known disease-causing variant in a gene not included on the panel. No loss-of-function variants in the extended gene set met clinical criteria for pathogenicity. One BAG3 structural variant was classified as pathogenic. CONCLUSION: Our data support the use of GS for genetic testing in DCM, with high variant detection accuracy and a capacity to identify structural variants. GS provides an opportunity to go beyond suites of established disease genes, but the incremental yield of clinically actionable variants is limited by a paucity of genetic and functional evidence for DCM association.


Subject(s)
Cardiomyopathy, Dilated/genetics , Genetic Testing/methods , Adolescent , Adult , Aged , Aged, 80 and over , Base Sequence , Female , Genetic Predisposition to Disease/genetics , Humans , INDEL Mutation , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods
3.
Trends Genet ; 30(2): 75-84, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24368016

ABSTRACT

There are over 28 million CpG sites in the human genome. Assessing the methylation status of each of these sites will be required to understand fully the role of DNA methylation in health and disease. Genome-wide analysis, using arrays and high-throughput sequencing, has enabled assessment of large fractions of the methylome, but each protocol comes with unique advantages and disadvantages. Notably, except for whole-genome bisulfite sequencing, most commonly used genome-wide methods detect <5% of all CpG sites. Here, we discuss approaches for methylome studies and compare genome coverage of promoters, genes, and intergenic regions, and capacity to quantitate individual CpG methylation states. Finally, we examine the extent of published cancer methylomes that have been generated using genome-wide approaches.


Subject(s)
DNA Methylation , Epigenomics , Neoplasms/genetics , Transcriptome , Animals , Computational Biology/methods , Databases, Genetic , Epigenesis, Genetic , Epigenomics/methods , Genome-Wide Association Study/methods , High-Throughput Nucleotide Sequencing , Humans , Internet
4.
Genome Res ; 24(9): 1421-32, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24916973

ABSTRACT

It is well established that cancer-associated epigenetic repression occurs concomitant with CpG island hypermethylation and loss of nucleosomes at promoters, but the role of nucleosome occupancy and epigenetic reprogramming at distal regulatory elements in cancer is still poorly understood. Here, we evaluate the scope of global epigenetic alterations at enhancers and insulator elements in prostate and breast cancer cells using simultaneous genome-wide mapping of DNA methylation and nucleosome occupancy (NOMe-seq). We find that the genomic location of nucleosome-depleted regions (NDRs) is mostly cell type specific and preferentially found at enhancers in normal cells. In cancer cells, however, we observe a global reconfiguration of NDRs at distal regulatory elements coupled with a substantial reorganization of the cancer methylome. Aberrant acquisition of nucleosomes at enhancer-associated NDRs is associated with hypermethylation and epigenetic silencing marks, and conversely, loss of nucleosomes with demethylation and epigenetic activation. Remarkably, we show that nucleosomes remain strongly organized and phased at many facultative distal regulatory elements, even in the absence of a NDR as an anchor. Finally, we find that key transcription factor (TF) binding sites also show extensive peripheral nucleosome phasing, suggesting the potential for TFs to organize NDRs genome-wide and contribute to deregulation of cancer epigenomes. Together, our findings suggest that "decommissioning" of NDRs and TFs at distal regulatory elements in cancer cells is accompanied by DNA hypermethylation susceptibility of enhancers and insulator elements, which in turn may contribute to an altered genome-wide architecture and epigenetic deregulation in malignancy.


Subject(s)
DNA Methylation , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Insulator Elements , Nucleosomes/genetics , Epigenesis, Genetic , Humans , MCF-7 Cells , Nucleosomes/metabolism
5.
EMBO J ; 30(21): 4414-22, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21964070

ABSTRACT

MicroRNAs (miRNAs) are ∼22 nt non-coding RNAs that typically bind to the 3' UTR of target mRNAs in the cytoplasm, resulting in mRNA destabilization and translational repression. Here, we report that miRNAs can also regulate gene expression by targeting non-coding antisense transcripts in human cells. Specifically, we show that miR-671 directs cleavage of a circular antisense transcript of the Cerebellar Degeneration-Related protein 1 (CDR1) locus in an Ago2-slicer-dependent manner. The resulting downregulation of circular antisense has a concomitant decrease in CDR1 mRNA levels, independently of heterochromatin formation. This study provides the first evidence for non-coding antisense transcripts as functional miRNA targets, and a novel regulatory mechanism involving a positive correlation between mRNA and antisense circular RNA levels.


Subject(s)
Argonaute Proteins/metabolism , MicroRNAs/pharmacology , RNA Cleavage/physiology , RNA Interference/drug effects , RNA, Antisense/metabolism , RNA/metabolism , Argonaute Proteins/physiology , Autoantigens/genetics , Autoantigens/metabolism , Base Sequence , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , HEK293 Cells , Humans , MicroRNAs/physiology , Models, Biological , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nucleic Acid Conformation , RNA/drug effects , RNA Cleavage/drug effects , RNA Cleavage/genetics , RNA Splicing/genetics , RNA Splicing/physiology , RNA, Antisense/chemistry , RNA, Circular
6.
Genome Res ; 22(12): 2489-96, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22879430

ABSTRACT

Developments in microarray and high-throughput sequencing (HTS) technologies have resulted in a rapid expansion of research into epigenomic changes that occur in normal development and in the progression of disease, such as cancer. Not surprisingly, copy number variation (CNV) has a direct effect on HTS read densities and can therefore bias differential detection results. We have developed a flexible approach called ABCD-DNA (affinity-based copy-number-aware differential quantitative DNA sequencing analyses) that integrates CNV and other systematic factors directly into the differential enrichment engine.


Subject(s)
DNA Copy Number Variations , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Algorithms , DNA/genetics , DNA Methylation , Genetic Loci , Humans
7.
Genome Res ; 22(6): 1120-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22466171

ABSTRACT

The complex relationship between DNA methylation, chromatin modification, and underlying DNA sequence is often difficult to unravel with existing technologies. Here, we describe a novel technique based on high-throughput sequencing of bisulfite-treated chromatin immunoprecipitated DNA (BisChIP-seq), which can directly interrogate genetic and epigenetic processes that occur in normal and diseased cells. Unlike most previous reports based on correlative techniques, we found using direct bisulfite sequencing of Polycomb H3K27me3-enriched DNA from normal and prostate cancer cells that DNA methylation and H3K27me3-marked histones are not always mutually exclusive, but can co-occur in a genomic region-dependent manner. Notably, in cancer, the co-dependency of marks is largely redistributed with an increase of the dual repressive marks at CpG islands and transcription start sites of silent genes. In contrast, there is a loss of DNA methylation in intergenic H3K27me3-marked regions. Allele-specific methylation status derived from the BisChIP-seq data clearly showed that both methylated and unmethylated alleles can simultaneously be associated with H3K27me3 histones, highlighting that DNA methylation status in these regions is not dependent on Polycomb chromatin status. BisChIP-seq is a novel approach that can be widely applied to directly interrogate the genomic relationship between allele-specific DNA methylation, histone modification, or other important epigenetic regulators.


Subject(s)
Chromatin/genetics , DNA Methylation , High-Throughput Nucleotide Sequencing/methods , Histones/metabolism , Prostatic Neoplasms/genetics , Alleles , Cell Line , Chromatin/drug effects , Chromatin Immunoprecipitation , CpG Islands , Epigenesis, Genetic , Epithelial Cells/physiology , Humans , Male , Prostate/cytology , Reference Values , Sulfites/pharmacology
8.
Genome Res ; 22(2): 307-21, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21788347

ABSTRACT

Histone H2A.Z (H2A.Z) is an evolutionarily conserved H2A variant implicated in the regulation of gene expression; however, its role in transcriptional deregulation in cancer remains poorly understood. Using genome-wide studies, we investigated the role of promoter-associated H2A.Z and acetylated H2A.Z (acH2A.Z) in gene deregulation and its relationship with DNA methylation and H3K27me3 in prostate cancer. Our results reconcile the conflicting reports of positive and negative roles for histone H2A.Z and gene expression states. We find that H2A.Z is enriched in a bimodal distribution at nucleosomes, surrounding the transcription start sites (TSSs) of both active and poised gene promoters. In addition, H2A.Z spreads across the entire promoter of inactive genes in a deacetylated state. In contrast, acH2A.Z is only localized at the TSSs of active genes. Gene deregulation in cancer is also associated with a reorganization of acH2A.Z and H2A.Z nucleosome occupancy across the promoter region and TSS of genes. Notably, in cancer cells we find that a gain of acH2A.Z at the TSS occurs with an overall decrease of H2A.Z levels, in concert with oncogene activation. Furthermore, deacetylation of H2A.Z at TSSs is increased with silencing of tumor suppressor genes. We also demonstrate that acH2A.Z anti-correlates with promoter H3K27me3 and DNA methylation. We show for the first time, that acetylation of H2A.Z is a key modification associated with gene activity in normal cells and epigenetic gene deregulation in tumorigenesis.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Histones/metabolism , Neoplasms/genetics , Acetylation , Cell Line, Tumor , DNA Methylation , Genes, Tumor Suppressor , Humans , Male , Models, Biological , Neoplasms/metabolism , Nucleosomes/metabolism , Oncogenes , Promoter Regions, Genetic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Transport , Transcription Initiation Site , Transcriptional Activation
9.
PLoS Biol ; 10(12): e1001461, 2012.
Article in English | MEDLINE | ID: mdl-23300383

ABSTRACT

We have previously shown that during pregnancy the E-twenty-six (ETS) transcription factor ELF5 directs the differentiation of mammary progenitor cells toward the estrogen receptor (ER)-negative and milk producing cell lineage, raising the possibility that ELF5 may suppress the estrogen sensitivity of breast cancers. To test this we constructed inducible models of ELF5 expression in ER positive luminal breast cancer cells and interrogated them using transcript profiling and chromatin immunoprecipitation of DNA followed by DNA sequencing (ChIP-Seq). ELF5 suppressed ER and FOXA1 expression and broadly suppressed ER-driven patterns of gene expression including sets of genes distinguishing the luminal molecular subtype. Direct transcriptional targets of ELF5, which included FOXA1, EGFR, and MYC, accurately classified a large cohort of breast cancers into their intrinsic molecular subtypes, predicted ER status with high precision, and defined groups with differential prognosis. Knockdown of ELF5 in basal breast cancer cell lines suppressed basal patterns of gene expression and produced a shift in molecular subtype toward the claudin-low and normal-like groups. Luminal breast cancer cells that acquired resistance to the antiestrogen Tamoxifen showed greatly elevated levels of ELF5 and its transcriptional signature, and became dependent on ELF5 for proliferation, compared to the parental cells. Thus ELF5 provides a key transcriptional determinant of breast cancer molecular subtype by suppression of estrogen sensitivity in luminal breast cancer cells and promotion of basal characteristics in basal breast cancer cells, an action that may be utilised to acquire antiestrogen resistance.


Subject(s)
Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Estrogens/pharmacology , Proto-Oncogene Proteins c-ets/metabolism , Animals , Binding Sites , Breast Neoplasms/classification , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Adhesion/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatin Immunoprecipitation , DNA, Neoplasm/metabolism , DNA-Binding Proteins , Female , Gene Expression Regulation, Neoplastic/drug effects , Genome, Human/genetics , Humans , Mice , Models, Biological , Phenotype , Protein Binding/drug effects , Protein Binding/genetics , Proto-Oncogene Proteins c-ets/genetics , Sequence Analysis, DNA , Transcription Factors , Transcription, Genetic/drug effects
11.
Genome Res ; 20(12): 1719-29, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21045081

ABSTRACT

DNA methylation is an essential epigenetic modification that plays a key role associated with the regulation of gene expression during differentiation, but in disease states such as cancer, the DNA methylation landscape is often deregulated. There are now numerous technologies available to interrogate the DNA methylation status of CpG sites in a targeted or genome-wide fashion, but each method, due to intrinsic biases, potentially interrogates different fractions of the genome. In this study, we compare the affinity-purification of methylated DNA between two popular genome-wide techniques, methylated DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain-based capture (MBDCap), and show that each technique operates in a different domain of the CpG density landscape. We explored the effect of whole-genome amplification and illustrate that it can reduce sensitivity for detecting DNA methylation in GC-rich regions of the genome. By using MBDCap, we compare and contrast microarray- and sequencing-based readouts and highlight the impact that copy number variation (CNV) can make in differential comparisons of methylomes. These studies reveal that the analysis of DNA methylation data and genome coverage is highly dependent on the method employed, and consideration must be made in light of the GC content, the extent of DNA amplification, and the copy number.


Subject(s)
CpG Islands/genetics , DNA Copy Number Variations/genetics , DNA Methylation , Genome, Human/genetics , Immunoprecipitation/methods , Nucleic Acid Amplification Techniques/methods , Cell Line, Tumor , Chromosome Mapping , Humans , Microarray Analysis/methods , Sequence Analysis, DNA/methods
12.
Twin Res Hum Genet ; 16(4): 767-81, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23725790

ABSTRACT

Imprinting control regions (ICRs) play a fundamental role in establishing and maintaining the non-random monoallelic expression of certain genes, via common regulatory elements such as non-coding RNAs and differentially methylated regions (DMRs) of DNA. We recently surveyed DNA methylation levels within four ICRs (H19-ICR, IGF2-DMR, KvDMR, and NESPAS-ICR) in whole-blood genomic DNA from 128 monozygotic (MZ) and 128 dizygotic (DZ) human twin pairs. Our analyses revealed high individual variation and intra-domain covariation in methylation levels across CpGs and emphasized the interaction between epigenetic variation and the underlying genetic sequence in a parent-of-origin fashion. Here, we extend our analysis to conduct two genome-wide screenings of single nucleotide polymorphisms (SNPs) underlying either intra-domain covariation or parent-of-origin-dependent association with methylation status at individual CpG sites located within ICRs. Although genome-wide significance was not surpassed due to sample size limitations, the most significantly associated SNPs found through multiple-trait genome-wide association (MQFAM) included the previously described rs10732516, which is located in the vicinity of the H19-ICR. Similarly, we identified an association between rs965808 and methylation status within the NESPAS-ICR. This SNP is positioned within an intronic region of the overlapping genes GNAS and GNAS-AS1, which are imprinted genes regulated by the NESPAS-ICR. Sixteen other SNPs located in regions apart from the analyzed regions displayed suggestive association with intra-domain methylation. Additionally, we identified 13 SNPs displaying parent-of-origin association with individual methylation sites through family-based association testing. In this exploratory study, we show the value and feasibility of using alternative GWAS approaches in the study of the interaction between epigenetic state and genetic sequence within imprinting regulatory domains. Despite the relatively small sample size, we identified a number of SNPs displaying suggestive association either in a domain-wide or in a parent-of-origin fashion. Nevertheless, these associations will require future experimental validation or replication in larger and independent samples.


Subject(s)
DNA Methylation , Genome-Wide Association Study , Genomic Imprinting , Parents , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci , RNA, Long Noncoding/genetics , Twins/genetics , Adolescent , Adult , Child , Chromosome Mapping , Epigenesis, Genetic , Female , GTP-Binding Protein alpha Subunits, Gs/genetics , Humans , Insulin-Like Growth Factor II/genetics , Male , Potassium Channels, Voltage-Gated/genetics , Regulatory Sequences, Nucleic Acid , Young Adult
13.
Gynecol Oncol ; 124(3): 582-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22115852

ABSTRACT

OBJECTIVE: Altered DNA methylation patterns hold promise as cancer biomarkers. In this study we selected a panel of genes which are commonly methylated in a variety of cancers to evaluate their potential application as biomarkers for prognosis and diagnosis in high grade serous ovarian carcinoma (HGSOC); the most common and lethal subtype of ovarian cancer. METHODS: The methylation patterns of 10 genes (BRCA1, EN1, DLEC1, HOXA9, RASSF1A, GATA4, GATA5, HSULF1, CDH1, SFN) were examined and compared in a cohort of 80 primary HGSOC and 12 benign ovarian surface epithelium (OSE) samples using methylation-specific headloop suppression PCR. RESULTS: The genes were variably methylated in primary HGSOC, with HOXA9 methylation observed in 95% of cases. Most genes were rarely methylated in benign OSE, with the exception of SFN which was methylated in all HGSOC and benign OSE samples examined. Methylation of DLEC1 was associated with disease recurrence, independent of tumor stage and suboptimal surgical debulking (HR 3.5 (95% CI:1.10-11.07), p=0.033). A combination of the methylation status of HOXA9 and EN1 could discriminate HGSOC from benign OSE with a sensitivity of 98.8% and a specificity of 91.7%, which increased to 100% sensitivity with no loss of specificity when pre-operative CA125 levels were also incorporated. CONCLUSIONS: This study provides further evidence to support the feasibility of detecting altered DNA methylation patterns as a potential diagnostic and prognostic approach for HGSOC.


Subject(s)
Cystadenocarcinoma, Serous/genetics , DNA Methylation , Ovarian Neoplasms/genetics , Cohort Studies , Cystadenocarcinoma, Serous/pathology , Female , Homeodomain Proteins/genetics , Humans , Middle Aged , Neoplasm Grading , Ovarian Neoplasms/pathology , Polymerase Chain Reaction/methods , Survival Rate , Tumor Suppressor Proteins/genetics
14.
BMC Genomics ; 12: 54, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21255435

ABSTRACT

BACKGROUND: Cancer is commonly associated with widespread disruption of DNA methylation, chromatin modification and miRNA expression. In this study, we established a robust discovery pipeline to identify epigenetically deregulated miRNAs in cancer. RESULTS: Using an integrative approach that combines primary transcription, genome-wide DNA methylation and H3K9Ac marks with microRNA (miRNA) expression, we identified miRNA genes that were epigenetically modified in cancer. We find miR-205, miR-21, and miR-196b to be epigenetically repressed, and miR-615 epigenetically activated in prostate cancer cells. CONCLUSIONS: We show that detecting changes in primary miRNA transcription levels is a valuable method for detection of local epigenetic modifications that are associated with changes in mature miRNA expression.


Subject(s)
Epigenesis, Genetic/genetics , MicroRNAs/genetics , Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Humans
15.
Bioinformatics ; 26(13): 1662-3, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20457667

ABSTRACT

SUMMARY: Epigenetics, the study of heritable somatic phenotypic changes not related to DNA sequence, has emerged as a critical component of the landscape of gene regulation. The epigenetic layers, such as DNA methylation, histone modifications and nuclear architecture are now being extensively studied in many cell types and disease settings. Few software tools exist to summarize and interpret these datasets. We have created a toolbox of procedures to interrogate and visualize epigenomic data (both array- and sequencing-based) and make available a software package for the cross-platform R language. AVAILABILITY: The package is freely available under LGPL from the R-Forge web site (http://repitools.r-forge.r-project.org/) CONTACT: mrobinson@wehi.edu.au.


Subject(s)
Epigenesis, Genetic , Genomics/methods , Software , DNA Methylation , Histones/analysis , Histones/metabolism , Oligonucleotide Array Sequence Analysis
16.
J Clin Invest ; 131(3)2021 02 01.
Article in English | MEDLINE | ID: mdl-33290277

ABSTRACT

Inborn errors of immunity cause monogenic immune dysregulatory conditions such as severe and recurrent pathogen infection, inflammation, allergy, and malignancy. Somatic reversion refers to the spontaneous repair of a pathogenic germline genetic variant and has been reported to occur in a number of inborn errors of immunity, with a range of impacts on clinical outcomes of these conditions. DOCK8 deficiency due to biallelic inactivating mutations in DOCK8 causes a combined immunodeficiency characterized by severe bacterial, viral, and fungal infections, as well as allergic disease and some cancers. Here, we describe the clinical, genetic, and cellular features of 3 patients with biallelic DOCK8 variants who, following somatic reversion in multiple lymphocyte subsets, exhibited improved clinical features, including complete resolution of infection and allergic disease, and cure over time. Acquisition of DOCK8 expression restored defective lymphocyte signalling, survival and proliferation, as well as CD8+ T cell cytotoxicity, CD4+ T cell cytokine production, and memory B cell generation compared with typical DOCK8-deficient patients. Our temporal analysis of DOCK8-revertant and DOCK8-deficient cells within the same individual established mechanisms of clinical improvement in these patients following somatic reversion and revealed further nonredundant functions of DOCK8 in human lymphocyte biology. Last, our findings have significant implications for future therapeutic options for the treatment of DOCK8 deficiency.


Subject(s)
Cell Differentiation , Guanine Nucleotide Exchange Factors/deficiency , Immunologic Memory/genetics , Lymphocyte Activation/genetics , Lymphocytes/immunology , Severe Combined Immunodeficiency , Adult , Cell Differentiation/genetics , Cell Differentiation/immunology , Female , Humans , Male , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology
17.
Nat Commun ; 11(1): 54, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31911579

ABSTRACT

The architectural protein CTCF is a mediator of chromatin conformation, but how CTCF binding to DNA is orchestrated to maintain long-range gene expression is poorly understood. Here we perform RNAi knockdown to reduce CTCF levels and reveal a shared subset of CTCF-bound sites are robustly resistant to protein depletion. The 'persistent' CTCF sites are enriched at domain boundaries and chromatin loops constitutive to all cell types. CRISPR-Cas9 deletion of 2 persistent CTCF sites at the boundary between a long-range epigenetically active (LREA) and silenced (LRES) region, within the Kallikrein (KLK) locus, results in concordant activation of all 8 KLK genes within the LRES region. CTCF genome-wide depletion results in alteration in Topologically Associating Domain (TAD) structure, including the merging of TADs, whereas TAD boundaries are not altered where persistent sites are maintained. We propose that the subset of essential CTCF sites are involved in cell-type constitutive, higher order chromatin architecture.


Subject(s)
CCCTC-Binding Factor/metabolism , Chromatin/metabolism , Epigenesis, Genetic , Binding Sites , CCCTC-Binding Factor/genetics , Chromatin/chemistry , Chromatin/genetics , DNA/genetics , DNA/metabolism , Humans , Promoter Regions, Genetic , Protein Binding , Protein Domains
18.
Nat Commun ; 11(1): 435, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974348

ABSTRACT

Population health research is increasingly focused on the genetic determinants of healthy ageing, but there is no public resource of whole genome sequences and phenotype data from healthy elderly individuals. Here we describe the first release of the Medical Genome Reference Bank (MGRB), comprising whole genome sequence and phenotype of 2570 elderly Australians depleted for cancer, cardiovascular disease, and dementia. We analyse the MGRB for single-nucleotide, indel and structural variation in the nuclear and mitochondrial genomes. MGRB individuals have fewer disease-associated common and rare germline variants, relative to both cancer cases and the gnomAD and UK Biobank cohorts, consistent with risk depletion. Age-related somatic changes are correlated with grip strength in men, suggesting blood-derived whole genomes may also provide a biologic measure of age-related functional deterioration. The MGRB provides a broadly applicable reference cohort for clinical genetics and genomic association studies, and for understanding the genetics of healthy ageing.


Subject(s)
Databases, Genetic , Genetic Variation , Genome, Human , Aged , Aged, 80 and over , Cohort Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Healthy Volunteers , Humans , Male , Middle Aged , Mitochondria/genetics , Neoplasms/genetics , Physical Functional Performance , Polymorphism, Single Nucleotide , Whole Genome Sequencing
19.
Nucleic Acids Res ; 35(18): e119, 2007.
Article in English | MEDLINE | ID: mdl-17855397

ABSTRACT

CpG methylation is a key component of the epigenome architecture that is associated with changes in gene expression without a change to the DNA sequence. Since the first reports on deregulation of DNA methylation, in diseases such as cancer, and the initiation of the Human Epigenome Project, an increasing need has arisen for a detailed, high-throughput and quantitative method of analysis to discover and validate normal and aberrant DNA methylation profiles in large sample cohorts. Here we present an improved protocol using base-specific fragmentation and MALDI-TOF mass spectrometry that enables a sensitive and high-throughput method of DNA methylation analysis, quantitative to 5% methylation for each informative CpG residue. We have determined the accuracy, variability and sensitivity of the protocol, implemented critical improvements in experimental design and interpretation of the data and developed a new formula to accurately measure CpG methylation. Key innovations now permit determination of differential and allele-specific methylation, such as in cancer and imprinting. The new protocol is ideally suitable for detailed DNA methylation analysis of multiple genomic regions and large sample cohorts that is critical for comprehensive profiling of normal and diseased human epigenomes.


Subject(s)
Alleles , CpG Islands , DNA Methylation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Genomics/methods , Humans , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Ribonuclease, Pancreatic , Sulfites/chemistry , Templates, Genetic , Transcription, Genetic
20.
Sci Rep ; 9(1): 9511, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31266983

ABSTRACT

Adipocytes support key metabolic and endocrine functions of adipose tissue. Lipid is stored in two major classes of depots, namely visceral adipose (VA) and subcutaneous adipose (SA) depots. Increased visceral adiposity is associated with adverse health outcomes, whereas the impact of SA tissue is relatively metabolically benign. The precise molecular features associated with the functional differences between the adipose depots are still not well understood. Here, we characterised transcriptomes and methylomes of isolated adipocytes from matched SA and VA tissues of individuals with normal BMI to identify epigenetic differences and their contribution to cell type and depot-specific function. We found that DNA methylomes were notably distinct between different adipocyte depots and were associated with differential gene expression within pathways fundamental to adipocyte function. Most striking differential methylation was found at transcription factor and developmental genes. Our findings highlight the importance of developmental origins in the function of different fat depots.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Intra-Abdominal Fat/metabolism , Subcutaneous Fat/metabolism , Transcriptome , Adipocytes/cytology , Adipocytes/metabolism , Adult , Binding Sites , Body Mass Index , Down-Regulation , Female , Gene Expression Regulation, Developmental , Humans , Intra-Abdominal Fat/cytology , Middle Aged , Regulatory Elements, Transcriptional , Subcutaneous Fat/cytology , Transcription Factors/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL