Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Cell ; 183(2): 474-489.e17, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33035451

ABSTRACT

Mg2+ is the most abundant divalent cation in metazoans and an essential cofactor for ATP, nucleic acids, and countless metabolic enzymes. To understand how the spatio-temporal dynamics of intracellular Mg2+ (iMg2+) are integrated into cellular signaling, we implemented a comprehensive screen to discover regulators of iMg2+ dynamics. Lactate emerged as an activator of rapid release of Mg2+ from endoplasmic reticulum (ER) stores, which facilitates mitochondrial Mg2+ (mMg2+) uptake in multiple cell types. We demonstrate that this process is remarkably temperature sensitive and mediated through intracellular but not extracellular signals. The ER-mitochondrial Mg2+ dynamics is selectively stimulated by L-lactate. Further, we show that lactate-mediated mMg2+ entry is facilitated by Mrs2, and point mutations in the intermembrane space loop limits mMg2+ uptake. Intriguingly, suppression of mMg2+ surge alleviates inflammation-induced multi-organ failure. Together, these findings reveal that lactate mobilizes iMg2+ and links the mMg2+ transport machinery with major metabolic feedback circuits and mitochondrial bioenergetics.


Subject(s)
Endoplasmic Reticulum/metabolism , Lactic Acid/metabolism , Magnesium/metabolism , Animals , COS Cells , Calcium/metabolism , Calcium Signaling/physiology , Chlorocebus aethiops , Endoplasmic Reticulum/physiology , Female , HeLa Cells , Hep G2 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism
2.
Mol Cell ; 84(7): 1321-1337.e11, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38513662

ABSTRACT

Intracellular Mg2+ (iMg2+) is bound with phosphometabolites, nucleic acids, and proteins in eukaryotes. Little is known about the intracellular compartmentalization and molecular details of Mg2+ transport into/from cellular organelles such as the endoplasmic reticulum (ER). We found that the ER is a major iMg2+ compartment refilled by a largely uncharacterized ER-localized protein, TMEM94. Conventional and AlphaFold2 predictions suggest that ERMA (TMEM94) is a multi-pass transmembrane protein with large cytosolic headpiece actuator, nucleotide, and phosphorylation domains, analogous to P-type ATPases. However, ERMA uniquely combines a P-type ATPase domain and a GMN motif for ERMg2+ uptake. Experiments reveal that a tyrosine residue is crucial for Mg2+ binding and activity in a mechanism conserved in both prokaryotic (mgtB and mgtA) and eukaryotic Mg2+ ATPases. Cardiac dysfunction by haploinsufficiency, abnormal Ca2+ cycling in mouse Erma+/- cardiomyocytes, and ERMA mRNA silencing in human iPSC-cardiomyocytes collectively define ERMA as an essential component of ERMg2+ uptake in eukaryotes.


Subject(s)
Adenosine Triphosphatases , P-type ATPases , Animals , Mice , Humans , Adenosine Triphosphatases/metabolism , Membrane Transport Proteins/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Biological Transport , P-type ATPases/metabolism , Calcium/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases
3.
Proc Natl Acad Sci U S A ; 121(21): e2318874121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753510

ABSTRACT

The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.


Subject(s)
Calcium , Endoplasmic Reticulum , Molecular Dynamics Simulation , Neoplasm Proteins , ORAI1 Protein , Protein Multimerization , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/chemistry , Humans , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/chemistry , Endoplasmic Reticulum/metabolism , Calcium/metabolism , ORAI1 Protein/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/chemistry , Protein Domains , HEK293 Cells , Binding Sites , Protein Binding
4.
J Cell Sci ; 137(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38533727

ABSTRACT

Connexins are channel-forming proteins that function to facilitate gap junctional intercellular communication. Here, we use dual cell voltage clamp and dye transfer studies to corroborate past findings showing that Cx31.1 (encoded by GJB5) is defective in gap junction channel formation, illustrating that Cx31.1 alone does not form functional gap junction channels in connexin-deficient mammalian cells. Rather Cx31.1 transiently localizes to the secretory pathway with a subpopulation reaching the cell surface, which is rarely seen in puncta reminiscent of gap junctions. Intracellular retained Cx31.1 was subject to degradation as Cx31.1 accumulated in the presence of proteasomal inhibition, had a faster turnover when Cx43 was present and ultimately reached lysosomes. Although intracellularly retained Cx31.1 was found to interact with Cx43, this interaction did not rescue its delivery to the cell surface. Conversely, the co-expression of Cx31 dramatically rescued the assembly of Cx31.1 into gap junctions where gap junction-mediated dye transfer was enhanced. Collectively, our results indicate that the localization and functional status of Cx31.1 is altered through selective interplay with co-expressed connexins, perhaps suggesting Cx31.1 is a key regulator of intercellular signaling in keratinocytes.


Subject(s)
Connexins , Animals , Cell Communication/physiology , Connexin 43/genetics , Connexin 43/metabolism , Connexins/genetics , Connexins/metabolism , Gap Junctions/metabolism , Ion Channels/metabolism , Keratinocytes/metabolism , Mammals/metabolism , Humans
5.
Mol Cell ; 65(6): 1014-1028.e7, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28262504

ABSTRACT

Ca2+ dynamics and oxidative signaling are fundamental mechanisms for mitochondrial bioenergetics and cell function. The MCU complex is the major pathway by which these signals are integrated in mitochondria. Whether and how these coactive elements interact with MCU have not been established. As an approach toward understanding the regulation of MCU channel by oxidative milieu, we adapted inflammatory and hypoxia models. We identified the conserved cysteine 97 (Cys-97) to be the only reactive thiol in human MCU that undergoes S-glutathionylation. Furthermore, biochemical, structural, and superresolution imaging analysis revealed that MCU oxidation promotes MCU higher order oligomer formation. Both oxidation and mutation of MCU Cys-97 exhibited persistent MCU channel activity with higher [Ca2+]m uptake rate, elevated mROS, and enhanced [Ca2+]m overload-induced cell death. In contrast, these effects were largely independent of MCU interaction with its regulators. These findings reveal a distinct functional role for Cys-97 in ROS sensing and regulation of MCU activity.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling , Calcium/metabolism , Endothelial Cells/metabolism , Ion Channel Gating , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Reactive Oxygen Species/metabolism , Animals , COS Cells , Calcium Channels/chemistry , Calcium Channels/genetics , Calcium Signaling/drug effects , Cell Death , Cell Hypoxia , Chlorocebus aethiops , Cysteine , Endothelial Cells/drug effects , Endothelial Cells/pathology , Energy Metabolism , Glutathione/metabolism , HEK293 Cells , HeLa Cells , Humans , Ion Channel Gating/drug effects , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/drug effects , Mitochondria/pathology , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/pathology , Mutation , Oxidation-Reduction , Protein Multimerization , Protein Processing, Post-Translational , Protein Structure, Quaternary , Structure-Activity Relationship , Thrombin/pharmacology , Time Factors , Transfection
6.
Am J Physiol Cell Physiol ; 326(2): C414-C428, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38145302

ABSTRACT

The human lens is an avascular organ, and its transparency is dependent on gap junction (GJ)-mediated microcirculation. Lens GJs are composed of three connexins with Cx46 and Cx50 being expressed in lens fiber cells and Cx43 and Cx50 in the epithelial cells. Impairment of GJ communication by either Cx46 or Cx50 mutations has been shown to be one of the main molecular mechanisms of congenital cataracts in mutant carrier families. The docking compatibility and formation of functional heterotypic GJs for human lens connexins have not been studied. Previous study on rodent lens connexins revealed that Cx46 can form functional heterotypic GJs with Cx50 and Cx43, but Cx50 cannot form heterotypic GJ with Cx43 due to its second extracellular (EL2) domain. To study human lens connexin docking and formation of functional heterotypic GJs, we developed a genetically engineered HEK293 cell line with endogenously expressed Cx43 and Cx45 ablated. The human lens connexins showed docking compatibility identical to those found in the rodent connexins. To reveal the structural mechanisms of the docking incompatibility between Cx50 and Cx43, we designed eight variants based on the differences between the EL2 of Cx50 and Cx46. We found that Cx50I177L is sufficient to establish heterotypic docking with Cx43 with some interesting gating properties. Our structure models indicate this residue is important for interdomain interactions within a single connexin, Cx50 I177L showed an increased interdomain interaction which might alter the docking interface structure to be compatible with Cx43.NEW & NOTEWORTHY The human lens is an avascular organ, and its transparency is partially dependent on gap junction (GJ) network composed of Cx46, Cx50, and Cx43. We found that human Cx46 can dock and form functional heterotypic GJs with Cx50 and Cx43, but Cx50 is unable to form functional heterotypic GJs with Cx43. Through mutagenesis and patch-clamp study of several designed variants, we found that Cx50 I177L was sufficient to form functional heterotypic GJs with Cx43.


Subject(s)
Connexin 43 , Lens, Crystalline , Humans , Connexin 43/genetics , Connexin 43/metabolism , HEK293 Cells , Gap Junctions/metabolism , Connexins/genetics , Connexins/metabolism , Ion Channels/metabolism , Lens, Crystalline/metabolism
7.
J Physiol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857425

ABSTRACT

Increased malignancy and poor treatability associated with solid tumour cancers have commonly been attributed to mitochondrial calcium (Ca2+) dysregulation. The mitochondrial Ca2+ uniporter complex (mtCU) is the predominant mode of Ca2+ uptake into the mitochondrial matrix. The main components of mtCU are the pore-forming mitochondrial Ca2+ uniporter (MCU) subunit, MCU dominant-negative beta (MCUb) subunit, essential MCU regulator (EMRE) and the gatekeeping mitochondrial Ca2+ uptake 1 and 2 (MICU1 and MICU2) proteins. In this review, we describe mtCU-mediated mitochondrial Ca2+ dysregulation in solid tumour cancer types, finding enhanced mtCU activity observed in colorectal cancer, breast cancer, oral squamous cell carcinoma, pancreatic cancer, hepatocellular carcinoma and embryonal rhabdomyosarcoma. By contrast, decreased mtCU activity is associated with melanoma, whereas the nature of mtCU dysregulation remains unclear in glioblastoma. Furthermore, we show that numerous polymorphisms associated with cancer may alter phosphorylation sites on the pore forming MCU and MCUb subunits, which cluster at interfaces with EMRE. We highlight downstream/upstream biomolecular modulators of MCU and MCUb that alter mtCU-mediated mitochondrial Ca2+ uptake and may be used as biomarkers or to aid in the development of novel cancer therapeutics. Additionally, we provide an overview of the current small molecule inhibitors of mtCU that interact with the Asp residue of the critical Asp-Ile-Met-Glu motif or through other allosteric regulatory mechanisms to block Ca2+ permeation. Finally, we describe the relationship between MCU- and MCUb-mediating microRNAs and mitochondrial Ca2+ uptake that should be considered in the discovery of new treatment approaches for cancer.

8.
FASEB J ; 37(1): e22678, 2023 01.
Article in English | MEDLINE | ID: mdl-36538269

ABSTRACT

Mitochondrial calcium (Ca2+ ) regulation is critically implicated in the regulation of bioenergetics and cell fate. Ca2+ , a universal signaling ion, passively diffuses into the mitochondrial intermembrane space (IMS) through voltage-dependent anion channels (VDAC), where uptake into the matrix is tightly regulated across the inner mitochondrial membrane (IMM) by the mitochondrial Ca2+ uniporter complex (mtCU). In recent years, immense progress has been made in identifying and characterizing distinct structural and physiological mechanisms of mtCU component function. One of the main regulatory components of the Ca2+ selective mtCU channel is the mitochondrial Ca2+ uniporter dominant-negative beta subunit (MCUb). The structural mechanisms underlying the inhibitory effect(s) exerted by MCUb are poorly understood, despite high homology to the main mitochondrial Ca2+ uniporter (MCU) channel-forming subunits. In this review, we provide an overview of the structural differences between MCUb and MCU, believed to contribute to the inhibition of mitochondrial Ca2+ uptake. We highlight the possible structural rationale for the absent interaction between MCUb and the mitochondrial Ca2+ uptake 1 (MICU1) gatekeeping subunit and a potential widening of the pore upon integration of MCUb into the channel. We discuss physiological and pathophysiological information known about MCUb, underscoring implications in cardiac function and arrhythmia as a basis for future therapeutic discovery. Finally, we discuss potential post-translational modifications on MCUb as another layer of important regulation.


Subject(s)
Calcium Channels , Calcium , Calcium/metabolism , Calcium Channels/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Biological Transport , Mitochondrial Membrane Transport Proteins/metabolism
9.
Biochem J ; 480(14): 1051-1077, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37395717

ABSTRACT

Connexins form intercellular communication channels, known as gap junctions (GJs), in many tissues/organs. Mutations in connexin genes are found to be linked to various inherited diseases, but the mechanisms are not fully clear. The Arg76 (R76) in Cx50 is fully conserved across the entire connexin family and is a hotspot for five connexin-linked inherited diseases, including Cx50 and Cx46-linked congenital cataract, Cx43-linked oculodentodigital dysplasia, and Cx45-linked cardiac arrhythmias. To better understand the molecular and cellular mechanism of dysfunction caused by R76/75 mutations, we examined the functional status and properties of GJs containing R76 mutations in Cx50 (R76H/C), Cx43 (R76H/S/C), and Cx45 (R75H) with an emphasis on heterotypic GJs in connexin-deficient model cells. All tested mutants showed an impairment of homotypic GJ function reflected by a decreased coupling% and conductance, except for Cx43 R76H/S. These connexin mutants also showed impaired GJ function when paired with a docking-compatible connexin, such as Cx50/Cx46 or Cx45/Cx43, except for all mutants on Cx43 which formed functional heterotypic GJs with Cx45. Localization studies on fluorescent protein tagged connexin mutants revealed that Cx45 R75H and Cx43 R76C showed impaired localization. Our homology structure models indicated that mutations of R76/75 in these GJs led to a loss of intra- and/or inter-connexin non-covalent interactions (salt bridges) at the sidechain of this residue, which could contribute to the observed GJ impairments underlying diseases. It is interesting that unlike those disease-linked variants in Cx50 and Cx45, Cx43 can tolerate some variations at R76.


Subject(s)
Gap Junctions , Ion Channel Gating , Gap Junctions/genetics , Gap Junctions/metabolism , Connexins/genetics , Connexins/metabolism , Kinetics
10.
J Cell Sci ; 134(3)2021 02 10.
Article in English | MEDLINE | ID: mdl-33468626

ABSTRACT

Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation, and stromal interaction molecule-1 (STIM1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) conformational change and enhanced SERCA pump activity leading to increased store-operated Ca2+ entry (SOCE). In pancreatic AR42J cells expressing the p.E152K variant, Ca2+ signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Calcium Signaling , Neoplasm Proteins , Pancreatitis, Chronic , Stromal Interaction Molecule 1 , Calcium/metabolism , Calcium Signaling/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , Mutation/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein/metabolism , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism
11.
Cell ; 135(1): 110-22, 2008 Oct 03.
Article in English | MEDLINE | ID: mdl-18854159

ABSTRACT

Stromal interaction molecule-1 (STIM1) activates store-operated Ca2+ entry (SOCE) in response to diminished luminal Ca2+ levels. Here, we present the atomic structure of the Ca2+-sensing region of STIM1 consisting of the EF-hand and sterile alpha motif (SAM) domains (EF-SAM). The canonical EF-hand is paired with a previously unidentified EF-hand. Together, the EF-hand pair mediates mutually indispensable hydrophobic interactions between the EF-hand and SAM domains. Structurally critical mutations in the canonical EF-hand, "hidden" EF-hand, or SAM domain disrupt Ca2+ sensitivity in oligomerization via destabilization of the entire EF-SAM entity. In mammalian cells, EF-SAM destabilization mutations within full-length STIM1 induce punctae formation and activate SOCE independent of luminal Ca2+. We provide atomic resolution insight into the molecular basis for STIM1-mediated SOCE initiation and show that the folded/unfolded state of the Ca2+-sensing region of STIM is crucial to SOCE regulation.


Subject(s)
Membrane Proteins/chemistry , Membrane Proteins/metabolism , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Amino Acid Sequence , Animals , Calcium Signaling/genetics , DNA Mutational Analysis , EF Hand Motifs , HeLa Cells , Humans , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Sequence Alignment , Stromal Interaction Molecule 1
12.
J Virol ; 95(16): e0058821, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34037423

ABSTRACT

Serine incorporator 5 (SERINC5) reduces the infectivity of progeny HIV-1 virions by incorporating into the outer host-derived viral membrane during egress. To counter SERINC5, the HIV-1 accessory protein Nef triggers SERINC5 internalization by engaging the adaptor protein 2 (AP-2) complex using the [D/E]xxxL[L/I]167 Nef dileucine motif. Nef also engages AP-2 via its dileucine motif to downregulate the CD4 receptor. Although these two Nef functions are related, the mechanisms governing SERINC5 downregulation are incompletely understood. Here, we demonstrate that two primary Nef isolates, referred to as 2410 and 2391 Nef, acquired from acutely HIV-1 infected women from Zimbabwe, both downregulate CD4 from the cell surface. However, only 2410 Nef retains the ability to downregulate cell surface SERINC5. Using a series of Nef chimeras, we mapped the region of 2391 Nef responsible for the functional uncoupling of these two antagonistic pathways to the dileucine motif. Modifications of the first and second x positions of the 2410 Nef dileucine motif to asparagine and aspartic acid residues, respectively (ND164), impaired cell surface SERINC5 downregulation, which resulted in reduced infectious virus yield in the presence of SERINC5. The ND164 mutation additionally partially impaired, but did not completely abrogate, Nef-mediated cell surface CD4 downregulation. Furthermore, the patient infected with HIV-1 encoding 2391 Nef had stable CD4+ T cell counts, whereas infection with HIV-1 encoding 2410 Nef resulted in CD4+ T cell decline and disease progression. IMPORTANCE A contributing factor to HIV-1 persistence is evasion of the host immune response. HIV-1 uses the Nef accessory protein to evade the antiviral roles of the adaptive and intrinsic innate immune responses. Nef targets SERINC5, a restriction factor which potently impairs HIV-1 infection by triggering SERINC5 removal from the cell surface. The molecular determinants underlying this Nef function remain incompletely understood. Recent studies have found a correlation between the extent of Nef-mediated SERINC5 downregulation and the rate of disease progression. Furthermore, single-residue polymorphisms outside the known Nef functional motifs can modulate SERINC5 downregulation. The identification of a naturally occurring Nef polymorphism impairing SERINC5 downregulation in this study supports a link between Nef downregulation of SERINC5 and the rate of plasma CD4+ T cell decline. Moreover, the observed functional impairments of this polymorphism could provide clues to further elucidate unknown aspects of the SERINC5 antagonistic pathway via Nef.


Subject(s)
CD4 Antigens/metabolism , HIV Infections/virology , HIV-1/pathogenicity , Membrane Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/physiology , Amino Acid Motifs , CD4-Positive T-Lymphocytes/pathology , Disease Progression , Down-Regulation , Female , HIV Infections/metabolism , HIV-1/genetics , Humans , Mutation , Polymorphism, Genetic , Virion , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism
13.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232905

ABSTRACT

Lens gap junctions (GJs) formed by Cx46 and Cx50 are important to keep lens transparency. Functional studies on Cx46 and Cx50 GJs showed that the Vj-gating, single channel conductance (γj), gating polarity, and/or channel open stability could be modified by the charged residues in the amino terminal (NT) domain. The role of hydrophobic residues in the NT on GJ properties is not clear. Crystal and cryo-EM GJ structures have been resolved, but the NT domain structure has either not been resolved or has showed very different orientations depending on the component connexins and possibly other experimental conditions, making it difficult to understand the structural basis of the NT in Vj-gating and γj. Here, we generated missense variants in Cx46 and Cx50 NT domains and studied their properties by recombinant expression and dual whole-cell patch clamp experiments on connexin-deficient N2A cells. The NT variants (Cx46 L10I, N13E, A14V, Q15N, and Cx50 I10L, E13N, V14A, N15Q) were all able to form functional GJs with similar coupling%, except Cx46 N13E, which showed a significantly reduced coupling%. The GJs of Cx46 N13E, A14V and Cx50 E13N, N15Q showed a reduced coupling conductance. Vj-gating of all the variant GJs were similar to the corresponding wild-type GJs except Cx46 L10I. The γj of Cx46 N13E, A14V, Cx50 E13N, and N15Q GJs was reduced to 51%, 82%, 87%, and 74%, respectively, as compared to their wild-type γjs. Structural models of Cx46 L10I and A14V predicted steric clashes between these residues and the TM2 residues, which might be partially responsible for our observed changes in GJ properties. To verify the importance of hydrophobic interactions, we generated a variant, Cx50 S89T, which also shows a steric clash and failed to form a functional GJ. Our experimental results and structure models indicate that hydrophobic interactions between the NT and TM2 domain are important for their Vj-gating, γj, and channel open stability in these and possibly other GJs.


Subject(s)
Gap Junctions , Ion Channel Gating , Connexins/metabolism , Gap Junctions/genetics , Gap Junctions/metabolism , Hydrophobic and Hydrophilic Interactions , Ion Channels/metabolism
14.
Am J Physiol Cell Physiol ; 320(4): C465-C482, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33296287

ABSTRACT

Calcium (Ca2+) signaling is critical for cell function and cell survival. Mitochondria play a major role in regulating the intracellular Ca2+ concentration ([Ca2+]i). Mitochondrial Ca2+ uptake is an important determinant of cell fate and governs respiration, mitophagy/autophagy, and the mitochondrial pathway of apoptosis. Mitochondrial Ca2+ uptake occurs via the mitochondrial Ca2+ uniporter (MCU) complex. This review summarizes the present knowledge on the function of MCU complex, regulation of MCU channel, and the role of MCU in Ca2+ homeostasis and human disease pathogenesis. The channel core consists of four MCU subunits and essential MCU regulators (EMRE). Regulatory proteins that interact with them include mitochondrial Ca2+ uptake 1/2 (MICU1/2), MCU dominant-negative ß-subunit (MCUb), MCU regulator 1 (MCUR1), and solute carrier 25A23 (SLC25A23). In addition to these proteins, cardiolipin, a mitochondrial membrane-specific phospholipid, has been shown to interact with the channel core. The dynamic interplay between the core and regulatory proteins modulates MCU channel activity after sensing local changes in [Ca2+]i, reactive oxygen species, and other environmental factors. Here, we highlight the structural details of the human MCU heteromeric assemblies and their known roles in regulating mitochondrial Ca2+ homeostasis. MCU dysfunction has been shown to alter mitochondrial Ca2+ dynamics, in turn eliciting cell apoptosis. Changes in mitochondrial Ca2+ uptake have been implicated in pathological conditions affecting multiple organs, including the heart, skeletal muscle, and brain. However, our structural and functional knowledge of this vital protein complex remains incomplete, and understanding the precise role for MCU-mediated mitochondrial Ca2+ signaling in disease requires further research efforts.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling , Energy Metabolism , Mitochondria/metabolism , Animals , Apoptosis , Calcium Channels/chemistry , Calcium Channels/drug effects , Calcium Channels/genetics , Calcium Signaling/drug effects , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Energy Metabolism/drug effects , Gene Expression Regulation , Humans , Membrane Potential, Mitochondrial , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Molecular Targeted Therapy , Muscular Diseases/drug therapy , Muscular Diseases/genetics , Muscular Diseases/metabolism , Muscular Diseases/pathology , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Protein Conformation , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
15.
J Biol Chem ; 295(8): 2520-2540, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31892516

ABSTRACT

Proteinase-activated receptor (PAR)-4 is a member of the proteolytically-activated PAR family of G-protein-coupled receptors (GPCR) that represents an important target in the development of anti-platelet therapeutics. PARs are activated by proteolytic cleavage of their receptor N terminus by enzymes such as thrombin, trypsin, and cathepsin-G. This reveals the receptor-activating motif, termed the tethered ligand that binds intramolecularly to the receptor and triggers signaling. However, PARs are also activated by exogenous application of synthetic peptides derived from the tethered-ligand sequence. To better understand the molecular basis for PAR4-dependent signaling, we examined PAR4-signaling responses to a peptide library derived from the canonical PAR4-agonist peptide, AYPGKF-NH2, and we monitored activation of the Gαq/11-coupled calcium-signaling pathway, ß-arrestin recruitment, and mitogen-activated protein kinase (MAPK) pathway activation. We identified peptides that are poor activators of PAR4-dependent calcium signaling but were fully competent in recruiting ß-arrestin-1 and -2. Peptides that were unable to stimulate PAR4-dependent calcium signaling could not trigger MAPK activation. Using in silico docking and site-directed mutagenesis, we identified Asp230 in the extracellular loop-2 as being critical for PAR4 activation by both agonist peptide and the tethered ligand. Probing the consequence of biased signaling on platelet activation, we found that a peptide that cannot activate calcium signaling fails to cause platelet aggregation, whereas a peptide that is able to stimulate calcium signaling and is more potent for ß-arrestin recruitment triggered greater levels of platelet aggregation compared with the canonical PAR4 agonist peptide. These findings uncover molecular determinants critical for agonist binding and biased signaling through PAR4.


Subject(s)
Receptors, Thrombin/metabolism , Signal Transduction , Thrombin/metabolism , Alanine/genetics , Amino Acid Substitution , Calcium/metabolism , Calcium Signaling , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , HEK293 Cells , Humans , Isomerism , MAP Kinase Signaling System , Methylation , Molecular Docking Simulation , Mutant Proteins/metabolism , Mutation/genetics , Peptides/metabolism , Phosphorylation , Platelet Aggregation , Receptors, Thrombin/agonists , Structural Homology, Protein , beta-Arrestins/metabolism
16.
Int J Mol Sci ; 22(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34360596

ABSTRACT

Twenty-one human genes encode connexins, a family of homologous proteins making gap junction (GJ) channels, which mediate direct intercellular communication to synchronize tissue/organ activities. Genetic variants in more than half of the connexin genes are associated with dozens of different Mendelian inherited diseases. With rapid advances in DNA sequencing technology, more variants are being identified not only in families and individuals with diseases but also in people in the general population without any apparent linkage to Mendelian inherited diseases. Nevertheless, it remains challenging to classify the pathogenicity of a newly identified connexin variant. Here, we analyzed the disease- and Genome Aggregation Database (gnomAD, as a proxy of the general population)-linked variants in the coding region of the four disease-linked α connexin genes. We found that the most abundant and position-sensitive missense variants showed distinct domain distribution preference between disease- and gnomAD-linked variants. Plotting missense variants on topological and structural models revealed that disease-linked missense variants are highly enriched on the structurally stable/resolved domains, especially the pore-lining domains, while the gnomAD-linked missense variants are highly enriched in the structurally unstable/unresolved domains, especially the carboxyl terminus. In addition, disease-linked variants tend to be on highly conserved residues and those positions show evolutionary co-variation, while the gnomAD-linked missense variants are likely on less conserved residue positions and on positions without co-variation. Collectively, the revealed distribution patterns of disease- and gnomAD-linked missense variants further our understanding of the GJ structure-biological function relationship, which is valuable for classifying the pathogenicity of newly identified connexin variants.


Subject(s)
Connexins/genetics , Databases, Genetic , Gap Junctions/genetics , Genetic Diseases, Inborn/pathology , Genetics, Population , Mutation, Missense , Amino Acid Sequence , Genetic Diseases, Inborn/genetics , Humans , Protein Domains , Sequence Homology
17.
Int J Mol Sci ; 21(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455637

ABSTRACT

Calcium (Ca2+) is a universal signaling ion that is essential for the life and death processes of all eukaryotes. In humans, numerous cell stimulation pathways lead to the mobilization of sarco/endoplasmic reticulum (S/ER) stored Ca2+, resulting in the propagation of Ca2+ signals through the activation of processes, such as store-operated Ca2+ entry (SOCE). SOCE provides a sustained Ca2+ entry into the cytosol; moreover, the uptake of SOCE-mediated Ca2+ by mitochondria can shape cytosolic Ca2+ signals, function as a feedback signal for the SOCE molecular machinery, and drive numerous mitochondrial processes, including adenosine triphosphate (ATP) production and distinct cell death pathways. In recent years, tremendous progress has been made in identifying the proteins mediating these signaling pathways and elucidating molecular structures, invaluable for understanding the underlying mechanisms of function. Nevertheless, there remains a disconnect between using this accumulating protein structural knowledge and the design of new research tools and therapies. In this review, we provide an overview of the Ca2+ signaling pathways that are involved in mediating S/ER stored Ca2+ release, SOCE, and mitochondrial Ca2+ uptake, as well as pinpoint multiple levels of crosstalk between these pathways. Further, we highlight the significant protein structures elucidated in recent years controlling these Ca2+ signaling pathways. Finally, we describe a simple strategy that aimed at applying the protein structural data to initiating drug design.


Subject(s)
Calcium Signaling , Drug Discovery/methods , Animals , Calcium Channels/chemistry , Calcium Channels/metabolism , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Humans , Protein Binding
18.
J Biol Chem ; 293(23): 8900-8911, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29661937

ABSTRACT

Store-operated Ca2+ entry (SOCE) is a major Ca2+ signaling pathway facilitating extracellular Ca2+ influx in response to the initial release of intracellular endo/sarcoplasmic reticulum (ER/SR) Ca2+ stores. Stromal interaction molecule 1 (STIM1) is the Ca2+ sensor that activates SOCE following ER/SR Ca2+ depletion. The EF-hand and the adjacent sterile α-motif (EFSAM) domains of STIM1 are essential for detecting changes in luminal Ca2+ concentrations. Low ER Ca2+ levels trigger STIM1 destabilization and oligomerization, culminating in the opening of Orai1-composed Ca2+ channels on the plasma membrane. NO-mediated S-nitrosylation of cysteine thiols regulates myriad protein functions, but its effects on the structural mechanisms that regulate SOCE are unclear. Here, we demonstrate that S-nitrosylation of Cys49 and Cys56 in STIM1 enhances the thermodynamic stability of its luminal domain, resulting in suppressed hydrophobic exposure and diminished Ca2+ depletion-dependent oligomerization. Using solution NMR spectroscopy, we pinpointed a structural mechanism for STIM1 stabilization driven by complementary charge interactions between an electropositive patch on the core EFSAM domain and the S-nitrosylated nonconserved region of STIM1. Finally, using live cells, we found that the enhanced luminal domain stability conferred by either Cys49 and Cys56S-nitrosylation or incorporation of negatively charged residues into the EFSAM electropositive patch in the full-length STIM1 context significantly suppresses SOCE. Collectively, our results suggest that S-nitrosylation of STIM1 inhibits SOCE by interacting with an electropositive patch on the EFSAM core, which modulates the thermodynamic stability of the STIM1 luminal domain.


Subject(s)
Calcium/metabolism , Neoplasm Proteins/metabolism , Stromal Interaction Molecule 1/metabolism , Amino Acid Sequence , Calcium Signaling , Cysteine/chemistry , Cysteine/metabolism , EF Hand Motifs , HEK293 Cells , Humans , Models, Molecular , Neoplasm Proteins/chemistry , Nitroso Compounds/chemistry , Nitroso Compounds/metabolism , Protein Domains , Protein Stability , Sarcoplasmic Reticulum/metabolism , Sequence Alignment , Stromal Interaction Molecule 1/chemistry , Thermodynamics
19.
J Biol Chem ; 293(9): 3145-3155, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29326165

ABSTRACT

Low-conductance, highly calcium-selective channels formed by the Orai proteins exist as store-operated CRAC channels and store-independent, arachidonic acid-activated ARC channels. Both are activated by stromal interaction molecule 1 (STIM1), but CRAC channels are activated by STIM1 located in the endoplasmic reticulum membrane, whereas ARC channels are activated by the minor plasma membrane-associated pool of STIM1. Critically, maximally activated CRAC channel and ARC channel currents are completely additive within the same cell, and their selective activation results in their ability to each induce distinct cellular responses. We have previously shown that specific ARC channel activation requires a PKA-mediated phosphorylation of a single threonine residue (Thr389) within the cytoplasmic region of STIM1. Here, examination of the molecular basis of this phosphorylation-dependent activation revealed that phosphorylation of the Thr389 residue induces a significant structural change in the STIM1-Orai-activating region (SOAR) that interacts with the Orai proteins, and it is this change that determines the selective activation of the store-independent ARC channels versus the store-operated CRAC channels. In conclusion, our findings reveal the structural changes underlying the selective activation of STIM1-induced CRAC or ARC channels that determine the specific stimulation of these two functionally distinct Ca2+ entry pathways.


Subject(s)
Calcium Release Activated Calcium Channels/metabolism , Stromal Interaction Molecule 1/chemistry , Stromal Interaction Molecule 1/metabolism , Biological Transport , Calcium/metabolism , HEK293 Cells , Humans , Phosphorylation , Protein Domains
20.
Int J Mol Sci ; 20(2)2019 Jan 12.
Article in English | MEDLINE | ID: mdl-30642051

ABSTRACT

Mitochondrial calcium (Ca2+) uptake shapes cytosolic Ca2+ signals involved in countless cellular processes and more directly regulates numerous mitochondrial functions including ATP production, autophagy and apoptosis. Given the intimate link to both life and death processes, it is imperative that mitochondria tightly regulate intramitochondrial Ca2+ levels with a high degree of precision. Among the Ca2+ handling tools of mitochondria, the leucine zipper EF-hand containing transmembrane protein-1 (LETM1) is a transporter protein localized to the inner mitochondrial membrane shown to constitute a Ca2+/H⁺ exchanger activity. The significance of LETM1 to mitochondrial Ca2+ regulation is evident from Wolf-Hirschhorn syndrome patients that harbor a haplodeficiency in LETM1 expression, leading to dysfunctional mitochondrial Ca2+ handling and from numerous types of cancer cells that show an upregulation of LETM1 expression. Despite the significance of LETM1 to cell physiology and pathophysiology, the molecular mechanisms of LETM1 function remain poorly defined. In this review, we aim to provide an overview of the current understanding of LETM1 structure and function and pinpoint the knowledge gaps that need to be filled in order to unravel the underlying mechanistic basis for LETM1 function.


Subject(s)
Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasms/genetics , Wolf-Hirschhorn Syndrome/genetics , Calcium/metabolism , Calcium-Binding Proteins/chemistry , Haploinsufficiency , HeLa Cells , Humans , Membrane Proteins/chemistry , Mitochondria/metabolism , Models, Molecular , Neoplasms/metabolism , Protein Conformation , Up-Regulation , Wolf-Hirschhorn Syndrome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL