Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.203
Filter
Add more filters

Publication year range
1.
Cell ; 184(7): 1757-1774.e14, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33761328

ABSTRACT

The central pathogen-immune interface in tuberculosis is the granuloma, a complex host immune structure that dictates infection trajectory and physiology. Granuloma macrophages undergo a dramatic transition in which entire epithelial modules are induced and define granuloma architecture. In tuberculosis, relatively little is known about the host signals that trigger this transition. Using the zebrafish-Mycobacterium marinum model, we identify the basis of granuloma macrophage transformation. Single-cell RNA-sequencing analysis of zebrafish granulomas and analysis of Mycobacterium tuberculosis-infected macaques reveal that, even in the presence of robust type 1 immune responses, countervailing type 2 signals associate with macrophage epithelialization. We find that type 2 immune signaling, mediated via stat6, is absolutely required for epithelialization and granuloma formation. In mixed chimeras, stat6 acts cell autonomously within macrophages, where it is required for epithelioid transformation and incorporation into necrotic granulomas. These findings establish the signaling pathway that produces the hallmark structure of mycobacterial infection.


Subject(s)
Granuloma/pathology , Immunity/physiology , Mycobacterium Infections, Nontuberculous/pathology , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Differentiation , Disease Models, Animal , Epithelioid Cells/cytology , Epithelioid Cells/immunology , Epithelioid Cells/metabolism , Granuloma/immunology , Granuloma/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Interferon-gamma/metabolism , Interleukin-12/metabolism , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium marinum/isolation & purification , Mycobacterium marinum/physiology , Necrosis , RNA, Guide, Kinetoplastida/metabolism , Receptors, Interleukin-4/antagonists & inhibitors , Receptors, Interleukin-4/genetics , Receptors, Interleukin-4/metabolism , STAT6 Transcription Factor/antagonists & inhibitors , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism , Signal Transduction , Zebrafish/growth & development , Zebrafish/metabolism
2.
Cell ; 178(1): 216-228.e21, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31204103

ABSTRACT

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Protozoan/immunology , Erythrocytes/parasitology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adolescent , Adult , Animals , Binding Sites , Carrier Proteins/immunology , Cross Reactions/immunology , Epitopes/immunology , Female , HEK293 Cells , Healthy Volunteers , Humans , Malaria, Falciparum/parasitology , Male , Merozoites/physiology , Middle Aged , Plasmodium falciparum/metabolism , Protozoan Proteins/immunology , Rabbits , Rats , Rats, Sprague-Dawley , Young Adult
3.
Genes Dev ; 37(17-18): 779-780, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37821108

ABSTRACT

Imprinted gene clusters are confined genomic regions containing genes with parent-of-origin-dependent transcriptional activity. In this issue of Genes & Development, Loftus and colleagues (pp. 829-843) made use of an insightful combination of descriptive approaches, genetic manipulations, and epigenome-editing approaches to show that differences in nuclear topology precede the onset of imprinted expression at the Peg13-Kcnk9 locus. Furthermore, the investigators provide data in line with a model suggesting that parent-of-origin-specific topological differences could be responsible for parent-of-origin-specific enhancer activity and thus imprinted expression.


Subject(s)
DNA Methylation , Genomic Imprinting
4.
Physiol Rev ; 101(1): 177-211, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32525760

ABSTRACT

Given the large amount of genome-wide data that have been collected during the last decades, a good understanding of how and why cells change during development, homeostasis, and disease might be expected. Unfortunately, the opposite is true; triggers that cause cellular state changes remain elusive, and the underlying molecular mechanisms are poorly understood. Although genes with the potential to influence cell states are known, the historic dependency on methods that manipulate gene expression outside the endogenous chromatin context has prevented us from understanding how cells organize, interpret, and protect cellular programs. Fortunately, recent methodological innovations are now providing options to answer these outstanding questions, by allowing to target and manipulate individual genomic and epigenomic loci. In particular, three experimental approaches are now feasible due to DNA targeting tools, namely, activation and/or repression of master transcription factors in their endogenous chromatin context; targeting transcription factors to endogenous, alternative, or inaccessible sites; and finally, functional manipulation of the chromatin context. In this article, we discuss the molecular basis of DNA targeting tools and review the potential of these new technologies before we summarize how these have already been used for the manipulation of cellular states and hypothesize about future applications.


Subject(s)
CRISPR-Cas Systems , Cell Physiological Phenomena/physiology , Epigenesis, Genetic , Gene Editing , Genetic Engineering/methods , Physiology/methods , Animals , Epigenomics , Humans , Transcription, Genetic
5.
Nature ; 612(7940): 534-539, 2022 12.
Article in English | MEDLINE | ID: mdl-36477528

ABSTRACT

An effective vaccine is needed for the prevention and elimination of malaria. The only immunogens that have been shown to have a protective efficacy of more than 90% against human malaria are Plasmodium falciparum (Pf) sporozoites (PfSPZ) manufactured in mosquitoes (mPfSPZ)1-7. The ability to produce PfSPZ in vitro (iPfSPZ) without mosquitoes would substantially enhance the production of PfSPZ vaccines and mosquito-stage malaria research, but this ability is lacking. Here we report the production of hundreds of millions of iPfSPZ. iPfSPZ invaded human hepatocytes in culture and developed to mature liver-stage schizonts expressing P. falciparum merozoite surface protein 1 (PfMSP1) in numbers comparable to mPfSPZ. When injected into FRGhuHep mice containing humanized livers, iPfSPZ invaded the human hepatocytes and developed to PfMSP1-expressing late liver stage parasites at 45% the quantity of cryopreserved mPfSPZ. Human blood from FRGhuHep mice infected with iPfSPZ produced asexual and sexual erythrocytic-stage parasites in culture, and gametocytes developed to PfSPZ when fed to mosquitoes, completing the P. falciparum life cycle from infectious gametocyte to infectious gametocyte without mosquitoes or primates.


Subject(s)
Plasmodium falciparum , Sporozoites , Animals , Humans , Mice , Culicidae/parasitology , Malaria/parasitology , Malaria/prevention & control , Malaria Vaccines/biosynthesis , Malaria Vaccines/chemistry , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Sporozoites/growth & development , Sporozoites/pathogenicity , Hepatocytes/parasitology , Liver/parasitology , Merozoite Surface Protein 1 , Erythrocytes/parasitology , In Vitro Techniques
6.
Mol Cell ; 77(1): 17-25.e5, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31704183

ABSTRACT

Structural and biochemical studies have revealed the basic principles of how the replisome duplicates genomic DNA, but little is known about its dynamics during DNA replication. We reconstitute the 34 proteins needed to form the S. cerevisiae replisome and show how changing local concentrations of the key DNA polymerases tunes the ability of the complex to efficiently recycle these proteins or to dynamically exchange them. Particularly, we demonstrate redundancy of the Pol α-primase DNA polymerase activity in replication and show that Pol α-primase and the lagging-strand Pol δ can be re-used within the replisome to support the synthesis of large numbers of Okazaki fragments. This unexpected malleability of the replisome might allow it to deal with barriers and resource challenges during replication of large genomes.


Subject(s)
DNA Polymerase III/genetics , DNA Replication/genetics , DNA/genetics , Eukaryotic Cells/physiology , DNA Polymerase I/genetics , DNA Primase/genetics , Saccharomyces cerevisiae/genetics
7.
N Engl J Med ; 390(2): 107-117, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37952132

ABSTRACT

BACKGROUND: Subclinical atrial fibrillation is short-lasting and asymptomatic and can usually be detected only by long-term continuous monitoring with pacemakers or defibrillators. Subclinical atrial fibrillation is associated with an increased risk of stroke by a factor of 2.5; however, treatment with oral anticoagulation is of uncertain benefit. METHODS: We conducted a trial involving patients with subclinical atrial fibrillation lasting 6 minutes to 24 hours. Patients were randomly assigned in a double-blind, double-dummy design to receive apixaban at a dose of 5 mg twice daily (2.5 mg twice daily when indicated) or aspirin at a dose of 81 mg daily. The trial medication was discontinued and anticoagulation started if subclinical atrial fibrillation lasting more than 24 hours or clinical atrial fibrillation developed. The primary efficacy outcome, stroke or systemic embolism, was assessed in the intention-to-treat population (all the patients who had undergone randomization); the primary safety outcome, major bleeding, was assessed in the on-treatment population (all the patients who had undergone randomization and received at least one dose of the assigned trial drug, with follow-up censored 5 days after permanent discontinuation of trial medication for any reason). RESULTS: We included 4012 patients with a mean (±SD) age of 76.8±7.6 years and a mean CHA2DS2-VASc score of 3.9±1.1 (scores range from 0 to 9, with higher scores indicating a higher risk of stroke); 36.1% of the patients were women. After a mean follow-up of 3.5±1.8 years, stroke or systemic embolism occurred in 55 patients in the apixaban group (0.78% per patient-year) and in 86 patients in the aspirin group (1.24% per patient-year) (hazard ratio, 0.63; 95% confidence interval [CI], 0.45 to 0.88; P = 0.007). In the on-treatment population, the rate of major bleeding was 1.71% per patient-year in the apixaban group and 0.94% per patient-year in the aspirin group (hazard ratio, 1.80; 95% CI, 1.26 to 2.57; P = 0.001). Fatal bleeding occurred in 5 patients in the apixaban group and 8 patients in the aspirin group. CONCLUSIONS: Among patients with subclinical atrial fibrillation, apixaban resulted in a lower risk of stroke or systemic embolism than aspirin but a higher risk of major bleeding. (Funded by the Canadian Institutes of Health Research and others; ARTESIA ClinicalTrials.gov number, NCT01938248.).


Subject(s)
Anticoagulants , Aspirin , Atrial Fibrillation , Embolism , Stroke , Aged , Aged, 80 and over , Female , Humans , Male , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Aspirin/adverse effects , Aspirin/therapeutic use , Atrial Fibrillation/complications , Atrial Fibrillation/diagnosis , Canada , Embolism/etiology , Embolism/prevention & control , Hemorrhage/chemically induced , Pyridones/adverse effects , Stroke/etiology , Stroke/prevention & control , Treatment Outcome , Factor Xa Inhibitors/adverse effects , Factor Xa Inhibitors/therapeutic use , Double-Blind Method
8.
Immunity ; 49(1): 120-133.e9, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30005826

ABSTRACT

B lymphocytes can suppress immunity through interleukin (IL)-10 production in infectious, autoimmune, and malignant diseases. Here, we have identified a natural plasma cell subset that distinctively expresses the inhibitory receptor LAG-3 and mediates this function in vivo. These plasma cells also express the inhibitory receptors CD200, PD-L1, and PD-L2. They develop from various B cell subsets in a B cell receptor (BCR)-dependent manner independently of microbiota in naive mice. After challenge they upregulate IL-10 expression via a Toll-like receptor-driven mechanism within hours and without proliferating. This function is associated with a unique transcriptome and epigenome, including the lowest amount of DNA methylation at the Il10 locus compared to other B cell subsets. Their augmented accumulation in naive mutant mice with increased BCR signaling correlates with the inhibition of memory T cell formation and vaccine efficacy after challenge. These natural regulatory plasma cells may be of broad relevance for disease intervention.


Subject(s)
Antigens, CD/genetics , Gene Expression , Interleukin-10/biosynthesis , Plasma Cells/immunology , Animals , Antigens, CD/immunology , B-Lymphocyte Subsets/immunology , Epigenesis, Genetic , Female , Gene Expression Profiling , Interleukin-10/genetics , Lymphocyte Activation , Male , Mice , Plasma Cells/physiology , Receptors, Antigen, B-Cell/metabolism , Salmonella Infections, Animal/immunology , Signal Transduction , T-Lymphocytes/immunology , Toll-Like Receptors/metabolism , Up-Regulation/genetics , Vaccines/immunology , Lymphocyte Activation Gene 3 Protein
9.
Cell ; 150(2): 291-303, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22817892

ABSTRACT

NusG homologs regulate transcription and coupled processes in all living organisms. The Escherichia coli (E. coli) two-domain paralogs NusG and RfaH have conformationally identical N-terminal domains (NTDs) but dramatically different carboxy-terminal domains (CTDs), a ß barrel in NusG and an α hairpin in RfaH. Both NTDs interact with elongating RNA polymerase (RNAP) to reduce pausing. In NusG, NTD and CTD are completely independent, and NusG-CTD interacts with termination factor Rho or ribosomal protein S10. In contrast, RfaH-CTD makes extensive contacts with RfaH-NTD to mask an RNAP-binding site therein. Upon RfaH interaction with its DNA target, the operon polarity suppressor (ops) DNA, RfaH-CTD is released, allowing RfaH-NTD to bind to RNAP. Here, we show that the released RfaH-CTD completely refolds from an all-α to an all-ß conformation identical to that of NusG-CTD. As a consequence, RfaH-CTD binding to S10 is enabled and translation of RfaH-controlled operons is strongly potentiated. PAPERFLICK:


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Peptide Elongation Factors/chemistry , Peptide Elongation Factors/metabolism , Trans-Activators/chemistry , Trans-Activators/metabolism , Amino Acid Sequence , Escherichia coli/chemistry , Models, Molecular , Molecular Sequence Data , Operon , Protein Biosynthesis , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Ribosomal Proteins/metabolism , Sequence Alignment , Transcription Factors/chemistry , Transcription Factors/metabolism
10.
Proc Natl Acad Sci U S A ; 121(25): e2312499121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857395

ABSTRACT

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.


Subject(s)
Cell Differentiation , Phagocytes , Humans , Phagocytes/metabolism , Hematopoietic Stem Cells/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Leukemia/genetics , Leukemia/pathology , Leukemia/metabolism , Protein Engineering/methods , Phagocytosis
11.
Annu Rev Microbiol ; 75: 87-106, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34196569

ABSTRACT

Plasmodium vivax is the most widespread human malaria parasite, in part because it can form latent liver stages known as hypnozoites after transmission by female anopheline mosquitoes to human hosts. These persistent stages can activate weeks, months, or even years after the primary clinical infection; replicate; and initiate relapses of blood stage infection, which causes disease and recurring transmission. Eliminating hypnozoites is a substantial obstacle for malaria treatment and eradication since the hypnozoite reservoir is undetectable and unaffected by most antimalarial drugs. Importantly, in some parts of the globe where P. vivax malaria is endemic, as many as 90% of P. vivax blood stage infections are thought to be relapses rather than primary infections, rendering the hypnozoite a major driver of P. vivax epidemiology. Here, we review the biology of the hypnozoite and recent discoveries concerning this enigmatic parasite stage. We discuss treatment and prevention challenges, novel animal models to study hypnozoites and relapse, and hypotheses related to hypnozoite formation and activation.


Subject(s)
Malaria, Vivax , Malaria , Animals , Female , Liver/parasitology , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , Malaria, Vivax/prevention & control , Plasmodium vivax/physiology , Recurrence
12.
Immunity ; 47(6): 1197-1209.e10, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29195810

ABSTRACT

Antibodies against the NANP repeat of circumsporozoite protein (CSP), the major surface antigen of Plasmodium falciparum (Pf) sporozoites, can protect from malaria in animal models but protective humoral immunity is difficult to induce in humans. Here we cloned and characterized rare affinity-matured human NANP-reactive memory B cell antibodies elicited by natural Pf exposure that potently inhibited parasite transmission and development in vivo. We unveiled the molecular details of antibody binding to two distinct protective epitopes within the NANP repeat. NANP repeat recognition was largely mediated by germline encoded and immunoglobulin (Ig) heavy-chain complementarity determining region 3 (HCDR3) residues, whereas affinity maturation contributed predominantly to stabilizing the antigen-binding site conformation. Combined, our findings illustrate the power of exploring human anti-CSP antibody responses to develop tools for malaria control in the mammalian and the mosquito vector and provide a molecular basis for the structure-based design of next-generation CSP malaria vaccines.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Immunity, Humoral , Immunoglobulin Heavy Chains/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Animals , Antibodies, Protozoan/biosynthesis , Antibodies, Protozoan/chemistry , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , B-Lymphocytes/immunology , B-Lymphocytes/parasitology , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , Female , Gene Expression , Humans , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Heavy Chains/chemistry , Immunologic Memory , Malaria/immunology , Malaria/parasitology , Malaria/prevention & control , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Mice , Models, Molecular , Plasmodium berghei/immunology , Plasmodium falciparum/immunology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sporozoites/chemistry , Sporozoites/immunology
13.
Nature ; 586(7831): 757-762, 2020 10.
Article in English | MEDLINE | ID: mdl-33057194

ABSTRACT

De novo mutations in protein-coding genes are a well-established cause of developmental disorders1. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations1,2. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent-offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders.


Subject(s)
DNA Mutational Analysis , Data Analysis , Databases, Genetic , Datasets as Topic , Delivery of Health Care/statistics & numerical data , Developmental Disabilities/genetics , Genetic Diseases, Inborn/genetics , Cohort Studies , DNA Copy Number Variations/genetics , Developmental Disabilities/diagnosis , Europe , Female , Genetic Diseases, Inborn/diagnosis , Germ-Line Mutation/genetics , Haploinsufficiency/genetics , Humans , Male , Mutation, Missense/genetics , Penetrance , Perinatal Death , Sample Size
14.
Mol Microbiol ; 121(3): 394-412, 2024 03.
Article in English | MEDLINE | ID: mdl-37314965

ABSTRACT

Plasmodium parasites, the eukaryotic pathogens that cause malaria, feature three distinct invasive forms tailored to the host environment they must navigate and invade for life cycle progression. One conserved feature of these invasive forms is the micronemes, apically oriented secretory organelles involved in egress, motility, adhesion, and invasion. Here we investigate the role of GPI-anchored micronemal antigen (GAMA), which shows a micronemal localization in all zoite forms of the rodent-infecting species Plasmodium berghei. ∆GAMA parasites are severely defective for invasion of the mosquito midgut. Once formed, oocysts develop normally, however, sporozoites are unable to egress and exhibit defective motility. Epitope-tagging of GAMA revealed tight temporal expression late during sporogony and showed that GAMA is shed during sporozoite gliding motility in a similar manner to circumsporozoite protein. Complementation of P. berghei knockout parasites with full-length P. falciparum GAMA partially restored infectivity to mosquitoes, indicating conservation of function across Plasmodium species. A suite of parasites with GAMA expressed under the promoters of CTRP, CAP380, and TRAP, further confirmed the involvement of GAMA in midgut infection, motility, and vertebrate infection. These data show GAMA's involvement in sporozoite motility, egress, and invasion, implicating GAMA as a regulator of microneme function.


Subject(s)
Culicidae , Parasites , Animals , Culicidae/metabolism , Culicidae/parasitology , Parasites/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Oocysts , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Sporozoites/metabolism
15.
J Virol ; 98(5): e0151623, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38567951

ABSTRACT

The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.


Subject(s)
Macaca fascicularis , Models, Animal , Yellow Fever Vaccine , Animals , Female , Humans , Male , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunity, Innate , Systems Biology/methods , Vaccination , Yellow Fever/prevention & control , Yellow Fever/immunology , Yellow Fever/virology , Yellow Fever Vaccine/immunology , Yellow fever virus/immunology
16.
Immunity ; 44(3): 476-491, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26982355

ABSTRACT

Phagocytes are crucial for host defense against bacterial pathogens. As first demonstrated by Metchnikoff, neutrophils and mononuclear phagocytes share the capacity to engulf, kill, and digest microbial invaders. Generally, neutrophils focus on extracellular, and mononuclear phagocytes on intracellular, pathogens. Reciprocally, extracellular pathogens often capitalize on hindering phagocytosis and killing of phagocytes, whereas intracellular bacteria frequently allow their engulfment and then block intracellular killing. As foreseen by Metchnikoff, phagocytes become highly versatile by acquiring diverse phenotypes, but still retaining some plasticity. Further, phagocytes engage in active crosstalk with parenchymal and immune cells to promote adjunctive reactions, including inflammation, tissue healing, and remodeling. This dynamic network allows the host to cope with different types of microbial invaders. Here we present an update of molecular and cellular mechanisms underlying phagocyte functions in antibacterial defense. We focus on four exemplary bacteria ranging from an opportunistic extracellular to a persistent intracellular pathogen.


Subject(s)
Bacteria/immunology , Bacterial Infections/immunology , Phagocytes/immunology , Animals , Cell Differentiation , Extracellular Space , Host-Pathogen Interactions , Humans , Immunity, Cellular , Inflammation , Intracellular Space , Phagocytosis , Regeneration/immunology , Wound Healing/immunology
17.
Immunity ; 45(4): 861-876, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27760340

ABSTRACT

Mycobacterium tuberculosis infection in humans triggers formation of granulomas, which are tightly organized immune cell aggregates that are the central structure of tuberculosis. Infected and uninfected macrophages interdigitate, assuming an altered, flattened appearance. Although pathologists have described these changes for over a century, the molecular and cellular programs underlying this transition are unclear. Here, using the zebrafish-Mycobacterium marinum model, we found that mycobacterial granuloma formation is accompanied by macrophage induction of canonical epithelial molecules and structures. We identified fundamental macrophage reprogramming events that parallel E-cadherin-dependent mesenchymal-epithelial transitions. Macrophage-specific disruption of E-cadherin function resulted in disordered granuloma formation, enhanced immune cell access, decreased bacterial burden, and increased host survival, suggesting that the granuloma can also serve a bacteria-protective role. Granuloma macrophages in humans with tuberculosis were similarly transformed. Thus, during mycobacterial infection, granuloma macrophages are broadly reprogrammed by epithelial modules, and this reprogramming alters the trajectory of infection and the associated immune response.


Subject(s)
Epithelium/immunology , Macrophages/immunology , Mycobacterium marinum/immunology , Animals , Cadherins/immunology , Epithelium/microbiology , Granuloma/immunology , Granuloma/microbiology , Macrophages/microbiology , Mycobacterium tuberculosis/immunology , Zebrafish
18.
Circ Res ; 132(9): e151-e168, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37021588

ABSTRACT

BACKGROUND: Neutrophil migration is critical to the initiation and resolution of inflammation. Macrophage-1 antigen (Mac-1; CD11b/CD18, αMß2) is a leukocyte integrin essential for firm adhesion to endothelial ICAM-1 (intercellular adhesion molecule 1) and migration of neutrophils in the shear forces of the circulation. PDI (protein disulfide isomerase) has been reported to influence neutrophil adhesion and migration. We aimed to elucidate the molecular mechanism of PDI control of Mac-1 affinity for ICAM-1 during neutrophil migration under fluid shear. METHODS: Neutrophils isolated from whole blood were perfused over microfluidic chips coated with ICAM-1. Colocalization of Mac-1 and PDI on neutrophils was visualized by fluorescently labeled antibodies and confocal microscopy. The redox state of Mac-1 disulfide bonds was mapped by differential cysteine alkylation and mass spectrometry. Wild-type or disulfide mutant Mac-1 was expressed recombinantly in Baby Hamster Kidney cells to measure ligand affinity. Mac-1 conformations were measured by conformation-specific antibodies and molecular dynamics simulations. Neutrophils crawling on immobilized ICAM-1 were measured in presence of oxidized or reduced PDI, and the effect of PDI inhibition using isoquercetin on neutrophil crawling on inflamed endothelial cells was examined. Migration indices in the X- and Y-direction were determined and the crawling speed was calculated. RESULTS: PDI colocalized with high-affinity Mac-1 at the trailing edge of stimulated neutrophils when crawling on ICAM-1 under fluid shear. PDI cleaved 2 allosteric disulfide bonds, C169-C176 and C224-C264, in the ßI domain of the ß2 subunit, and cleavage of the C224-C264 disulfide bond selectively controls Mac-1 disengagement from ICAM-1 under fluid shear. Molecular dynamics simulations and conformation-specific antibodies reveal that cleavage of the C224-C264 bond induces conformational change and mechanical stress in the ßI domain. This allosterically alters the exposure of an αI domain epitope associated with a shift of Mac-1 to a lower-affinity state. These molecular events promote neutrophil motility in the direction of flow at high shear stress. Inhibition of PDI by isoquercetin reduces neutrophil migration in the direction of flow on endothelial cells during inflammation. CONCLUSIONS: Shear-dependent PDI cleavage of the neutrophil Mac-1 C224-C264 disulfide bond triggers Mac-1 de-adherence from ICAM-1 at the trailing edge of the cell and enables directional movement of neutrophils during inflammation.


Subject(s)
Intercellular Adhesion Molecule-1 , Macrophage-1 Antigen , Humans , Macrophage-1 Antigen/physiology , Cell Adhesion/physiology , Endothelial Cells , Inflammation , Cell Movement/physiology , Neutrophils
19.
Nucleic Acids Res ; 51(1): e5, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36321650

ABSTRACT

The activity of enzymes is traditionally characterised through bulk-phase biochemical methods that only report on population averages. Single-molecule methods are advantageous in elucidating kinetic and population heterogeneity but are often complicated, time consuming, and lack statistical power. We present a highly-generalisable and high-throughput single-molecule assay to rapidly characterise proteins involved in DNA metabolism. The assay exclusively relies on changes in total fluorescence intensity of surface-immobilised DNA templates as a result of DNA synthesis, unwinding or digestion. Combined with an automated data-analysis pipeline, our method provides enzymatic activity data of thousands of molecules in less than an hour. We demonstrate our method by characterising three fundamentally different enzyme activities: digestion by the phage λ exonuclease, synthesis by the phage Phi29 polymerase, and unwinding by the E. coli UvrD helicase. We observe the previously unknown activity of the UvrD helicase to remove neutravidin bound to 5'-, but not 3'-ends of biotinylated DNA.


Subject(s)
DNA Helicases , DNA , DNA/metabolism , DNA Helicases/metabolism , DNA, Single-Stranded , Escherichia coli , Escherichia coli Proteins/metabolism , Kinetics
20.
Circulation ; 147(23): 1748-1757, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37042255

ABSTRACT

BACKGROUND: There is uncertainty surrounding the use of direct oral anticoagulants (DOACs) in patients with kidney dysfunction. METHODS: Using the COMBINE AF (A Collaboration Between Multiple Institutions to Better Investigate Non-Vitamin K Antagonist Oral Anticoagulant Use in Atrial Fibrillation) database (data from RE-LY [Randomized Evaluation of Long-term Anticoagulation Therapy], ROCKET AF [Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared With Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation], ARISTOTLE [Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation], and ENGAGE AF-TIMI 48 [Effective Anticoagulation With Factor Xa Next Generation in Atrial Fibrillation-Thrombolysis in Myocardial Infarction 48]), we performed an individual patient-level network meta-analysis to evaluate the safety and efficacy of DOACs versus warfarin across continuous creatinine clearance (CrCl). A multivariable Cox model including treatment-by-CrCl interaction with random effects was fitted to estimate hazard ratios for paired treatment strategies (standard-dose DOAC, lower-dose DOAC, and warfarin). Outcomes included stroke and systemic embolism (S/SE), major bleeding, intracranial hemorrhage (ICH), and death. RESULTS: Among 71 683 patients (mean age, 70.6±9.4 years; 37.3% female; median follow-up, 23.1 months), the mean CrCl was 75.5±30.5 mL/min. The incidence of S/SE, major bleeding, ICH, and death increased significantly with worsening kidney function. Across continuous CrCl values down to 25 mL/min, the hazard of major bleeding did not change for patients randomized to standard-dose DOACs compared with those randomized to warfarin (Pinteraction=0.61). Compared with warfarin, standard-dose DOAC use resulted in a significantly lower hazard of ICH at CrCl values <122 mL/min, with a trend for increased safety with DOAC as CrCl decreased (6.2% decrease in hazard ratio per 10-mL/min decrease in CrCl; Pinteraction=0.08). Compared with warfarin, standard-dose DOAC use resulted in a significantly lower hazard of S/SE with CrCl <87 mL/min, with a significant treatment-by-CrCl effect (4.8% decrease in hazard ratio per 10-mL/min decrease in CrCl; Pinteraction=0.01). The hazard of death was significantly lower with standard-dose DOACs for patients with CrCl <77 mL/min, with a trend toward increasing benefit with lower CrCl (2.1% decrease in hazard ratio per 10-mL/min decrease in CrCl; Pinteraction=0.08). Use of lower-dose rather than standard-dose DOACs was not associated with a significant difference in incident bleeding or ICH in patients with reduced kidney function but was associated with a higher incidence4 of death and S/SE. CONCLUSIONS: Standard-dose DOACs are safer and more effective than warfarin down to a CrCl of at least 25 mL/min. Lower-dose DOACs do not significantly lower the incidence of bleeding or ICH compared with standard-dose DOACs but are associated with a higher incidence of S/SE and death. These findings support the use of standard-dose DOACs over warfarin in patients with kidney dysfunction.


Subject(s)
Atrial Fibrillation , Embolism , Stroke , Humans , Female , Middle Aged , Aged , Aged, 80 and over , Male , Warfarin/adverse effects , Network Meta-Analysis , Atrial Fibrillation/diagnosis , Atrial Fibrillation/drug therapy , Atrial Fibrillation/complications , Factor Xa , Anticoagulants/therapeutic use , Stroke/epidemiology , Hemorrhage/epidemiology , Intracranial Hemorrhages/chemically induced , Embolism/epidemiology , Kidney , Administration, Oral , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL