Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000871

ABSTRACT

This study reassesses an overview of the potential of the radio frequency (RF)-based state diagnostics of three-way catalysts (TWC) based on a previous study with an emphasis on the defect chemistry of the catalyst material during reoxidation and reduction. Some data are based on the previous works but are newly processed, and the signal parameters resonant frequency and inverse quality factor are evaluated with respect to applicability. The RF-based method uses electromagnetic resonances in a cavity resonator to provide information on the storage level of the oxygen storage component. The analysis focuses on a holistic investigation and evaluation of the major effects influencing the RF signal during operation. On the one hand, the response to the oxygen storage behavior and the resolution of the measurement method are considered. Therefore, this study merges original data from multiple former publications to provide a comprehensive insight into important measurement effects and their defect chemistry background. On the other hand, the most important cross-sensitivities are discussed and their impact during operation is evaluated. Additionally, the effect of catalyst aging is analyzed. The effects are presented separately for the two resonant parameters: resonant frequency and (unloaded) quality factor. Overall, the data suggest that the quality factor has a way higher signal quality at low temperatures (<400 °C) and the resonant frequency is primarily suitable for high operating temperatures. At most operating points, the quality factor is even more robust against interferences such as exhaust gas stoichiometry and water content. Correctly estimating the catalyst temperature is the most important factor for reliable results, which can be achieved by combining the information of both resonant signals. In the end, the data indicate that microwave-based state diagnosis is a powerful system for evaluating the oxygen storage level over the entire operating range of a TWC. As a research tool and in its application, the system can therefore contribute to the improvement of the emission control of future gasoline vehicles.

2.
Sensors (Basel) ; 23(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37112255

ABSTRACT

This study presents a resistive sensor concept based on Barium Iron Tantalate (BFT) to measure the oxygen stoichiometry in exhaust gases of combustion processes. The BFT sensor film was deposited on the substrate by the Powder Aerosol Deposition (PAD) method. In initial laboratory experiments, the sensitivity to pO2 in the gas phase was analyzed. The results agree with the defect chemical model of BFT materials that suggests the formation of holes h• by filling oxygen vacancies VO•• in the lattice at higher oxygen partial pressures pO2. The sensor signal was found to be sufficiently accurate and to have low time constants with changing oxygen stoichiometry. Further investigations on reproducibility and cross-sensitivities to typical exhaust gas species (CO2, H2O, CO, NO, …) confirmed a robust sensor signal that was hardly affected by other gas components. The sensor concept was also tested in real engine exhausts for the first time. The experimental data showed that the air-fuel ratio can be monitored by measuring the resistance of the sensor element, including partial and full-load operation modes. Furthermore, no signs of inactivation or aging during the test cycles were observed for the sensor film. Overall, a promising first data set was obtained in engine exhausts and therefore the BFT system is a possible cost-effective alternative concept to existing commercial sensors in the future. Moreover, the integration of other sensitive films for multi-gas sensor purposes might be an attractive field for future studies.

3.
Sensors (Basel) ; 23(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37420779

ABSTRACT

Due to increasingly stringent limits for NOx emissions, there is now more interest than ever in cost-effective, precise, and durable exhaust gas sensor technology for combustion processes. This study presents a novel multi-gas sensor with resistive sensing principles for the determination of oxygen stoichiometry and NOx concentration in the exhaust gas of a diesel engine (OM 651). A screen-printed porous KMnO4/La-Al2O3 film is used as the NOx sensitive film, while a dense ceramic BFAT (BaFe0.74Ta0.25Al0.01O3-δ) film prepared by the PAD method is used for λ-measurement in real exhaust gas. The latter is also used to correct the O2 cross-sensitivity of the NOx sensitive film. This study presents results under dynamic conditions during an NEDC (new European driving cycle) based on a prior characterization of the sensor films in an isolated sensor chamber with static engine operation. The low-cost sensor is analyzed in a wide operation field and its potential for real exhaust gas applications is evaluated. The results are promising and, all in all, comparable with established, but usually more expensive, exhaust gas sensors.


Subject(s)
Oxygen , Vehicle Emissions , Oxygen/analysis , Gasoline , Nitrogen Oxides/analysis
4.
Sensors (Basel) ; 22(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35591000

ABSTRACT

In recent years, particulate filters have become mandatory in almost all gasoline-powered vehicles to comply with emission standards regarding particulate number. In contrast to diesel applications, monitoring gasoline particulate filters (GPFs) by differential pressure sensors is challenging due to lower soot masses to be deposited in the GPFs. A different approach to determine the soot loading of GPFs is a radio frequency-based sensor (RF sensor). To facilitate sensor development, in previous work, a simulation model was created to determine the RF signal at arbitrary engine operating points. To ensure accuracy, the exact dielectric properties of the soot need to be known. This work has shown how small samples of soot-loaded filter are sufficient to determine the dielectric properties of soot itself using the microwave cavity perturbation method. For this purpose, mixing rules were determined through simulation and measurement, allowing the air and substrate fraction of the sample to be considered. Due to the different geometry of filter substrates compared to crushed soot samples, a different mixing rule had to be derived to calculate the effective filter properties required for the simulation model. The accuracy of the determined mixing rules and the underlying simulation model could be verified by comparative measurements on an engine test bench.


Subject(s)
Air Pollutants , Gasoline , Air Pollutants/analysis , Gasoline/analysis , Microwaves , Particulate Matter/analysis , Soot/analysis , Vehicle Emissions/analysis
5.
Sensors (Basel) ; 20(21)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114027

ABSTRACT

Recently, a laboratory setup for microwave-based characterization of powder samples at elevated temperatures and different gas atmospheres was presented. The setup is particularly interesting for operando investigations on typical materials for exhaust gas aftertreatment. By using the microwave cavity perturbation method, where the powder is placed inside a cavity resonator, the change of the resonant properties provides information about changes in the dielectric properties of the sample. However, determining the exact complex permittivity of the powder samples is not simple. Up to now, a simplified microwave cavity perturbation theory had been applied to estimate the bulk properties of the powders. In this study, an extended approach is presented which allows to determine the dielectric properties of the powder materials more correctly. It accounts for the electric field distribution in the resonator, the depolarization of the sample and the effect of the powder filling. The individual method combines findings from simulations and recognized analytical approaches and can be used for investigations on a wide range of materials and sample geometries. This work provides a more accurate evaluation of the dielectric powder properties and has the potential to enhance the understanding of the microwave behavior of storage materials for exhaust gas aftertreatment, especially with regard to the application of microwave-based catalyst state diagnosis.

6.
Sensors (Basel) ; 19(16)2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31443256

ABSTRACT

Recently, radio frequency (RF) technology was introduced as a tool to determine the oxygen storage level of a three-way catalyst (TWC) for gasoline vehicles. Previous studies on the investigation of commercial catalysts mostly use only the resonant frequency to describe the correlation of oxygen storage level and RF signal. For the first time this study presents a comparison under defined laboratory conditions considering both, resonance frequency and also the quality factor as measurands. Furthermore, various advantages over the sole use of the resonant frequency in the technical application are discussed. Experiments with Ø4.66'' catalysts and Ø1.66'' catalyst cores with alternating (rich/lean) gas compositions showed that the relative change in signal amplitude due to a change in oxygen storage is about 100 times higher for the inverse quality factor compared to the resonant frequency. In addition, the quality factor reacts more sensitively to the onset of the oxygen-storage ability, and delivers precise information about the necessary temperature, which is not possible when evaluating the resonant frequency due to the low signal amplitude. As investigations on aged catalysts confirm, the quality factor also provides a new approach to determine operando the ageing state of a TWC.

7.
Sensors (Basel) ; 17(10)2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29064438

ABSTRACT

A planar microstrip ring resonator structure on alumina was developed using the commercial FEM software COMSOL. Design parameters were evaluated, eventually leading to an optimized design of a miniaturized microwave gas sensor. The sensor was covered with a zeolite film. The device was successfully operated at around 8.5 GHz at room temperature as a humidity sensor. In the next step, an additional planar heater will be included on the reverse side of the resonator structure to allow for testing of gas-sensitive materials under sensor conditions.

8.
Materials (Basel) ; 14(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562638

ABSTRACT

Bulk ceria-zirconia solid solutions (Ce1-xZrxO2-δ, CZO) are highly suited for application as oxygen storage materials in automotive three-way catalytic converters (TWC) due to the high levels of achievable oxygen non-stoichiometry δ. In thin film CZO, the oxygen storage properties are expected to be further enhanced. The present study addresses this aspect. CZO thin films with 0 ≤ x ≤ 1 were investigated. A unique nano-thermogravimetric method for thin films that is based on the resonant nanobalance approach for high-temperature characterization of oxygen non-stoichiometry in CZO was implemented. The high-temperature electrical conductivity and the non-stoichiometry δ of CZO were measured under oxygen partial pressures pO2 in the range of 10-24-0.2 bar. Markedly enhanced reducibility and electronic conductivity of CeO2-ZrO2 as compared to CeO2-δ and ZrO2 were observed. A comparison of temperature- and pO2-dependences of the non-stoichiometry of thin films with literature data for bulk Ce1-xZrxO2-δ shows enhanced reducibility in the former. The maximum conductivity was found for Ce0.8Zr0.2O2-δ, whereas Ce0.5Zr0.5O2-δ showed the highest non-stoichiometry, yielding δ = 0.16 at 900 °C and pO2 of 10-14 bar. The defect interactions in Ce1-xZrxO2-δ are analyzed in the framework of defect models for ceria and zirconia.

SELECTION OF CITATIONS
SEARCH DETAIL