Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Nature ; 599(7884): 283-289, 2021 11.
Article in English | MEDLINE | ID: mdl-34517409

ABSTRACT

Derailed cytokine and immune cell networks account for the organ damage and the clinical severity of COVID-19 (refs. 1-4). Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and is accompanied by a senescence-associated secretory phenotype (SASP), which comprises pro-inflammatory cytokines, extracellular-matrix-active factors and pro-coagulatory mediators5-7. Patients with COVID-19 displayed markers of senescence in their airway mucosa in situ and increased serum levels of SASP factors. In vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, which mirrored hallmark features of COVID-19 such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue1,8,9. Moreover, supernatant from VIS cells, including SARS-CoV-2-induced senescence, induced neutrophil extracellular trap formation and activation of platelets and the clotting cascade. Senolytics such as navitoclax and a combination of dasatinib plus quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-infected hamsters and mice. Our findings mark VIS as a pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest that senolytic targeting of virus-infected cells is a treatment option against SARS-CoV-2 and perhaps other viral infections.


Subject(s)
COVID-19 Drug Treatment , COVID-19/pathology , COVID-19/virology , Cellular Senescence/drug effects , Molecular Targeted Therapy , SARS-CoV-2/pathogenicity , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Animals , COVID-19/complications , Cell Line , Cricetinae , Dasatinib/pharmacology , Dasatinib/therapeutic use , Disease Models, Animal , Female , Humans , Male , Mice , Quercetin/pharmacology , Quercetin/therapeutic use , SARS-CoV-2/drug effects , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Thrombosis/complications , Thrombosis/immunology , Thrombosis/metabolism
2.
Proc Natl Acad Sci U S A ; 118(42)2021 10 01.
Article in English | MEDLINE | ID: mdl-34599091

ABSTRACT

Monoclonal antibodies (mAbs) that efficiently neutralize SARS-CoV-2 have been developed at an unprecedented speed. Notwithstanding, there is a vague understanding of the various Ab functions induced beyond antigen binding by the heavy-chain constant domain. To explore the diverse roles of Abs in SARS-CoV-2 immunity, we expressed a SARS-CoV-2 spike protein (SP) binding mAb (H4) in the four IgG subclasses present in human serum (IgG1-4) using glyco-engineered Nicotiana benthamiana plants. All four subclasses, carrying the identical antigen-binding site, were fully assembled in planta and exhibited a largely homogeneous xylose- and fucose-free glycosylation profile. The Ab variants ligated to the SP with an up to fivefold increased binding activity of IgG3. Furthermore, all H4 subtypes were able to neutralize SARS-CoV-2. However, H4-IgG3 exhibited an up to 50-fold superior neutralization potency compared with the other subclasses. Our data point to a strong protective effect of IgG3 Abs in SARS-CoV-2 infection and suggest that superior neutralization might be a consequence of cross-linking the SP on the viral surface. This should be considered in therapy and vaccine development. In addition, we underscore the versatile use of plants for the rapid expression of complex proteins in emergency cases.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/biosynthesis , Glycosylation , Humans , Neutralization Tests , Recombinant Proteins/biosynthesis
3.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: mdl-34702738

ABSTRACT

Here, we expressed two neutralizing monoclonal antibodies (Abs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; H4 and B38) in three formats: IgG1, IgA1 monomers (m), and IgA1 dimers (d) in glycoengineered Nicotiana benthamiana plants. All six Ab variants assembled properly and exhibited a largely homogeneous glycosylation profile. Despite modest variation in antigen binding between Ab formats, SARS-CoV-2 neutralization (NT) potency significantly increased in the following manner: IgG1 < IgA1-m < IgA1-d, with an up to 240-fold NT increase of dimers compared to corresponding monomers. Our results underscore that both IgA's structural features and multivalency positively impact NT potency. In addition, they emphasize the versatile use of plants for the rapid expression of complex human proteins.


Subject(s)
Antibodies, Monoclonal/chemistry , COVID-19/virology , Immunoglobulin A/chemistry , Immunoglobulin G/chemistry , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Chlorocebus aethiops , Enzyme-Linked Immunosorbent Assay , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
4.
Plant Biotechnol J ; 21(3): 549-559, 2023 03.
Article in English | MEDLINE | ID: mdl-36403203

ABSTRACT

This study describes a novel, neutralizing monoclonal antibody (mAb), 11D7, discovered by mouse immunization and hybridoma generation, against the parental Wuhan-Hu-1 RBD of SARS-CoV-2. We further developed this mAb into a chimeric human IgG and recombinantly expressed it in plants to produce a mAb with human-like, highly homogenous N-linked glycans that has potential to impart greater potency and safety as a therapeutic. The epitope of 11D7 was mapped by competitive binding with well-characterized mAbs, suggesting that it is a Class 4 RBD-binding mAb that binds to the RBD outside the ACE2 binding site. Of note, 11D7 maintains recognition against the B.1.1.529 (Omicron) RBD, as well neutralizing activity. We also provide evidence that this novel mAb may be useful in providing additional synergy to established antibody cocktails, such as Evusheld™ containing the antibodies tixagevimab and cilgavimab, against the Omicron variant. Taken together, 11D7 is a unique mAb that neutralizes SARS-CoV-2 through a mechanism that is not typical among developed therapeutic mAbs and by being produced in ΔXFT Nicotiana benthamiana plants, highlights the potential of plants to be an economic and safety-friendly alternative platform for generating mAbs to address the evolving SARS-CoV-2 crisis.


Subject(s)
COVID-19 , Combined Antibody Therapeutics , Humans , Animals , Mice , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral
5.
Plant Biotechnol J ; 18(1): 266-273, 2020 01.
Article in English | MEDLINE | ID: mdl-31207008

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus, and its infection can cause long-term debilitating arthritis in humans. Currently, there are no licensed vaccines or therapeutics for human use to combat CHIKV infections. In this study, we explored the feasibility of using an anti-CHIKV monoclonal antibody (mAb) produced in wild-type (WT) and glycoengineered (∆XFT) Nicotiana benthamiana plants in treating CHIKV infection in a mouse model. CHIKV mAb was efficiently expressed and assembled in plant leaves and enriched to homogeneity by a simple purification scheme. While mAb produced in ∆XFT carried a single N-glycan species at the Fc domain, namely GnGn structures, WT produced mAb exhibited a mixture of N-glycans including the typical plant GnGnXF3 glycans, accompanied by incompletely processed and oligomannosidic structures. Both WT and ∆XFT plant-produced mAbs demonstrated potent in vitro neutralization activity against CHIKV. Notably, both mAb glycoforms showed in vivo efficacy in a mouse model, with a slight increased efficacy by the ∆XFT-produced mAbs. This is the first report of the efficacy of plant-produced mAbs against CHIKV, which demonstrates the ability of using plants as an effective platform for production of functionally active CHIKV mAbs and implies optimization of in vivo activity by controlling Fc glycosylation.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Viral/biosynthesis , Chikungunya Fever/therapy , Nicotiana/metabolism , Animals , Chikungunya virus , Mice , Plants, Genetically Modified
7.
Proc Natl Acad Sci U S A ; 113(34): 9498-503, 2016 Aug 23.
Article in English | MEDLINE | ID: mdl-27444013

ABSTRACT

Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions.

8.
Proc Natl Acad Sci U S A ; 113(16): 4458-63, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27044104

ABSTRACT

Countermeasures against potential biothreat agents remain important to US Homeland Security, and many of these pharmaceuticals could have dual use in the improvement of global public health. Junin virus, the causative agent of Argentine hemorrhagic fever (AHF), is an arenavirus identified as a category A high-priority agent. There are no Food and Drug Administration (FDA) approved drugs available for preventing or treating AHF, and the current treatment option is limited to administration of immune plasma. Whereas immune plasma demonstrates the feasibility of passive immunotherapy, it is limited in quantity, variable in quality, and poses safety risks such as transmission of transfusion-borne diseases. In an effort to develop a monoclonal antibody (mAb)-based alternative to plasma, three previously described neutralizing murine mAbs were expressed as mouse-human chimeric antibodies and evaluated in the guinea pig model of AHF. These mAbs provided 100% protection against lethal challenge when administered 2 d after infection (dpi), and one of them (J199) was capable of providing 100% protection when treatment was initiated 6 dpi and 92% protection when initiated 7 dpi. The efficacy of J199 is superior to that previously described for all other evaluated drugs, and its high potency suggests that mAbs like J199 offer an economical alternative to immune plasma and an effective dual use (bioterrorism/public health) therapeutic.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Viral/pharmacology , Hemorrhagic Fever, American/drug therapy , Hemorrhagic Fever, American/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Disease Models, Animal , Drug Evaluation, Preclinical , Guinea Pigs , Humans , Junin virus , Mice , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/pharmacology
11.
Plant Biotechnol J ; 16(10): 1700-1709, 2018 10.
Article in English | MEDLINE | ID: mdl-29479800

ABSTRACT

N-glycosylation is critical for recombinant glycoprotein production as it influences the heterogeneity of products and affects their biological function. In most eukaryotes, the oligosaccharyltransferase is the central-protein complex facilitating the N-glycosylation of proteins in the lumen of the endoplasmic reticulum (ER). Not all potential N-glycosylation sites are recognized in vivo and the site occupancy can vary in different expression systems, resulting in underglycosylation of recombinant glycoproteins. To overcome this limitation in plants, we expressed LmSTT3D, a single-subunit oligosaccharyltransferase from the protozoan Leishmania major transiently in Nicotiana benthamiana, a well-established production platform for recombinant proteins. A fluorescent protein-tagged LmSTT3D variant was predominately found in the ER and co-located with plant oligosaccharyltransferase subunits. Co-expression of LmSTT3D with immunoglobulins and other recombinant human glycoproteins resulted in a substantially increased N-glycosylation site occupancy on all N-glycosylation sites except those that were already more than 90% occupied. Our results show that the heterologous expression of LmSTT3D is a versatile tool to increase N-glycosylation efficiency in plants.


Subject(s)
Glycosylation , Hexosyltransferases/genetics , Leishmania major/genetics , Membrane Proteins/genetics , Nicotiana/metabolism , Recombinant Proteins/metabolism , Endoplasmic Reticulum/metabolism , Hexosyltransferases/metabolism , Membrane Proteins/metabolism , Plants, Genetically Modified
12.
Proc Natl Acad Sci U S A ; 112(41): 12675-80, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26417081

ABSTRACT

Broadly neutralizing anti-HIV-1 monoclonal antibodies, such as PG9, and its derivative RSH hold great promise in AIDS therapy and prevention. An important feature related to the exceptional efficacy of PG9 and RSH is the presence of sulfated tyrosine residues in their antigen-binding regions. To maximize antibody functionalities, we have now produced glycan-optimized, fucose-free versions of PG9 and RSH in Nicotiana benthamiana. Both antibodies were efficiently sulfated in planta on coexpression of an engineered human tyrosylprotein sulfotransferase, resulting in antigen-binding and virus neutralization activities equivalent to PG9 synthesized by mammalian cells ((CHO)PG9). Based on the controlled production of both sulfated and nonsulfated variants in plants, we could unequivocally prove that tyrosine sulfation is critical for the potency of PG9 and RSH. Moreover, the fucose-free antibodies generated in N. benthamiana are capable of inducing antibody-dependent cellular cytotoxicity, an activity not observed for (CHO)PG9. Thus, tailoring of the antigen-binding site combined with glycan modulation and sulfoengineering yielded plant-produced anti-HIV-1 antibodies with effector functions superior to PG9 made in CHO cells.


Subject(s)
Antibodies, Monoclonal , HIV Antibodies , HIV-1 , Metabolic Engineering/methods , Nicotiana , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/genetics , CHO Cells , Cricetinae , Cricetulus , Glycosylation , HIV Antibodies/biosynthesis , Humans , Polysaccharides/biosynthesis , Polysaccharides/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Nicotiana/genetics , Nicotiana/metabolism
13.
Plant Biotechnol J ; 15(2): 197-206, 2017 02.
Article in English | MEDLINE | ID: mdl-27421111

ABSTRACT

Plants are attractive hosts for the production of recombinant glycoproteins for therapeutic use. Recent advances in glyco-engineering facilitate the elimination of nonmammalian-type glycosylation and introduction of missing pathways for customized N-glycan formation. However, some therapeutically relevant recombinant glycoproteins exhibit unwanted truncated (paucimannosidic) N-glycans that lack GlcNAc residues at the nonreducing terminal end. These paucimannosidic N-glycans increase product heterogeneity and may affect the biological function of the recombinant drugs. Here, we identified two enzymes, ß-hexosaminidases (HEXOs) that account for the formation of paucimannosidic N-glycans in Nicotiana benthamiana, a widely used expression host for recombinant proteins. Subcellular localization studies showed that HEXO1 is a vacuolar protein and HEXO3 is mainly located at the plasma membrane in N. benthamiana leaf epidermal cells. Both enzymes are functional and can complement the corresponding HEXO-deficient Arabidopsis thaliana mutants. In planta expression of HEXO3 demonstrated that core α1,3-fucose enhances the trimming of GlcNAc residues from the Fc domain of human IgG. Finally, using RNA interference, we show that suppression of HEXO3 expression can be applied to increase the amounts of complex N-glycans on plant-produced human α1-antitrypsin.


Subject(s)
Nicotiana/metabolism , Polysaccharides/biosynthesis , beta-N-Acetylhexosaminidases/antagonists & inhibitors , Arabidopsis/genetics , Arabidopsis/metabolism , Base Sequence , Cell Membrane/metabolism , Genes, Plant , Glycosylation , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Polysaccharides/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Nicotiana/enzymology , Nicotiana/genetics , Vacuoles/metabolism
14.
Proc Natl Acad Sci U S A ; 111(17): 6263-8, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24706782

ABSTRACT

IgM antibodies are an important player of the human's innate defense mechanisms and increasingly have gained interest as therapeutics. Although the expression of IgM antibodies in mammalian cell culture is established, this approach remains costly and alternative methods have not been developed yet. Plants have a proven record for the production of therapeutically relevant recombinant proteins. However, whether they are able to express proteins like IgM antibodies, which range among the most complex human proteins, remains unknown so far. Here we report the in planta generation of the functionally active monoclonal antitumor IgM PAT-SM6 (SM6). SM6 efficiently accumulates in plant leaves and assembles correctly into heterooligomers (pentamers and hexamers). Detailed glycosylation analysis exhibited complex and oligomannosidic N-glycans in a site-specific manner on human-serum IgM and on plant- and human-cell-line-produced SM6. Moreover, extensive in planta glycoengineering allowed the generation of SM6 decorated with sialylated human-type oligosaccharides, comparable to plasma-derived IgM. A glycosylated model of pentameric IgM exhibits different accessibility of the glycosylation sites, explaining site-specific glycosylation. Biochemical and biophysical properties and importantly biological activities of plant-derived SM6 glycoforms are comparable to the human-cell-derived counterparts. The in planta generation of one of the most complex human proteins opens new pathways toward the production of difficult-to-express proteins for pharmaceutical applications. Moreover, the generation of IgMs with a controlled glycosylation pattern allows the study of the so far unknown contribution of sugar moieties to the function of IgMs.


Subject(s)
Glycomics/methods , Immunoglobulin M/metabolism , Nicotiana/metabolism , Protein Multimerization , Chromatography, Affinity , Glycosylation , Humans , Immunoglobulin M/chemistry , Models, Molecular , Plant Cells/metabolism , Plant Leaves/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Spectrometry, Mass, Electrospray Ionization
15.
J Gen Virol ; 97(12): 3280-3290, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27902333

ABSTRACT

The mAb E60 has the potential to be a desirable therapeutic molecule since it efficiently neutralizes all four serotypes of dengue virus (DENV). However, mammalian-cell-produced E60 exhibits antibody-dependent enhancement of infection (ADE) activity, rendering it inefficacious in vivo, and treated animals more susceptible to developing more severe diseases during secondary infection. In this study, we evaluated a plant-based expression system for the production of therapeutically suitable E60. The mAb was transiently expressed in Nicotiana benthamianaWT and a ∆XFT line, a glycosylation mutant lacking plant-specific N-glycan residues. The mAb was efficiently expressed and assembled in leaves and exhibited highly homogenous N-glycosylation profiles, i.e. GnGnXF3 or GnGn structures, depending on the expression host. Both E60 glycovariants demonstrated equivalent antigen-binding specificity and in vitro neutralization potency against DENV serotypes 2 and 4 compared with their mammalian-cell-produced counterpart. By contrast, plant-produced E60 exhibited reduced ADE activity in Fc gamma receptor expressing human cells. Our results suggest the ability of plant-produced antibodies to minimize ADE, which may lead to the development of safe and highly efficacious antibody-based therapeutics against DENV and other ADE-prone viral diseases. Our study provides so far unknown insight into the relationship between mAb N-glycosylation and ADE, which contributes to our understanding of how sugar moieties of antibodies modulate Fc-mediated functions and viral pathogenesis.


Subject(s)
Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Dengue Virus/immunology , Dengue/immunology , Nicotiana/genetics , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Dengue/virology , Dengue Virus/genetics , Gene Expression , Humans , Nicotiana/metabolism
16.
Plant Biotechnol J ; 14(12): 2265-2275, 2016 12.
Article in English | MEDLINE | ID: mdl-27159528

ABSTRACT

Plant-based platforms are extensively used for the expression of recombinant proteins, including monoclonal antibodies. However, to harness the approach effectively and leverage it to its full potential, a better understanding of intracellular processes that affect protein properties is required. In this work, we examined vacuolar (vac) targeting and deposition of the monoclonal antibody (Ab) 14D9 in Nicotiana benthamiana leaves. Two distinct vacuolar targeting signals (KISIA and NIFRGF) were C-terminal fused to the heavy chain of 14D9 (vac-Abs) and compared with secreted and ER-retained variants (sec-Ab, ER-Ab, respectively). Accumulation of ER- and vac-Abs was 10- to 15-fold higher than sec-Ab. N-glycan profiling revealed the predominant presence of plant typical complex fucosylated and xylosylated GnGnXF structures on sec-Ab while vac-Abs carried mainly oligomannosidic (Man 7-9) next to GnGnXF forms. Paucimannosidic glycans (commonly assigned as typical vacuolar) were not detected. Confocal microscopy analysis using RFP fusions showed that sec-Ab-RFP localized in the apoplast while vac-Abs-RFP were exclusively detected in the central vacuole. The data suggest that vac-Abs reached the vacuole by two different pathways: direct transport from the ER bypassing the Golgi (Ab molecules containing Man structures) and trafficking through the Golgi (for Ab molecules containing complex N-glycans). Importantly, vac-Abs were correctly assembled and functionally active. Collectively, we show that the central vacuole is an appropriate compartment for the efficient production of Abs with appropriate post-translational modifications, but also point to a reconsideration of current concepts in plant glycan processing.


Subject(s)
Antibodies, Monoclonal/metabolism , Nicotiana/metabolism , Vacuoles/metabolism , Antibodies, Monoclonal/genetics , Glycosylation , Immunoglobulins/genetics , Immunoglobulins/metabolism , Polysaccharides/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Nicotiana/genetics
17.
Plant Physiol ; 166(4): 1839-51, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25355867

ABSTRACT

Plants are increasingly being used as an expression system for complex recombinant proteins. However, our limited knowledge of the intrinsic factors that act along the secretory pathway, which may compromise product integrity, renders process design difficult in some cases. Here, we pursued the recombinant expression of the human protease inhibitor α1-antitrypsin (A1AT) in Nicotiana benthamiana. This serum protein undergoes intensive posttranslational modifications. Unusually high levels of recombinant A1AT were expressed in leaves (up to 6 mg g(-1) of leaf material) in two forms: full-length A1AT located in the endoplasmic reticulum displaying inhibitory activity, and secreted A1AT processed in the reactive center loop, thus rendering it unable to interact with target proteinases. We found that the terminal protein processing is most likely a consequence of the intrinsic function of A1AT (i.e. its interaction with proteases [most likely serine proteases] along the secretory pathway). Secreted A1AT carried vacuolar-type paucimannosidic N-glycans generated by the activity of hexosaminidases located in the apoplast/plasma membrane. Notwithstanding, an intensive glycoengineering approach led to secreted A1AT carrying sialylated N-glycan structures largely resembling its serum-derived counterpart. In summary, we elucidate unique insights in plant glycosylation processes and show important aspects of postendoplasmic reticulum protein processing in plants.


Subject(s)
Nicotiana/metabolism , Protein Processing, Post-Translational , Serine Proteinase Inhibitors/metabolism , alpha 1-Antitrypsin/metabolism , Biological Transport , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Gene Expression , Glycosylation , Humans , Plant Leaves/genetics , Plant Leaves/metabolism , Polysaccharides/metabolism , Proteolysis , Recombinant Proteins , Secretory Pathway , Serine Proteases/genetics , Serine Proteases/metabolism , Serine Proteinase Inhibitors/genetics , Nicotiana/genetics , Vacuoles/metabolism , alpha 1-Antitrypsin/genetics
18.
Plant Biotechnol J ; 12(7): 832-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24618259

ABSTRACT

Plants have a proven track record for the expression of biopharmaceutically interesting proteins. Importantly, plants and mammals share a highly conserved secretory pathway that allows similar folding, assembly and posttranslational modifications of proteins. Human butyrylcholinesterase (BChE) is a highly sialylated, tetrameric serum protein, investigated as a bioscavenger for organophosphorous nerve agents. Expression of recombinant BChE (rBChE) in Nicotiana benthamiana results in accumulation of both monomers as well as assembled oligomers. In particular, we show here that co-expression of BChE with a novel gene-stacking vector, carrying six mammalian genes necessary for in planta protein sialylation, resulted in the generation of rBChE decorated with sialylated N-glycans. The N-glycosylation profile of monomeric rBChE secreted to the apoplast largely resembles the plasma-derived orthologue. In contrast, rBChE purified from total soluble protein extracts was decorated with a significant portion of ER-typical oligomannosidic structures. Biochemical analyses and live-cell imaging experiments indicated that impaired N-glycan processing is due to aberrant deposition of rBChE oligomers in the endoplasmic reticulum or endoplasmic-reticulum-derived compartments. In summary, we show the assembly of rBChE multimers, however, also points to the need for in-depth studies to explain the unexpected subcellular targeting of oligomeric BChE in plants.


Subject(s)
Butyrylcholinesterase/metabolism , Nicotiana/metabolism , Butyrylcholinesterase/genetics , Butyrylcholinesterase/isolation & purification , Genetic Vectors/metabolism , Glycosylation , Humans , Plants, Genetically Modified/metabolism , Protein Engineering , Protein Processing, Post-Translational , Protein Transport , Recombinant Proteins/metabolism , Nicotiana/genetics
20.
Proc Natl Acad Sci U S A ; 108(51): 20690-4, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22143789

ABSTRACT

No countermeasures currently exist for the prevention or treatment of the severe sequelae of Filovirus (such as Ebola virus; EBOV) infection. To overcome this limitation in our biodefense preparedness, we have designed monoclonal antibodies (mAbs) which could be used in humans as immunoprotectants for EBOV, starting with a murine mAb (13F6) that recognizes the heavily glycosylated mucin-like domain of the virion-attached glycoprotein (GP). Point mutations were introduced into the variable region of the murine mAb to remove predicted human T-cell epitopes, and the variable regions joined to human constant regions to generate a mAb (h-13F6) appropriate for development for human use. We have evaluated the efficacy of three variants of h-13F6 carrying different glycosylation patterns in a lethal mouse EBOV challenge model. The pattern of glycosylation of the various mAbs was found to correlate to level of protection, with aglycosylated h-13F6 providing the least potent efficacy (ED(50) = 33 µg). A version with typical heterogenous mammalian glycoforms (ED(50) = 11 µg) had similar potency to the original murine mAb. However, h-13F6 carrying complex N-glycosylation lacking core fucose exhibited superior potency (ED(50) = 3 µg). Binding studies using Fcγ receptors revealed enhanced binding of nonfucosylated h-13F6 to mouse and human FcγRIII. Together the results indicate the presence of Fc N-glycans enhances the protective efficacy of h-13F6, and that mAbs manufactured with uniform glycosylation and a higher potency glycoform offer promise as biodefense therapeutics.


Subject(s)
Ebolavirus/metabolism , Fucose/immunology , Animals , Antibodies, Monoclonal/chemistry , Antiviral Agents/chemistry , Complement C1q/chemistry , Ebolavirus/immunology , Female , Fucose/chemistry , Glycosylation , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Immune System , Immunization, Passive , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Sequence Data , Surface Plasmon Resonance , Nicotiana
SELECTION OF CITATIONS
SEARCH DETAIL