Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 178(4): 835-849.e21, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31327527

ABSTRACT

Diverse genetic, epigenetic, and developmental programs drive glioblastoma, an incurable and poorly understood tumor, but their precise characterization remains challenging. Here, we use an integrative approach spanning single-cell RNA-sequencing of 28 tumors, bulk genetic and expression analysis of 401 specimens from the The Cancer Genome Atlas (TCGA), functional approaches, and single-cell lineage tracing to derive a unified model of cellular states and genetic diversity in glioblastoma. We find that malignant cells in glioblastoma exist in four main cellular states that recapitulate distinct neural cell types, are influenced by the tumor microenvironment, and exhibit plasticity. The relative frequency of cells in each state varies between glioblastoma samples and is influenced by copy number amplifications of the CDK4, EGFR, and PDGFRA loci and by mutations in the NF1 locus, which each favor a defined state. Our work provides a blueprint for glioblastoma, integrating the malignant cell programs, their plasticity, and their modulation by genetic drivers.


Subject(s)
Brain Neoplasms/genetics , Cell Plasticity/genetics , Glioblastoma/genetics , Adolescent , Aged , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Lineage/genetics , Child , Cohort Studies , Disease Models, Animal , Female , Genetic Heterogeneity , Glioblastoma/pathology , Heterografts , Humans , Infant , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Middle Aged , Mutation , RNA-Seq , Single-Cell Analysis/methods , Tumor Microenvironment/genetics
2.
Cell ; 175(4): 998-1013.e20, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388456

ABSTRACT

Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite the high rate of response in advanced melanoma, the majority of patients succumb to disease. To identify factors associated with success or failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients treated with checkpoint inhibitors. Two distinct states of CD8+ T cells were defined by clustering and associated with patient tumor regression or progression. A single transcription factor, TCF7, was visualized within CD8+ T cells in fixed tumor samples and predicted positive clinical outcome in an independent cohort of checkpoint-treated patients. We delineated the epigenetic landscape and clonality of these T cell states and demonstrated enhanced antitumor immunity by targeting novel combinations of factors in exhausted cells. Our study of immune cell transcriptomes from tumors demonstrates a strategy for identifying predictors, mechanisms, and targets for enhancing checkpoint immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Melanoma/immunology , Transcriptome , Animals , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Antigens, CD/immunology , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacology , Apyrase/antagonists & inhibitors , Apyrase/immunology , Cell Line, Tumor , Humans , Leukocyte Common Antigens/antagonists & inhibitors , Leukocyte Common Antigens/immunology , Melanoma/therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T Cell Transcription Factor 1/metabolism
4.
Acta Neuropathol ; 147(1): 71, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38607446

ABSTRACT

Neurofibromatosis type 1 (NF1) is a rare autosomal dominant disorder characterized by proliferation of cells from neural crest origin. The most common manifestations are cutaneous, neurologic, skeletal and ocular. The distinction of NF1 from other syndromes with multiple café-au-lait macules may be difficult in the pediatric age group, and ocular findings, especially Lisch nodules (i.e., melanocytic hamartomas on the irides), are a useful, early diagnostic tool. In recent years, novel ocular manifestations descriptively referred to as "choroidal abnormalities", choroidal "hyperpigmented spots" and "retinal vascular abnormalities" have been recognized in NF1. Choroidal abnormalities (CA) appear as bright patchy nodules that can be best detected with near-infrared ocular coherence tomography imaging (NIR-OCT). Because of their high specificity and sensitivity for NF1, CA have been added as an ocular diagnostic criterion of NF1 as an alternative to Lisch nodules. Although CA are important ocular diagnostic criteria for NF1, the histologic correlates are controversial. We present the postmortem ocular pathology findings of an NF1 patient for whom clinical notes and ocular imaging were available. Findings in this patient included choroidal hyperpigmented spots on funduscopy and retinal vascular abnormalities, both of which have been reported to be closely associated with CA. Histologic examination of the eyes showed multiple clusters of melanocytes of varying sizes in the choroid. Pathologic review of 12 additional postmortem eyes from 6 NF1 patients showed multiple, bilateral choroidal melanocytic aggregates in all eyes. These findings suggest that the CA seen on NIR-OCT and the hyperpigmented spots seen clinically in NF1 patients are manifestations of multifocal choroidal melanocytic clusters, consistent with choroidal melanocytic hamartomas. Lisch nodules, often multiple, were present in all eyes with morphology that differed from the choroidal hamartomas. As such, although CA and Lisch nodules are melanocytic hamartomas, there are clear phenotypical differences in their morphologies.


Subject(s)
Hamartoma , Neurofibromatosis 1 , Humans , Child , Neurofibromatosis 1/complications , Choroid/diagnostic imaging , Autopsy
5.
Ophthalmic Plast Reconstr Surg ; 40(4): e111-e114, 2024.
Article in English | MEDLINE | ID: mdl-38346432

ABSTRACT

The authors describe the clinical, histologic, and serologic findings of a patient with necrotizing myositis of the extraocular muscles in the setting of antisynthetase syndrome, as well as subsequent management. This is the first case in the literature of a systemic necrotizing myositis to have associated ophthalmic findings.


Subject(s)
Myositis , Necrosis , Oculomotor Muscles , Humans , Middle Aged , Magnetic Resonance Imaging , Myositis/diagnosis , Necrosis/diagnosis , Oculomotor Muscles/pathology , Orbital Myositis/diagnosis
6.
Genes Chromosomes Cancer ; 61(8): 449-458, 2022 08.
Article in English | MEDLINE | ID: mdl-35218117

ABSTRACT

B-lymphoblastic leukemia/lymphoma (B-ALL) is the most common pediatric malignancy and the most commonly diagnosed adult lymphoblastic leukemia. Recent advances have broadened the spectrum of B-ALL, with DUX4 gene fusions implicated in a subclass occurring in adolescents and young adults and harboring a favorable prognosis. DUX4 fusions have been challenging to identify. We aimed to determine whether expression of the DUX4 oncoprotein, as detected by targeted immunohistochemistry, might serve as a surrogate for molecular detection of DUX4 fusions in B-ALL. A cohort of investigational B-ALLs was generated with enrichment for DUX4 fusions by the inclusion of cases with characteristic demographic features and immunophenotypic properties. B-ALLs with mutually exclusive cytogenetics were collected. Immunohistochemical staining by a monoclonal antibody raised against the N-terminus of the DUX4 protein was performed. N-DUX4 immunohistochemistry demonstrated strong, crisp nuclear staining in blasts of seven investigational cases, six of which had nucleic acid material available for molecular evaluation. Five of these cases demonstrated RNA-seq DUX4-fusion positivity. One N-DUX4 immunohistochemistry positive case lacked a definitive DUX4-fusion by RNA-seq, though demonstrated a gene expression profile characteristic of DUX4-rearranged B-ALLs, a CD2+ immunophenotype, and a lack of staining by C-terminus DUX4 antibody immunohistochemistry. At least 83.3% [5/6] positive predictive value. N-DUX4 immunohistochemistry was negative in blasts of three RNA-seq DUX4-fusion-negative cases (3/3; 100% negative predictive value). B-ALLs with mutually exclusive cytogenetic profiles were all N-DUX4 negative (0/10, specificity 100%). N-DUX4 immunohistochemistry is reliable for the distinction of DUX4-rearranged B-ALLs from other B-ALLs. We recommend its use for subclassification of B-ALLs in adolescents and young adults and in B-ALLs that remain "not otherwise specified."


Subject(s)
Burkitt Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Child , Gene Fusion , Humans , Immunohistochemistry , Immunophenotyping , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Young Adult
7.
Genet Med ; 24(9): 1967-1977, 2022 09.
Article in English | MEDLINE | ID: mdl-35674741

ABSTRACT

PURPOSE: Neurofibromatosis type 2 (NF2) and schwannomatosis (SWN) are genetically distinct tumor predisposition syndromes with overlapping phenotypes. We sought to update the diagnostic criteria for NF2 and SWN by incorporating recent advances in genetics, ophthalmology, neuropathology, and neuroimaging. METHODS: We used a multistep process, beginning with a Delphi method involving global disease experts and subsequently involving non-neurofibromatosis clinical experts, patients, and foundations/patient advocacy groups. RESULTS: We reached consensus on the minimal clinical and genetic criteria for diagnosing NF2 and SWN. These criteria incorporate mosaic forms of these conditions. In addition, we recommend updated nomenclature for these disorders to emphasize their phenotypic overlap and to minimize misdiagnosis with neurofibromatosis type 1. CONCLUSION: The updated criteria for NF2 and SWN incorporate clinical features and genetic testing, with a focus on using molecular data to differentiate the 2 conditions. It is likely that continued refinement of these new criteria will be necessary as investigators study the diagnostic properties of the revised criteria and identify new genes associated with SWN. In the revised nomenclature, the term "neurofibromatosis 2" has been retired to improve diagnostic specificity.


Subject(s)
Neurilemmoma , Neurofibromatoses , Neurofibromatosis 1 , Neurofibromatosis 2 , Skin Neoplasms , Consensus , Humans , Neurilemmoma/diagnosis , Neurilemmoma/genetics , Neurilemmoma/pathology , Neurofibromatoses/diagnosis , Neurofibromatoses/genetics , Neurofibromatosis 1/genetics , Neurofibromatosis 2/diagnosis , Neurofibromatosis 2/genetics , Skin Neoplasms/genetics
8.
Nature ; 529(7584): 110-4, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26700815

ABSTRACT

Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioma/enzymology , Glioma/genetics , Insulator Elements/genetics , Isocitrate Dehydrogenase/genetics , Mutation/genetics , Oncogenes/genetics , Base Sequence , Binding Sites , CCCTC-Binding Factor , CRISPR-Cas Systems/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cells, Cultured , Chromatin/drug effects , Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , CpG Islands/genetics , DNA Methylation/drug effects , DNA Methylation/genetics , Down-Regulation/drug effects , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glioma/drug therapy , Glioma/pathology , Glutarates/metabolism , Humans , Insulator Elements/drug effects , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/metabolism , Phenotype , Protein Binding , Receptor, Platelet-Derived Growth Factor alpha/genetics , Repressor Proteins/metabolism , Up-Regulation , Cohesins
9.
Hum Mol Genet ; 28(4): 572-583, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30335132

ABSTRACT

Schwannomas are common, highly morbid and medically untreatable tumors that can arise in patients with germ line as well as somatic mutations in neurofibromatosis type 2 (NF2). These mutations most commonly result in the loss of function of the NF2-encoded protein, Merlin. Little is known about how Merlin functions endogenously as a tumor suppressor and how its loss leads to oncogenic transformation in Schwann cells (SCs). Here, we identify nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-inducing kinase (NIK) as a potential drug target driving NF-κB signaling and Merlin-deficient schwannoma genesis. Using a genomic approach to profile aberrant tumor signaling pathways, we describe multiple upregulated NF-κB signaling elements in human and murine schwannomas, leading us to identify a caspase-cleaved, proteasome-resistant NIK kinase domain fragment that amplifies pathogenic NF-κB signaling. Lentiviral-mediated transduction of this NIK fragment into normal SCs promotes proliferation, survival, and adhesion while inducing schwannoma formation in a novel in vivo orthotopic transplant model. Furthermore, we describe an NF-κB-potentiated hepatocyte growth factor (HGF) to MET proto-oncogene receptor tyrosine kinase (c-Met) autocrine feed-forward loop promoting SC proliferation. These innovative studies identify a novel signaling axis underlying schwannoma formation, revealing new and potentially druggable schwannoma vulnerabilities with future therapeutic potential.


Subject(s)
Neurilemmoma/genetics , Neurofibromatosis 2/genetics , Neurofibromin 2/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Autocrine Communication/genetics , Carcinogenesis/genetics , Caspase 1/genetics , Cell Proliferation/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Hepatocyte Growth Factor/genetics , Humans , Mice , Molecular Targeted Therapy , NF-kappa B/genetics , Neurilemmoma/complications , Neurilemmoma/drug therapy , Neurilemmoma/pathology , Neurofibromatosis 2/complications , Neurofibromatosis 2/drug therapy , Neurofibromatosis 2/pathology , Proteasome Endopeptidase Complex/genetics , Proto-Oncogene Mas , Proto-Oncogene Proteins c-met/genetics , Schwann Cells , Signal Transduction/genetics , NF-kappaB-Inducing Kinase
10.
Oncologist ; 26(11): 919-924, 2021 11.
Article in English | MEDLINE | ID: mdl-34041811

ABSTRACT

Rearrangements involving the neurotrophic receptor tyrosine kinase (NTRK) gene family have been reported in diverse tumor types, and NTRK-targeted therapies have recently been approved. In this article, we report a case of a 26-year-old man with an NTRK2-rearranged isocitrate dehydrogenase-wild-type glioblastoma who showed a robust but temporary response to the NTRK inhibitor larotrectinib. Rebiopsy after disease progression showed elimination of the NTRK2-rearranged tumor cell clones, with secondary emergence of a PDGFRA-amplified subclone. Retrospective examination of the initial biopsy material confirmed rare cells harboring PDGFRA amplification. Although mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma has been previously described, mosaicism involving a fusion gene driver event has not. This case highlights the potential efficacy of NTRK-targeted treatment in glioblastoma and the implications of molecular heterogeneity in the setting of targeted therapy. KEY POINTS: This case highlights the efficacy of the NTRK inhibitor larotrectinib in treating NTRK-rearranged glioblastoma. This is the first case to demonstrate mosaicism in glioblastoma involving both a fusion gene and amplification for receptor tyrosine kinases. Intratumoral heterogeneity in glioblastoma has significant implications for tumor resistance to targeted therapies.


Subject(s)
Glioblastoma , Mosaicism , Adult , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases , Retrospective Studies
11.
Genet Med ; 23(8): 1506-1513, 2021 08.
Article in English | MEDLINE | ID: mdl-34012067

ABSTRACT

PURPOSE: By incorporating major developments in genetics, ophthalmology, dermatology, and neuroimaging, to revise the diagnostic criteria for neurofibromatosis type 1 (NF1) and to establish diagnostic criteria for Legius syndrome (LGSS). METHODS: We used a multistep process, beginning with a Delphi method involving global experts and subsequently involving non-NF experts, patients, and foundations/patient advocacy groups. RESULTS: We reached consensus on the minimal clinical and genetic criteria for diagnosing and differentiating NF1 and LGSS, which have phenotypic overlap in young patients with pigmentary findings. Criteria for the mosaic forms of these conditions are also recommended. CONCLUSION: The revised criteria for NF1 incorporate new clinical features and genetic testing, whereas the criteria for LGSS were created to differentiate the two conditions. It is likely that continued refinement of these new criteria will be necessary as investigators (1) study the diagnostic properties of the revised criteria, (2) reconsider criteria not included in this process, and (3) identify new clinical and other features of these conditions. For this reason, we propose an initiative to update periodically the diagnostic criteria for NF1 and LGSS.


Subject(s)
Neurofibromatosis 1 , Cafe-au-Lait Spots/genetics , Consensus , Genetic Testing , Humans , Neurofibromatosis 1/diagnosis , Neurofibromatosis 1/genetics
12.
Acta Neuropathol ; 141(1): 101-116, 2021 01.
Article in English | MEDLINE | ID: mdl-33025139

ABSTRACT

Schwannomatosis (SWNTS) is a genetic cancer predisposition syndrome that manifests as multiple and often painful neuronal tumors called schwannomas (SWNs). While germline mutations in SMARCB1 or LZTR1, plus somatic mutations in NF2 and loss of heterozygosity in chromosome 22q have been identified in a subset of patients, little is known about the epigenomic and genomic alterations that drive SWNTS-related SWNs (SWNTS-SWNs) in a majority of the cases. We performed multiplatform genomic analysis and established the molecular signature of SWNTS-SWNs. We show that SWNTS-SWNs harbor distinct genomic features relative to the histologically identical non-syndromic sporadic SWNs (NS-SWNS). We demonstrate the existence of four distinct DNA methylation subgroups of SWNTS-SWNs that are associated with specific transcriptional programs and tumor location. We show several novel recurrent non-22q deletions and structural rearrangements. We detected the SH3PXD2A-HTRA1 gene fusion in SWNTS-SWNs, with predominance in LZTR1-mutant tumors. In addition, we identified specific genetic, epigenetic, and actionable transcriptional programs associated with painful SWNTS-SWNs including PIGF, VEGF, MEK, and MTOR pathways, which may be harnessed for management of this syndrome.


Subject(s)
Epigenesis, Genetic , Genomics , Nerve Sheath Neoplasms/genetics , Neurilemmoma/genetics , Neurofibromatoses/genetics , Skin Neoplasms/genetics , Transcriptome , Adaptor Proteins, Vesicular Transport/genetics , Cohort Studies , DNA Methylation , Gene Fusion , Genetic Predisposition to Disease/genetics , Germ-Line Mutation , High-Temperature Requirement A Serine Peptidase 1/genetics , Humans , Mitogen-Activated Protein Kinases/genetics , Neurofibromin 2/genetics , Transcription Factors/genetics
13.
Proc Natl Acad Sci U S A ; 115(9): E2077-E2084, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29440379

ABSTRACT

Neurofibromatosis type II (NF2) is a disease that needs new solutions. Vestibular schwannoma (VS) growth causes progressive hearing loss, and the standard treatment, including surgery and radiotherapy, can further damage the nerve. There is an urgent need to identify an adjunct therapy that, by enhancing the efficacy of radiation, can help lower the radiation dose and preserve hearing. The mechanisms underlying deafness in NF2 are still unclear. One of the major limitations in studying tumor-induced hearing loss is the lack of mouse models that allow hearing testing. Here, we developed a cerebellopontine angle (CPA) schwannoma model that faithfully recapitulates the tumor-induced hearing loss. Using this model, we discovered that cMET blockade by crizotinib (CRZ) enhanced schwannoma radiosensitivity by enhancing DNA damage, and CRZ treatment combined with low-dose radiation was as effective as high-dose radiation. CRZ treatment had no adverse effect on hearing; however, it did not affect tumor-induced hearing loss, presumably because cMET blockade did not change tumor hepatocyte growth factor (HGF) levels. This cMET gene knockdown study independently confirmed the role of the cMET pathway in mediating the effect of CRZ. Furthermore, we evaluated the translational potential of cMET blockade in human schwannomas. We found that human NF2-associated and sporadic VSs showed significantly elevated HGF expression and cMET activation compared with normal nerves, which correlated with tumor growth and cyst formation. Using organoid brain slice culture, cMET blockade inhibited the growth of patient-derived schwannomas. Our findings provide the rationale and necessary data for the clinical translation of combined cMET blockade with radiation therapy in patients with NF2.


Subject(s)
Hearing Loss/etiology , Neurofibromatosis 2/complications , Neurofibromatosis 2/radiotherapy , Neuroma, Acoustic/complications , Neuroma, Acoustic/radiotherapy , Proto-Oncogene Proteins c-met/metabolism , Adolescent , Adult , Animals , Brain/metabolism , DNA Damage , Female , Hearing , Humans , Male , Mice , Middle Aged , Neurilemmoma/complications , Neurilemmoma/radiotherapy , Neurofibromin 2/genetics , Organ Culture Techniques , Radiotherapy , Signal Transduction , Young Adult
14.
Acta Neuropathol ; 139(4): 667, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31432207

ABSTRACT

The article An update on the CNS manifestations of neurofibromatosis type 2, written by Shannon Coy, Rumana Rashid, Anat Stemmer­Rachamimov and Sandro Santagata, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 04 June 2019 without open access.

15.
Acta Neuropathol ; 139(4): 643-665, 2020 04.
Article in English | MEDLINE | ID: mdl-31161239

ABSTRACT

Neurofibromatosis type II (NF2) is a tumor predisposition syndrome characterized by the development of distinctive nervous system lesions. NF2 results from loss-of-function alterations in the NF2 gene on chromosome 22, with resultant dysfunction of its protein product merlin. NF2 is most commonly associated with the development of bilateral vestibular schwannomas; however, patients also have a predisposition to development of other tumors including meningiomas, ependymomas, and peripheral, spinal, and cranial nerve schwannomas. Patients may also develop other characteristic manifestations such as ocular lesions, neuropathies, meningioangiomatosis, and glial hamartia. NF2 has a highly variable clinical course, with some patients exhibiting a severe phenotype and development of multiple tumors at an early age, while others may be nearly asymptomatic throughout their lifetime. Despite the high morbidity associated with NF2 in severe cases, management of NF2-associated lesions primarily consists of surgical resection and treatment of symptoms, and there are currently no FDA-approved systemic therapies that address the underlying biology of the syndrome. Refinements to the diagnostic criteria of NF2 have been proposed over time due to increasing understanding of clinical and molecular data. Large-population studies have demonstrated that some features such as the development of gliomas and neurofibromas, currently included as diagnostic criteria, may require further clarification and modification. Meanwhile, burgeoning insights into the molecular biology of NF2 have shed light on the etiology and highly variable severity of the disease and suggested numerous putative molecular targets for therapeutic intervention. Here, we review the clinicopathologic features of NF2, current understanding of the molecular biology of NF2, particularly with regard to central nervous system lesions, ongoing therapeutic studies, and avenues for further research.


Subject(s)
Central Nervous System Diseases/genetics , Central Nervous System Diseases/pathology , Neurofibromatosis 2/complications , Neurofibromatosis 2/pathology , Genetic Predisposition to Disease , Humans
16.
Anesthesiology ; 133(1): 185-194, 2020 07.
Article in English | MEDLINE | ID: mdl-31977524

ABSTRACT

BACKGROUND: Postoperative pain caused by trauma to nerves and tissue around the surgical site is a major problem. Perioperative steps to reduce postoperative pain include local anesthetics and opioids, the latter of which are addictive and have contributed to the opioid epidemic. Cryoneurolysis is a nonopioid and long-lasting treatment for reducing postoperative pain. However, current methods of cryoneurolysis are invasive, technically demanding, and are not tissue-selective. This project aims to determine whether ice slurry can be used as a novel, injectable, drug-free, and tissue-selective method of cryoneurolysis and resulting analgesia. METHODS: The authors developed an injectable and selective method of cryoneurolysis using biocompatible ice slurry, using rat sciatic nerve to investigate the effect of slurry injection on the structure and function of the nerve. Sixty-two naïve, male Sprague-Dawley rats were used in this study. Advanced Coherent anti-Stokes Raman Scattering microscopy, light, and fluorescent microscopy imaging were used at baseline and at various time points after treatment for evaluation and quantification of myelin sheath and axon structural integrity. Validated motor and sensory testing were used for evaluating the sciatic nerve function in response to ice slurry treatment. RESULTS: Ice slurry injection can selectively target the rat sciatic nerve. Being injectable, it can infiltrate around the nerve. The authors demonstrate that a single injection is safe and selective for reversibly disrupting the myelin sheaths and axon density, with complete structural recovery by day 112. This leads to decreased nocifensive function for up to 60 days, with complete recovery by day 112. There was up to median [interquartile range]: 68% [60 to 94%] reduction in mechanical pain response after treatment. CONCLUSIONS: Ice slurry injection selectively targets the rat sciatic nerve, causing no damage to surrounding tissue. Injection of ice slurry around the rat sciatic nerve induced decreased nociceptive response from the baseline through neural selective cryoneurolysis.


Subject(s)
Cryotherapy/methods , Ice , Nerve Block/methods , Sciatic Nerve , Analgesia , Animals , Axons/drug effects , Axons/ultrastructure , Injections , Male , Myelin Sheath/drug effects , Myelin Sheath/ultrastructure , Nociception , Pain Measurement , Rats , Rats, Sprague-Dawley , Sciatic Nerve/drug effects , Sciatic Nerve/ultrastructure , Walking
18.
Undersea Hyperb Med ; 46(1): 63-67, 2019.
Article in English | MEDLINE | ID: mdl-31154686

ABSTRACT

Introduction: Carbon monoxide (CO) poisoning causes hypoxia and inflammation, which could adversely affect muscle. We could find no published information about CO poisoning causing myositis. Case report: A 53-year-old previously healthy female semi truck driver had CO poisoning from a faulty diesel engine exhaust intermittently over three months, culminating in an episode of acute CO poisoning, with syncope after exiting the truck at the end of the three-month period. Neuropsychological symptoms immediately after the acute poisoning event were followed by the development of fatigue, weakness and myalgias within two months and a diagnosis of "polymyositis" within four months. C-reactive protein and creatine kinase were elevated. Electromyogram showed pure myopathy without sensory abnormalities. Occult malignancy was ruled out. Thigh muscle biopsy revealed severe inflammatory myopathy and myonecrosis. Muscle specialist pathologists interpreted the biopsy as toxic or viral inflammatory myopathy, not polymyositis, with CO poisoning as the likely etiology. She received steroids and mycophenolate. Nineteen months later, a repeat biopsy was negative for inflammation or myopathic process. Alternative diagnoses were ruled out by clinical investigation and her course over the next five years. Conclusion: This patient's presentation and clinical course support a diagnosis of myositis from CO poisoning, although it is possible that the myositis was either idiopathic or post-viral (without evidence of a causative virus).


Subject(s)
Carbon Monoxide Poisoning/complications , Myositis/etiology , Occupational Diseases/complications , Automobile Driving , Carbon Monoxide Poisoning/blood , Carboxyhemoglobin/analysis , Female , Humans , Middle Aged , Muscle, Skeletal/pathology , Syncope/etiology
19.
Hum Mutat ; 39(8): 1112-1125, 2018 08.
Article in English | MEDLINE | ID: mdl-29774626

ABSTRACT

Plexiform neurofibromas (PNFs) are benign peripheral nerve sheath tumors involving large nerves present in 30%-50% Neurofibromatosis type 1 (NF1) patients. Atypical neurofibromas (ANF) are distinct nodular lesions with atypical features on histology that arise from PNFs. The risk and timeline of malignant transformation in ANF is difficult to assess. A recent NIH workshop has stratified ANFs and separated a subgroup with multiple atypical features and higher risk of malignant transformation termed atypical neurofibromatous neoplasms with uncertain biological potential (ANNUBP). We performed an analysis of intratumor heterogeneity on eight PNFs to link histological and genomic findings. Tumors were homogeneous although histological and molecular heterogeneity was identified. All tumors were 2n, almost mutation-free and had a clonal NF1(-/-) origin. Two ANFs from the same patient showed atypical features on histology and deletions of CDKN2A/B. One of the ANFs exhibited different areas in which the degree of histological atypia correlated with the heterozygous or homozygous loss of the CDKN2A/B loci. CDKN2A/B deletions in different areas originated independently. Results may indicate that loss of a single CDKN2A/B copy in NF1(-/-) cells is sufficient to start ANF development and that total inactivation of both copies of CDKN2A/B is necessary to form an ANNUBP.


Subject(s)
Neurofibroma, Plexiform/genetics , Neurofibroma/genetics , Neurofibromatosis 1/genetics , Adult , Aged , Child , Child, Preschool , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Genomics/methods , Humans , Mutation/genetics , Polymorphism, Single Nucleotide/genetics
20.
Acta Neuropathol ; 136(5): 779-792, 2018 11.
Article in English | MEDLINE | ID: mdl-30123936

ABSTRACT

Progressive meningiomas that have failed surgery and radiation have a poor prognosis and no standard therapy. While meningiomas are more common in females overall, progressive meningiomas are enriched in males. We performed a comprehensive molecular characterization of 169 meningiomas from 53 patients with progressive/high-grade tumors, including matched primary and recurrent samples. Exome sequencing in an initial cohort (n = 24) detected frequent alterations in genes residing on the X chromosome, with somatic intragenic deletions of the dystrophin-encoding and muscular dystrophy-associated DMD gene as the most common alteration (n = 5, 20.8%), along with alterations of other known X-linked cancer-related genes KDM6A (n =2, 8.3%), DDX3X, RBM10 and STAG2 (n = 1, 4.1% each). DMD inactivation (by genomic deletion or loss of protein expression) was ultimately detected in 17/53 progressive meningioma patients (32%). Importantly, patients with tumors harboring DMD inactivation had a shorter overall survival (OS) than their wild-type counterparts [5.1 years (95% CI 1.3-9.0) vs. median not reached (95% CI 2.9-not reached, p = 0.006)]. Given the known poor prognostic association of TERT alterations in these tumors, we also assessed for these events, and found seven patients with TERT promoter mutations and three with TERT rearrangements in this cohort (n = 10, 18.8%), including a recurrent novel RETREG1-TERT rearrangement that was present in two patients. In a multivariate model, DMD inactivation (p = 0.033, HR = 2.6, 95% CI 1.0-6.6) and TERT alterations (p = 0.005, HR = 3.8, 95% CI 1.5-9.9) were mutually independent in predicting unfavorable outcomes. Thus, DMD alterations identify a subset of progressive/high-grade meningiomas with worse outcomes.


Subject(s)
Dystrophin/genetics , Gene Deletion , Meningeal Neoplasms/genetics , Meningioma/genetics , Aged , Aged, 80 and over , Cell Line, Tumor/pathology , Cell Line, Tumor/ultrastructure , Cohort Studies , Disease Progression , Dystrophin/metabolism , Female , Humans , Magnetic Resonance Imaging , Male , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Meningioma/diagnostic imaging , Meningioma/pathology , Microscopy, Electron, Transmission , Middle Aged , Multiplex Polymerase Chain Reaction , RNA, Messenger/metabolism , Sex Chromatin/genetics , Telomerase/genetics , Telomerase/metabolism , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL