Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Int J Mol Sci ; 24(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36614194

ABSTRACT

Survival from pancreatic cancer is poor because most cancers are diagnosed in the late stages and there are no therapies to prevent the progression of precancerous pancreatic intraepithelial neoplasms (PanINs). Inhibiting mutant KRASG12D, the primary driver mutation in most human pancreatic cancers, has been challenging. The cholecystokinin-B receptor (CCK-BR) is absent in the normal pancreas but becomes expressed in high grade PanIN lesions and is over-expressed in pancreatic cancer making it a prime target for therapy. We developed a biodegradable nanoparticle polyplex (NP) that binds selectively to the CCK-BR on PanINs and pancreatic cancer to deliver gene therapy. PanIN progression was halted and the pancreas extracellular matrix rendered less carcinogenic in P48-Cre/LSL-KrasG12D/+ mice treated with the CCK-BR targeted NP loaded with siRNA to mutant Kras. The targeted NP also slowed proliferation, decreased metastases and improved survival in mice bearing large orthotopic pancreatic tumors. Safety and toxicity studies were performed in immune competent mice after short or long-term exposure and showed no off-target toxicity by histological or biochemical evaluation. Precision therapy with target-specific NPs provides a novel approach to slow progression of advanced pancreatic cancer and also prevents the development of pancreatic cancer in high-risk subjects without toxicity to other tissues.


Subject(s)
Carcinoma in Situ , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Humans , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Disease Models, Animal , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/prevention & control , Pancreas/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma in Situ/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms
2.
Mol Pharm ; 17(10): 3794-3812, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32841040

ABSTRACT

We have developed a macromolecular prodrug platform based on poly(l-lysine succinylated) (PLS) that targets scavenger receptor A1 (SR-A1), a receptor expressed by myeloid and endothelial cells. We demonstrate the selective uptake of PLS by murine macrophage, RAW 264.7 cells, which was eliminated upon cotreatment with the SR-A inhibitor polyinosinic acid (poly I). Further, we observed no uptake of PLS in an SR-A1-deficient RAW 264.7 cell line, even after 24 h incubation. In mice, PLS distributed to lymphatic organs following i.v. injection, as observed by ex vivo fluorescent imaging, and accumulated in lymph nodes following both i.v. and i.d. administrations, based on immunohistochemical analysis with high-resolution microscopy. As a proof-of-concept, the HIV antiviral emtricitabine (FTC) was conjugated to the polymer's succinyl groups via ester bonds, with a drug loading of 14.2% (wt/wt). The prodrug (PLS-FTC) demonstrated controlled release properties in vitro with a release half-life of 15 h in human plasma and 29 h in esterase-inhibited plasma, indicating that drug release occurs through both enzymatic and nonenzymatic mechanisms. Upon incubation of PLS-FTC with human peripheral blood mononuclear cells (PBMCs), the released drug was converted to the active metabolite FTC triphosphate. In a pharmacokinetic study in rats, the prodrug achieved ∼7-19-fold higher concentrations in lymphatic tissues compared to those in FTC control, supporting lymphatic-targeted drug delivery. We believe that the SR-A1-targeted macromolecular PLS prodrug platform has extraordinary potential for the treatment of infectious diseases.


Subject(s)
Anti-HIV Agents/administration & dosage , Drug Carriers/chemistry , HIV Infections/drug therapy , Scavenger Receptors, Class A/metabolism , Animals , Anti-HIV Agents/pharmacokinetics , Drug Liberation , Emtricitabine/administration & dosage , Emtricitabine/pharmacokinetics , Female , Half-Life , Humans , Male , Mice , Poly I/pharmacology , Polylysine/chemistry , Prodrugs/administration & dosage , Prodrugs/pharmacokinetics , Proof of Concept Study , RAW 264.7 Cells , Rats , Scavenger Receptors, Class A/antagonists & inhibitors , Scavenger Receptors, Class A/genetics
3.
Molecules ; 26(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396545

ABSTRACT

The chloroquine family of antimalarials has a long history of use, spanning many decades. Despite this extensive clinical experience, novel applications, including use in autoimmune disorders, infectious disease, and cancer, have only recently been identified. While short term use of chloroquine or hydroxychloroquine is safe at traditional therapeutic doses in patients without predisposing conditions, administration of higher doses and for longer durations are associated with toxicity, including retinotoxicity. Additional liabilities of these medications include pharmacokinetic profiles that require extended dosing to achieve therapeutic tissue concentrations. To improve chloroquine therapy, researchers have turned toward nanomedicine reformulation of chloroquine and hydroxychloroquine to increase exposure of target tissues relative to off-target tissues, thereby improving the therapeutic index. This review highlights these reformulation efforts to date, identifying issues in experimental designs leading to ambiguity regarding the nanoformulation improvements and lack of thorough pharmacokinetics and safety evaluation. Gaps in our current understanding of these formulations, as well as recommendations for future formulation efforts, are presented.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Chloroquine/chemistry , Communicable Diseases/drug therapy , Drug Compounding/methods , Hydroxychloroquine/chemistry , Nanomedicine , Animals , Humans
4.
Drug Metab Dispos ; 44(12): 1934-1939, 2016 12.
Article in English | MEDLINE | ID: mdl-27670412

ABSTRACT

Nanoformulations have become important tools for modifying drug disposition, be it from the perspective of enabling prolonged drug release, protecting the drug molecule from metabolism, or achieving targeted delivery. When examining the in vivo pharmacokinetic properties of these formulations, most investigations either focus on systemic concentrations of total (encapsulated plus unencapsulated) drug, or concentrations of encapsulated and unencapsulated drug. However, it is rare to find studies that differentiate between protein-bound and unbound (free) forms of the unencapsulated drug. In light of the unique attributes of these formulations, we cannot simply assume it appropriate to rely upon the protein-binding properties of the traditionally formulated or legacy drug when trying to define the pharmacokinetic or pharmacokinetic/pharmacodynamic characteristics of these nanoformulations. Therefore, this commentary explores reasons why it is important to consider not only unencapsulated drug, but also the portion of unencapsulated drug that is not bound to plasma proteins. Specifically, we highlight those situations when it may be necessary to include measurement of unencapsulated, unbound drug concentrations as part of the nanoformulation pharmacokinetic evaluation.


Subject(s)
Pharmaceutical Preparations/metabolism , Animals , Blood Proteins/metabolism , Chemistry, Pharmaceutical/methods , Humans , Nanomedicine/methods , Pharmacokinetics , Protein Binding/physiology , Tissue Distribution/physiology
5.
Pharm Res ; 31(3): 684-93, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24065591

ABSTRACT

PURPOSE: Rapid premature release of lipophilic drugs from liposomal lipid bilayer to plasma proteins and biological membranes is a challenge for targeted drug delivery. The purpose of this study is to reduce premature release of lipophilic short-chain ceramides by encapsulating ceramides into liposomal aqueous interior with the aid of poly (lactic-coglycolicacid) (PLGA). METHODS: BODIPY FL labeled ceramide (FL-ceramide) and BODIPY-TR labeled ceramide (TR-ceramide) were encapsulated into carboxy-terminated PLGA nanoparticles. The negatively charged PLGA nanoparticles were then encapsulated into cationic liposomes to obtain PLGA/liposome hybrids. As a control, FL-ceramide and/or TR ceramide co-loaded liposomes without PLGA were prepared. The release of ceramides from PLGA/liposome hybrids and liposomes in rat plasma, cultured MDA-MB-231 cells, and rat blood circulation was compared using fluorescence resonance energy transfer (FRET) between FL-ceramide (donor) and TR-ceramide (acceptor). RESULTS: FRET analysis showed that FL-ceramide and TR-ceramide in liposomal lipid bilayer were rapidly released during incubation with rat plasma. In contrast, the FL-ceramide and TR-ceramide in PLGA/liposome hybrids showed extended release. FRET images of cells revealed that ceramides in liposomal bilayer were rapidly transferred to cell membranes. In contrast, ceramides in PLGA/liposome hybrids were internalized into cells with nanoparticles simultaneously. Upon intravenous administration to rats, ceramides encapsulated in liposomal bilayer were completely released in 2 min. In contrast, ceramides encapsulated in the PLGA core were retained in PLGA/liposome hybrids for 4 h. CONCLUSIONS: The PLGA/liposome hybrid nanoparticles reduced in vitro and in vivo premature release of ceramides and offer a viable platform for targeted delivery of lipophilic drugs.


Subject(s)
Ceramides/administration & dosage , Ceramides/pharmacokinetics , Lactic Acid/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , Animals , Cell Line, Tumor , Ceramides/blood , Female , Humans , Liposomes/ultrastructure , Nanoparticles/ultrastructure , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Rats , Rats, Sprague-Dawley
6.
Methods Mol Biol ; 2789: 301-311, 2024.
Article in English | MEDLINE | ID: mdl-38507012

ABSTRACT

The evaluation of temperature-dependent drug release for solubilizing nanoformulations uses a modification of the stable isotope ultrafiltration assay (SITUA). This method is specific to parenterally administered solubilizing nanomedicines and can be used to assess drug release from the total dosage form for regulatory purposes of lot release. The principle upon which this method is based is the relationship between drug solubility and temperature in a plasma simulating media, 4.5% human serum albumin, that allows for discrimination of passing and failing lots based upon the release characteristics.


Subject(s)
Isotopes , Ultrafiltration , Humans , Drug Liberation , Temperature , Solubility
7.
Methods Mol Biol ; 2789: 3-17, 2024.
Article in English | MEDLINE | ID: mdl-38506986

ABSTRACT

Nanotechnology for drug delivery has made significant advancements over the last two decades. Innovations have been made in cancer research and development, including chemotherapies, imaging agents, and vaccine strategies, as well as other therapeutic areas, e.g., the recent commercialization of mRNA lipid nanoparticles as vaccines against the SARS-CoV-2 virus. The field has also seen technological advancements to aid in addressing the complex questions posed by these novel therapies. In this latest edition of protocols and methods for nanoparticle characterization, we highlight both old and new methodologies for defining physicochemical properties, present both in vitro and in vivo methods to test for a variety of immunotoxicities, and describe assays used for pharmacological studies to assess drug release and tissue distribution.


Subject(s)
Nanoparticles , Vaccines , Nanomedicine/methods , Nanotechnology/methods , Drug Delivery Systems/methods , Nanoparticles/chemistry
8.
Methods Mol Biol ; 2789: 313-322, 2024.
Article in English | MEDLINE | ID: mdl-38507013

ABSTRACT

A primary issue with nanomedicine biological evaluation is determination of nanoparticle carrier tissue distribution and stability. Here we present a method to evaluate nanomedicine distribution in tissues that is applicable to most nanomedicine constructs. This method utilizes immunohistochemical (IHC) analysis of an Alexa Fluor 488-tag and/or polyethylene glycol (PEG), a very common nanomedicine component, for tissue localization. Using specific Alexa Fluor 488- and/or PEG antibody-based IHC staining procedures allows evaluation of high-resolution nanoparticle tissue distribution, nanoparticle tissue stability, and also allows correlation of distribution with morphological changes. This protocol outlines the methods to follow to ensure proper tissue collection and optimized immunohistochemical staining of Alexa Fluor 488-tag and PEG in tissues.


Subject(s)
Fluoresceins , Fluorescent Dyes , Polyethylene Glycols , Sulfonic Acids , Immunohistochemistry , Nanomedicine , Tissue Distribution
9.
J Control Release ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038544

ABSTRACT

Nano-mupirocin is a PEGylated nano-liposomal formulation of the antibiotic mupirocin, undergoing evaluation for treating infectious diseases and intratumor bacteria. Intratumoral microbiota play an important role in the regulation of tumor progression and therapeutic efficacy. However, antibiotic use to target intratumoral bacteria should be performed in a way that will not affect the gut microbiota, found to enable the efficacy of cancer treatments. Nano-mupirocin may offer such a selective treatment. Herein, we demonstrate the ability of Nano-mupirocin to successfully target tumor-residing Fusobacterium nucleatum without an immediate effect on the gut microbiome. In-depth characterization of this novel formulation was performed, and the main findings include: (i). the pharmacokinetic analysis of mupirocin administered as Nano-mupirocin vs mupirocin lithium (free drug) demonstrated that most of the Nano-mupirocin in plasma is liposome associated; (ii). microbiome analysis of rat feces showed no significant short-term difference between Nano-mupirocin, mupirocin lithium and controls; (iii). Nano-mupirocin was active against intratumoral F. nucleatum, a tumor promoting bacteria that accumulates in tumors of the AT3 mice model of breast cancer. These data suggest the ability of Nano-mupirocin to target tumor residing and promoting bacteria.

10.
Mol Pharm ; 10(5): 1977-87, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23534919

ABSTRACT

The objective of this study was to compare the pharmacokinetics and metabolism of polymeric nanoparticle-encapsulated (nanocurcumin) and solvent-solubilized curcumin formulations in Sprague-Dawley (SD) rats. Nanocurcumin is currently under development for cancer therapy. Since free, unencapsulated curcumin is rapidly metabolized and excreted in rats, upon intravenous (i.v.) administration of nanocurcumin only nanoparticle-encapsulated curcumin can be detected in plasma samples. Hence, the second objective of this study was to utilize the metabolic instability of curcumin to assess in vivo drug release from nanocurcumin. Nanocurcumin and solvent-solubilized curcumin were administered at 10 mg curcumin/kg by jugular vein to bile duct-cannulated male SD rats (n = 5). Nanocurcumin increased the plasma Cmax of curcumin 1749 fold relative to the solvent-solubilized curcumin. Nanocurcumin also increased the relative abundance of curcumin and glucuronides in bile but did not dramatically alter urine and tissue metabolite profiles. The observed increase in biliary and urinary excretion of both curcumin and metabolites for the nanocurcumin formulation suggested a rapid "burst" release of curcumin. Although the burst release observed in this study is a limitation for targeted tumor delivery, nanocurcumin still exhibits major advantages over solvent-solubilized curcumin, as the nanoformulation does not result in the lung accumulation observed for the solvent-solubilized curcumin and increases overall systemic curcumin exposure. Additionally, the remaining encapsulated curcumin fraction following burst release is available for tumor delivery via the enhanced permeation and retention effect commonly observed for nanoparticle formulations.


Subject(s)
Curcumin/pharmacokinetics , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Bile/metabolism , Bile Ducts , Catheterization , Chemistry, Pharmaceutical , Curcumin/administration & dosage , Curcumin/chemistry , Delayed-Action Preparations , Drug Delivery Systems , Drug Stability , Injections, Intravenous , Male , Nanocapsules/chemistry , Polymers/administration & dosage , Polymers/chemistry , Polymers/pharmacokinetics , Rats , Rats, Sprague-Dawley , Solubility
11.
AAPS J ; 25(3): 39, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041376

ABSTRACT

Paclitaxel (PTX) is a frequently prescribed chemotherapy drug used to treat a wide variety of solid tumors. Oligo(lactic acid)8-PTX prodrug (o(LA)8-PTX) loaded poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA) micelles have higher loading, slower release and higher antitumor efficacy in murine tumor models over PTX-loaded PEG-b-PLA micelles. The goal of this work is to study plasma stability of o(LA)8-PTX-loaded PEG-b-PLA micelles and its pharmacokinetics after IV injection in rats. In rat plasma, o(LA)8-PTX prodrug is metabolized into o(LA)1-PTX and PTX. In human plasma, o(LA)8-PTX is metabolized more slowly into o(LA)2-PTX, o(LA)1-PTX, and PTX. After IV injection of 10 mg/kg PTX-equiv of o(LA)8-PTX prodrug loaded PEG-b-PLA micelles in Sprague-Dawley rats, metabolite abundance in plasma follows the order: o(LA)1-PTX > o(LA)2-PTX > o(LA)4-PTX > o(LA)6-PTX. Bile metabolite profiles of the o(LA)8-PTX prodrug is similar to plasma metabolite profiles. In comparison to equivalent doses of Abraxane®, plasma PTX exposure is two orders of magnitude higher for Abraxane® than PTX from o(LA)8-PTX prodrug loaded PEG-b-PLA micelles, and plasma o(LA)1-PTX exposure is fivefold higher than PTX from Abraxane®, demonstrating heightened plasma metabolite exposure for enhanced antitumor efficacy.


Subject(s)
Paclitaxel , Prodrugs , Rats , Mice , Humans , Animals , Paclitaxel/pharmacokinetics , Lactic Acid , Micelles , Albumin-Bound Paclitaxel , Drug Carriers/pharmacokinetics , Cell Line, Tumor , Rats, Sprague-Dawley , Polymers , Polyesters
12.
Part Fibre Toxicol ; 9: 20, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22697169

ABSTRACT

The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy) pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.


Subject(s)
Autophagy/drug effects , Lysosomes/drug effects , Nanostructures/adverse effects , Phagocytes/drug effects , Animals , Caveolae/drug effects , Caveolae/metabolism , Drug Delivery Systems , Endocytosis/drug effects , Humans , Lysosomes/metabolism , Phagocytes/metabolism
13.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35890195

ABSTRACT

The earliest example of in vivo expression of exogenous mRNA is by direct intramuscular injection in mice without the aid of a delivery vehicle. The current state of the art for therapeutic nucleic acid delivery is lipid nanoparticles (LNP), which are composed of cholesterol, a helper lipid, a PEGylated lipid and an ionizable amine-containing lipid. The liver is the primary organ of LNP accumulation following intravenous administration and is also observed to varying degrees following intramuscular and subcutaneous routes. Delivery of nucleic acid to hepatocytes by LNP has therapeutic potential, but there are many disease indications that would benefit from non-hepatic LNP tissue and cell population targeting, such as cancer, and neurological, cardiovascular and infectious diseases. This review will concentrate on the current efforts to develop the next generation of tissue-targeted LNP constructs for therapeutic nucleic acids.

14.
Adv Drug Deliv Rev ; 191: 114591, 2022 12.
Article in English | MEDLINE | ID: mdl-36332724

ABSTRACT

Cancer nanotechnologies possess immense potential as therapeutic and diagnostic treatment modalities and have undergone significant and rapid advancement in recent years. With this emergence, the complexities of data standards in the field are on the rise. Data sharing and reanalysis is essential to more fully utilize this complex, interdisciplinary information to answer research questions, promote the technologies, optimize use of funding, and maximize the return on scientific investments. In order to support this, various data-sharing portals and repositories have been developed which not only provide searchable nanomaterial characterization data, but also provide access to standardized protocols for synthesis and characterization of nanomaterials as well as cutting-edge publications. The National Cancer Institute's (NCI) caNanoLab is a dedicated repository for all aspects pertaining to cancer-related nanotechnology data. The searchable database provides a unique opportunity for data mining and the use of artificial intelligence and machine learning, which aims to be an essential arm of future research studies, potentially speeding the design and optimization of next-generation therapies. It also provides an opportunity to track the latest trends and patterns in nanomedicine research. This manuscript provides the first look at such trends extracted from caNanoLab and compares these to similar metrics from the NCI's Nanotechnology Characterization Laboratory, a laboratory providing preclinical characterization of cancer nanotechnologies to researchers around the globe. Together, these analyses provide insight into the emerging interests of the research community and rise of promising nanoparticle technologies.


Subject(s)
Nanostructures , Neoplasms , United States , Humans , National Cancer Institute (U.S.) , Artificial Intelligence , Nanotechnology/methods , Nanomedicine/methods , Neoplasms/diagnosis , Neoplasms/drug therapy
15.
Biomolecules ; 11(12)2021 11 25.
Article in English | MEDLINE | ID: mdl-34944412

ABSTRACT

Survival from pancreatic cancer remains extremely poor, in part because this malignancy is not diagnosed in the early stages, and precancerous pancreatic intraepithelial neoplasia (PanIN) lesions are not seen on routine radiographic imaging. Since the cholecystokinin-B receptor (CCK-BR) becomes over-expressed in PanIN lesions, it may serve as a target for early detection. We developed a biodegradable fluorescent polyplex nanoparticle (NP) that selectively targets the CCK-BR. The NP was complexed to a fluorescent oligonucleotide with Alexa Fluor 647 for far-red imaging and to an oligonucleotide conjugated to Alexa Fluor 488 for localization by immunohistochemistry. Fluorescence was detected over the pancreas of five- to ten-month-old LSL-KrasG12D/+; P48-Cre (KC) mice only after the injection of the receptor target-specific NP and not after injection of untargeted NP. Ex vivo tissue imaging and selective immunohistochemistry confirmed particle localization only to PanIN lesions in the pancreas and not in other organs, supporting the tissue specificity. A human pancreas tissue microarray demonstrated immunoreactivity for the CCK-BR only in the PanIN lesions and not in normal pancreas tissue. The long-term goal would be to develop this imaging tool for screening human subjects at high risk for pancreatic cancer to enable early cancer detection.


Subject(s)
Fluoresceins/administration & dosage , Optical Imaging/methods , Pancreatic Neoplasms/diagnostic imaging , Precancerous Conditions/diagnostic imaging , Receptor, Cholecystokinin B/metabolism , Sulfonic Acids/administration & dosage , Animals , Cell Line, Tumor , Disease Models, Animal , Early Detection of Cancer , Female , Humans , Immunohistochemistry , Male , Mice , Nanoparticles , Organ Specificity , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Protein Array Analysis , Proto-Oncogene Proteins p21(ras)/genetics
16.
Article in English | MEDLINE | ID: mdl-32830448

ABSTRACT

Despite imaging agents being some of the earliest nanomedicines in clinical use, the vast majority of current research and translational activities in the nanomedicine field involves therapeutics, while imaging agents are severely underrepresented. The reasons for this lack of representation are several fold, including difficulties in synthesis and scale-up, biocompatibility issues, lack of suitable tissue/disease selective targeting ligands and receptors, and a high bar for regulatory approval. The recent focus on immunotherapies and personalized medicine, and development of nanoparticle constructs with better tissue distribution and selectivity, provide new opportunities for nanomedicine imaging agent development. This manuscript will provide an overview of trends in imaging nanomedicine characterization and biocompatibility, and new horizons for future development. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.


Subject(s)
Diagnostic Imaging , Nanoparticles , Nanostructures , Biology , Nanomedicine , Precision Medicine
17.
Biomaterials ; 278: 121140, 2021 11.
Article in English | MEDLINE | ID: mdl-34634661

ABSTRACT

The in vivo fate of nanoformulated drugs is governed by the physicochemical properties of the drug and the functionality of nanocarriers. Nanoformulations such as polymeric micelles, which physically encapsulate poorly soluble drugs, release their payload into the bloodstream during systemic circulation. This results in three distinct fractions of the drug-nanomedicine: encapsulated, protein-bound, and free drug. Having a thorough understanding of the pharmacokinetic (PK) profiles of each fraction is essential to elucidate mechanisms of nanomedicine-driven changes in drug exposure and PK/PD relationships pharmacodynamic activity. Here, we present a comprehensive preclinical assessment of the poly (2-oxazoline)-based polymeric micelle of paclitaxel (PTX) (POXOL hl-PM), including bioequivalence comparison to the clinically approved paclitaxel nanomedicine, Abraxane®. Physicochemical characterization and toxicity analysis of POXOL hl-PM was conducted using standardized protocols by the Nanotechnology Characterization Laboratory (NCL). The bioequivalence of POXOL hl-PM to Abraxane® was evaluated in rats and rhesus macaques using the NCL's established stable isotope tracer ultrafiltration assay (SITUA) to delineate the plasma PK of each PTX fraction. The SITUA study revealed that POXOL hl-PM and Abraxane® had comparable PK profiles not only for total PTX but also for the distinct drug fractions, suggesting bioequivalence in given animal models. The comprehensive preclinical evaluation of POXOL hl-PM in this study showcases a series of widely applicable standardized studies by NCL for assessing nanoformulations prior to clinical investigation.


Subject(s)
Antineoplastic Agents, Phytogenic , Paclitaxel , Albumin-Bound Paclitaxel , Animals , Cell Line, Tumor , Drug Carriers , Isotopes , Macaca mulatta , Micelles , Rats , Rodentia , Therapeutic Equivalency
18.
Toxicol Appl Pharmacol ; 248(3): 249-58, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20713077

ABSTRACT

Water soluble fullerenes, such as the hydroxylated fullerene, fullerenol (C60OHx), are currently under development for diagnostic and therapeutic biomedical applications in the field of nanotechnology. These molecules have been shown to undergo urinary clearance, yet there is limited data available on their renal biocompatibility. Here we examine the biological responses of renal proximal tubule cells (LLC-PK1) exposed to fullerenol. Fullerenol was found to be cytotoxic in the millimolar range, with viability assessed by the sulforhodamine B and trypan blue assays. Fullerenol-induced cell death was associated with cytoskeleton disruption and autophagic vacuole accumulation. Interaction with the autophagy pathway was evaluated in vitro by Lysotracker Red dye uptake, LC3-II marker expression and TEM. Fullerenol treatment also resulted in coincident loss of cellular mitochondrial membrane potential and ATP depletion, as measured by the Mitotracker Red dye and the luciferin-luciferase assays, respectively. Fullerenol-induced ATP depletion and loss of mitochondrial potential were partially ameliorated by co-treatment with the autophagy inhibitor, 3-methyladenine. In vitro fullerenol treatment did not result in appreciable oxidative stress, as measured by lipid peroxide and glutathione content. Based on these data, it is hypothesized that cytoskeleton disruption may be an initiating event in fullerenol cytotoxicity, leading to subsequent autophagy dysfunction and loss of mitochondrial capacity. As nanoparticle-induced cytoskeleton disruption, autophagic vacuole accumulation and mitochondrial dysfunction are commonly reported in the literature, the proposed mechanism may be relevant for a variety of nanomaterials.


Subject(s)
Autophagy/drug effects , Cytoskeleton/drug effects , Fullerenes/toxicity , Kidney/drug effects , Mitochondria/drug effects , Vacuoles/drug effects , Animals , Autophagy/physiology , Cell Survival/drug effects , Cell Survival/physiology , Cytoskeleton/metabolism , Cytoskeleton/pathology , Cytotoxins/toxicity , Dose-Response Relationship, Drug , Kidney/metabolism , Kidney/pathology , LLC-PK1 Cells , Mitochondria/metabolism , Mitochondria/pathology , Swine , Vacuoles/metabolism , Vacuoles/pathology
19.
ACS Pharmacol Transl Sci ; 3(3): 547-558, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32566919

ABSTRACT

The pharmacokinetics of nanomedicines are complicated by the unique dispositional characteristics of the drug carrier. Most simplistically, the carrier could be a solubilizing platform that allows administration of a hydrophobic drug. Alternatively, the carrier could be stable and release the drug in a controlled manner, allowing for distribution of the carrier to influence distribution of the encapsulated drug. A third potential dispositional mechanism is carriers that are not stably complexed to the drug, but rather bind the drug in a dynamic equilibrium, similar to the binding of unbound drug to protein; since the nanocarrier has distributional and binding characteristics unlike plasma proteins, the equilibrium binding of drug to a nanocarrier can affect pharmacokinetics in unexpected ways, diverging from classical protein binding paradigms. The recently developed stable isotope tracer ultrafiltration assay (SITUA) for nanomedicine fractionation is uniquely suited for distinguishing and comparing these carrier/drug interactions. Here we present the the encapsulated, unencapsulated, and unbound drug fraction pharmacokinetic profiles in rats for marketed nanomedicines, representing examples of controlled release (doxorubicin liposomes, Doxil; and doxorubicin HCl liposome generic), equilibrium binding (paclitaxel cremophor micelle solution, Taxol generic), and solubilizing (paclitaxel albumin nanoparticle, Abraxane; and paclitaxel polylactic acid micelle, Genexol-PM) nanomedicine formulations. The utility of the SITUA method in differentiating these unique pharmacokinetic profiles and its potential for use in establishing generic nanomedicine bioequivalence are discussed.

20.
Sci Adv ; 6(29): eaay9249, 2020 07.
Article in English | MEDLINE | ID: mdl-32832614

ABSTRACT

Nanoparticle (NP) delivery to solid tumors has recently been questioned. To better understand the magnitude of NP tumor delivery, we reanalyzed published murine NP tumor pharmacokinetic (PK) data used in the Wilhelm et al. study. Studies included in their analysis reporting matched tumor and blood concentration versus time data were evaluated using classical PK endpoints and compared to the unestablished percent injected dose (%ID) in tumor metric from the Wilhelm et al. study. The %ID in tumor was poorly correlated with standard PK metrics that describe NP tumor delivery (AUCtumor/AUCblood ratio) and only moderately associated with maximal tumor concentration. The relative tumor delivery of NPs was ~100-fold greater as assessed by the standard AUCtumor/AUCblood ratio than by %ID in tumor. These results strongly suggest that PK metrics and calculations can influence the interpretation of NP tumor delivery and stress the need to properly validate novel PK metrics against traditional approaches.

SELECTION OF CITATIONS
SEARCH DETAIL