Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Haematologica ; 109(6): 1766-1778, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38105738

ABSTRACT

Venetoclax with azacitidine (ven/aza) is a lower-intensity therapeutic regimen that has been shown to improve outcomes in elderly patients with acute myeloid leukemia (AML). Measurable residual disease (MRD) using flow cytometry is a valuable tool for the prediction of relapse in AML using conventional therapies and ven/aza; however, the prognostic value for broadscale molecular MRD after ven/aza treatment is less clear. We aimed to determine the utility of retrospective assessment using multi-gene molecular MRD by droplet digital polymerase chain reaction (ddPCR). We found this approach correlates with outcomes in a cohort of patients receiving frontline ven/aza for AML. The predictive value of ddPCR MRD persisted when NPM1 mutations were removed from analysis, as well as after adjustment for the impact of stem cell transplant on outcomes. Late achievement of MRD negativity, including after SCT, was still associated with superior outcomes compared to persistently detectable MRD. We further explored the impact of ven/aza on the burden of different classes of mutations, and identified the persistence of splicing factor mutations, commonly associated with MDS, as a consistent finding after ven/aza treatment. These data add to our understanding of the effects of ven/aza on AML disease biology and provide details on molecular depth of remission that can guide prospective trials in the future.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Azacitidine , Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , Mutation , Neoplasm, Residual , Nucleophosmin , Sulfonamides , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/diagnosis , Neoplasm, Residual/diagnosis , Sulfonamides/therapeutic use , Sulfonamides/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Aged , Male , Female , Azacitidine/therapeutic use , Azacitidine/administration & dosage , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Polymerase Chain Reaction/methods , Prognosis , Aged, 80 and over , Retrospective Studies , Adult , Treatment Outcome
2.
Blood ; 134(4): 389-394, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31101624

ABSTRACT

We have previously demonstrated that oxidative phosphorylation is required for the survival of human leukemia stem cells (LSCs) from patients with acute myeloid leukemia (AML). More recently, we demonstrated that LSCs in patients with de novo AML rely on amino acid metabolism to drive oxidative phosphorylation. Notably, although overall levels of amino acids contribute to LSC energy metabolism, our current findings suggest that cysteine may be of particular importance for LSC survival. We demonstrate that exogenous cysteine is metabolized exclusively to glutathione. Upon cysteine depletion, glutathione synthesis is impaired, leading to reduced glutathionylation of succinate dehydrogenase A (SDHA), a key component of electron transport chain complex (ETC) II. Loss of SDHA glutathionylation impairs ETC II activity, thereby inhibiting oxidative phosphorylation, reducing production of ATP, and leading to LSC death. Given the role of cysteine in driving LSC energy production, we tested cysteine depletion as a potential therapeutic strategy. Using a novel cysteine-degrading enzyme, we demonstrate selective eradication of LSCs, with no detectable effect on normal hematopoietic stem/progenitor cells. Together, these findings indicate that LSCs are aberrantly reliant on cysteine to sustain energy metabolism, and that targeting this axis may represent a useful therapeutic strategy.


Subject(s)
Cysteine/metabolism , Electron Transport Complex II/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Adenosine Triphosphate/metabolism , Biomarkers , Energy Metabolism , Glutathione/metabolism , Humans , Oxidation-Reduction , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism , Succinate Dehydrogenase/metabolism
3.
Haematologica ; 105(3): 585-597, 2020 03.
Article in English | MEDLINE | ID: mdl-31101752

ABSTRACT

Rheumatoid arthritis (RA) is a debilitating autoimmune disease characterized by chronic inflammation and progressive destruction of joint tissue. It is also characterized by aberrant blood phenotypes including anemia and suppressed lymphopoiesis that contribute to morbidity in RA patients. However, the impact of RA on hematopoietic stem cells (HSC) has not been fully elucidated. Using a collagen-induced mouse model of human RA, we identified systemic inflammation and myeloid overproduction associated with activation of a myeloid differentiation gene program in HSC. Surprisingly, despite ongoing inflammation, HSC from arthritic mice remain in a quiescent state associated with activation of a proliferation arrest gene program. Strikingly, we found that inflammatory cytokine blockade using the interleukin-1 receptor antagonist anakinra led to an attenuation of inflammatory arthritis and myeloid expansion in the bone marrow of arthritic mice. In addition, anakinra reduced expression of inflammation-driven myeloid lineage and proliferation arrest gene programs in HSC of arthritic mice. Altogether, our findings show that inflammatory cytokine blockade can contribute to normalization of hematopoiesis in the context of chronic autoimmune arthritis.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Autoimmune Diseases , Animals , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Cytokines , Disease Models, Animal , Humans , Mice
4.
Blood ; 128(13): 1671-8, 2016 09 29.
Article in English | MEDLINE | ID: mdl-27421961

ABSTRACT

Most cancers evolve over time as patients initially responsive to therapy acquire resistance to the same drugs at relapse. Cancer stem cells have been postulated to represent a therapy-refractory reservoir for relapse, but formal proof of this model is lacking. We prospectively characterized leukemia stem cell populations (LSCs) from a well-defined cohort of patients with acute myelogenous leukemia (AML) at diagnosis and relapse to assess the effect of the disease course on these critical populations. Leukemic samples were collected from patients with newly diagnosed AML before therapy and after relapse, and LSC frequency was assessed by limiting dilution analyses. LSC populations were identified using fluorescent-labeled cell sorting and transplantation into immunodeficient NOD/SCID/interleukin 2 receptor γ chain null mice. The surface antigen expression profiles of pretherapy and postrelapse LSCs were determined for published LSC markers. We demonstrate a 9- to 90-fold increase in LSC frequency between diagnosis and relapse. LSC activity at relapse was identified in populations of leukemic blasts that did not demonstrate this activity before treatment and relapse. In addition, we describe genetic instability and exceptional phenotypic changes that accompany the evolution of these new LSC populations. This study is the first to characterize the evolution of LSCs in vivo after chemotherapy, identifying a dramatic change in the physiology of primitive AML cells when the disease progresses. Taken together, these findings provide a new frame of reference by which to evaluate candidate AML therapies in which both disease control and the induction of more advanced forms of disease should be considered.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/pathology , Adult , Aged , Aged, 80 and over , Animals , Biomarkers, Tumor/immunology , Cohort Studies , Disease Progression , Female , Humans , Immunophenotyping , Leukemia, Myeloid, Acute/immunology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neoplasm Transplantation , Neoplastic Stem Cells/immunology , Prospective Studies , Recurrence , Young Adult
5.
J Biol Chem ; 291(42): 21984-22000, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27573247

ABSTRACT

Although multidrug approaches to cancer therapy are common, few strategies are based on rigorous scientific principles. Rather, drug combinations are largely dictated by empirical or clinical parameters. In the present study we developed a strategy for rational design of a regimen that selectively targets human acute myelogenous leukemia (AML) stem cells. As a starting point, we used parthenolide, an agent shown to target critical mechanisms of redox balance in primary AML cells. Next, using proteomic, genomic, and metabolomic methods, we determined that treatment with parthenolide leads to induction of compensatory mechanisms that include up-regulated NADPH production via the pentose phosphate pathway as well as activation of the Nrf2-mediated oxidative stress response pathway. Using this knowledge we identified 2-deoxyglucose and temsirolimus as agents that can be added to a parthenolide regimen as a means to inhibit such compensatory events and thereby further enhance eradication of AML cells. We demonstrate that the parthenolide, 2-deoxyglucose, temsirolimus (termed PDT) regimen is a potent means of targeting AML stem cells but has little to no effect on normal stem cells. Taken together our findings illustrate a comprehensive approach to designing combination anticancer drug regimens.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Gene Expression Regulation, Leukemic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , NF-E2-Related Factor 2/metabolism , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Deoxyglucose/pharmacology , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , NADP/biosynthesis , Neoplastic Stem Cells/pathology , Sesquiterpenes/pharmacology , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , Up-Regulation/drug effects
6.
Stem Cells ; 32(5): 1124-35, 2014 May.
Article in English | MEDLINE | ID: mdl-24458840

ABSTRACT

We discovered that glioblastoma (GBM) cells use Cool-1/ß-pix to inhibit normal activation of the c-Cbl ubiquitin ligase via the redox/Fyn/c-Cbl pathway and that c-Cbl inhibition is critical for GBM cell function. Restoring normal c-Cbl activity by Cool-1 knockdown in vitro reduced GBM cell division, almost eliminated generation of adhesion-independent spheroids, reduced the representation of cells expressing antigens thought to identify tumor initiating cells (TICs), reduced levels of several proteins of critical importance in TIC function (such as Notch-1 and Sox2), and increased sensitivity to BCNU (carmustine) and temozolomide (TMZ). In vivo, Cool-1 knockdown greatly suppressed the ability of GBM cells to generate tumors, an outcome that was c-Cbl dependent. In contrast, Cool-1 knockdown did not reduce division or increase BCNU or TMZ sensitivity in primary glial progenitor cells and Cool-1/c-Cbl complexes were not found in normal brain tissue. Our studies provide the first evidence that Cool-1 may be critical in the biology of human tumors, that suppression of c-Cbl by Cool-1 may be critical for generation of at least a subset of GBMs and offer a novel target that appears to be selectively necessary for TIC function and modulates chemoresistance in GBM cells. Targeting such proteins that inhibit c-Cbl offers potentially attractive opportunities for therapeutic development.


Subject(s)
Cell Proliferation , Glioblastoma/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Animals , Antineoplastic Agents, Alkylating/pharmacology , Blotting, Western , Carmustine/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Flow Cytometry , Glioblastoma/genetics , Glioblastoma/pathology , HEK293 Cells , Humans , Male , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Protein Binding/drug effects , Protein Binding/genetics , RNA Interference , Rho Guanine Nucleotide Exchange Factors/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Spheroids, Cellular/metabolism , Temozolomide , Transplantation, Heterologous , Tumor Burden/genetics , Tumor Cells, Cultured
7.
Clin Cancer Res ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723281

ABSTRACT

PURPOSE: Immunomodulatory drugs (IMiDs), such as lenalidomide and pomalidomide, are cornerstone therapies in Multiple Myeloma (MM), yet patients inevitably become refractory. IMiDs exert cytotoxicity through inducing Cereblon-dependent proteasomal degradation of IKZF1 and IKZF3, resulting in downregulation of the oncogenic transcription factors IRF4 and MYC. To date, clinical IMiD resistance independent of CRBN or IKZF1/3 has not been well-explored. Here, we investigated the roles of IRF4 and MYC in this context. EXPERIMENTAL DESIGN: Using bone marrow aspirates from patients with IMiD naïve or refractory MM, we examined IKZF1/3 protein levels and IRF4/MYC gene expression following ex vivo pomalidomide treatment via flow cytometry and qPCR. We also assessed ex vivo sensitivity to the MYC inhibitor, MYCi975, using flow cytometry. RESULTS: We discovered that while pomalidomide frequently led to IKZF1/3 degradation in MM cells, MYC gene expression was unaffected by pomalidomide in most IMiD refractory samples. We subsequently demonstrated that MYCi975 exerted strong anti-MM effects in both IMiD naïve and refractory samples. Unexpectedly, we identified CD8+ T cells from patients with MM as crucial effectors of MYCi975-induced cytotoxicity in primary MM samples, and we discovered MYCi975 enhanced the cytotoxic functions of memory CD8+ T cells. We lastly observed synergy between MYCi975 and pomalidomide in IMiD refractory samples, suggesting restoring MYC downregulation can re-sensitize refractory MM to IMiDs. CONCLUSION: Our study supports the concept that MYC represents an Achille's heel in MM across disease states and that MYCi975 may be a promising therapeutic for patients with MM, particularly in combination with IMiDs.

8.
Cancer Discov ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787341

ABSTRACT

Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. While venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug-responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e. OXPHOS) status with relatively high levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in LSCs and provide an avenue for clinical management of venetoclax resistance.

9.
Metabolites ; 13(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37110126

ABSTRACT

Recent advances in targeting leukemic stem cells (LSCs) using venetoclax with azacitidine (ven + aza) has significantly improved outcomes for de novo acute myeloid leukemia (AML) patients. However, patients who relapse after traditional chemotherapy are often venetoclax-resistant and exhibit poor clinical outcomes. We previously described that fatty acid metabolism drives oxidative phosphorylation (OXPHOS) and acts as a mechanism of LSC survival in relapsed/refractory AML. Here, we report that chemotherapy-relapsed primary AML displays aberrant fatty acid and lipid metabolism, as well as increased fatty acid desaturation through the activity of fatty acid desaturases 1 and 2, and that fatty acid desaturases function as a mechanism of recycling NAD+ to drive relapsed LSC survival. When combined with ven + aza, the genetic and pharmacologic inhibition of fatty acid desaturation results in decreased primary AML viability in relapsed AML. This study includes the largest lipidomic profile of LSC-enriched primary AML patient cells to date and indicates that inhibition of fatty acid desaturation is a promising therapeutic target for relapsed AML.

10.
Cancers (Basel) ; 15(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38001595

ABSTRACT

An antibody-drug conjugate (ADC) targeting CD46 conjugated to monomethyl auristatin has a potent anti-myeloma effect in cell lines in vitro and in vivo, and patient samples treated ex vivo. Here, we tested if CD46-ADC may have the potential to target MM-initiating cells (MM-ICs). CD46 expression was measured on primary MM cells with a stem-like phenotype. A patient-derived xenograft (PDX) model was implemented utilizing implanted fetal bone fragments to provide a humanized microenvironment. Engraftment was monitored via serum human light chain ELISA, and at sacrifice via bone marrow and bone fragment flow cytometry. We then tested MM regeneration in PDX by treating mice with CD46-ADC or the nonbinding control-ADC. MM progenitor cells from patients that exhibit high aldehyde dehydrogenase activity also have a high expression of CD46. In PDX, newly diagnosed MM patient samples engrafted significantly more compared to relapsed/refractory samples. In mice transplanted with newly diagnosed samples, CD46-ADC treatment showed significantly decreased engraftment compared to control-ADC treatment. Our data further support the targeting of CD46 in MM. To our knowledge, this is the first study to show preclinical drug efficacy in a PDX model of MM. This is an important area for future study, as patient samples but not cell lines accurately represent intratumoral heterogeneity.

11.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873284

ABSTRACT

We previously reported that acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL2, creating a therapeutic opportunity to target LSCs using the BCL2 inhibitor drug venetoclax. While venetoclax-based regimens have indeed shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence mechanisms that dictate venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e., OXPHOS) status with relatively high steady-state levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake sharply reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in the biology of LSCs and provide a therapeutic avenue for clinical management of venetoclax resistance.

12.
Cancer Discov ; 13(9): 2032-2049, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37358260

ABSTRACT

The BCL2 inhibitor venetoclax has recently emerged as an important component of acute myeloid leukemia (AML) therapy. Notably, use of this agent has revealed a previously unrecognized form of pathogenesis characterized by monocytic disease progression. We demonstrate that this form of disease arises from a fundamentally different type of leukemia stem cell (LSC), which we designate as monocytic LSC (m-LSC), that is developmentally and clinically distinct from the more well-described primitive LSC (p-LSC). The m-LSC is distinguished by a unique immunophenotype (CD34-, CD4+, CD11b-, CD14-, CD36-), unique transcriptional state, reliance on purine metabolism, and selective sensitivity to cladribine. Critically, in some instances, m-LSC and p-LSC subtypes can co-reside in the same patient with AML and simultaneously contribute to overall tumor biology. Thus, our findings demonstrate that LSC heterogeneity has direct clinical significance and highlight the need to distinguish and target m-LSCs as a means to improve clinical outcomes with venetoclax-based regimens. SIGNIFICANCE: These studies identify and characterize a new type of human acute myeloid LSC that is responsible for monocytic disease progression in patients with AML treated with venetoclax-based regimens. Our studies describe the phenotype, molecular properties, and drug sensitivities of this unique LSC subclass. This article is featured in Selected Articles from This Issue, p. 1949.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Antigens, CD34/metabolism , Antigens, CD34/therapeutic use , Leukemia, Myeloid, Acute/genetics , Neoplastic Stem Cells/metabolism , Disease Progression
14.
STAR Protoc ; 2(1): 100248, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33437968

ABSTRACT

Isolation of leukemia stem cells presents a challenge due to the heterogeneity of the immunophenotypic markers commonly used to identify blood stem cells. Several studies have reported that relative levels of reactive oxygen species (ROS) can be used to enrich for stem cell populations, suggesting a potential alternative to surface antigen-based methods. Here, we describe a protocol to enrich for stem cells from human acute myeloid leukemia specimens using relative levels of ROS. This protocol provides consistent enrichment of leukemia stem cells. For complete details on the use and execution of this protocol, please refer to Lagadinou et al. (2013) and Pei et al. (2018).


Subject(s)
Flow Cytometry , Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Reactive Oxygen Species/metabolism , Animals , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
15.
J Leukoc Biol ; 110(1): 197-205, 2021 07.
Article in English | MEDLINE | ID: mdl-33155727

ABSTRACT

Two factors known to contribute to the development of myelodysplastic syndrome (MDS) and other blood cancers are (i) somatically acquired mutations in components of the spliceosome and (ii) increased inflammation. Spliceosome genes, including SF3B1, are mutated at high frequency in MDS and other blood cancers; these mutations are thought to be neomorphic or gain-of-function mutations that drive disease pathogenesis. Likewise, increased inflammation is thought to contribute to MDS pathogenesis; inflammatory cytokines are strongly elevated in these patients, with higher levels correlating with worsened patient outcome. In the current study, we used RNAseq to analyze pre-mRNA splicing and gene expression changes present in blast cells isolated from MDS patients with or without SF3B1 mutations. We determined that SF3B1 mutations lead to enhanced proinflammatory gene expression in these cells. Thus, these studies suggest that SF3B1 mutations could contribute to MDS pathogenesis by enhancing the proinflammatory milieu in these patients.


Subject(s)
Gene Expression , Mutation , Myelodysplastic Syndromes/genetics , Phosphoproteins/genetics , RNA Splicing Factors/genetics , Stem Cells/metabolism , Cytokines/metabolism , Humans , Inflammation Mediators/metabolism , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , RNA Splicing , Spliceosomes/metabolism
16.
Cancer Discov ; 11(2): 500-519, 2021 02.
Article in English | MEDLINE | ID: mdl-33028621

ABSTRACT

Due to the disseminated nature of leukemia, malignant cells are exposed to many different tissue microenvironments, including a variety of extramedullary sites. In the present study, we demonstrate that leukemic cells residing in the liver display unique biological properties and also contribute to systemic changes that influence physiologic responses to chemotherapy. Specifically, the liver microenvironment induces metabolic adaptations via upregulating expression of endothelial lipase in leukemia cells, which not only stimulates tumor cell proliferation through polyunsaturated fatty acid-mediated pathways, but also promotes survival by stabilizing antiapoptotic proteins. Additionally, hepatic infiltration and tissue damage caused by malignant cells induces release of liver-derived enzymes capable of degrading chemotherapy drugs, an event that further protects leukemia cells from conventional therapies. Together, these studies demonstrate a unique role for liver in modulating the pathogenesis of leukemic disease and suggest that the hepatic microenvironment may protect leukemia cells from chemotherapeutic challenge. SIGNIFICANCE: The studies presented herein demonstrate that the liver provides a microenvironment in which leukemia cells acquire unique metabolic properties. The adaptations that occur in the liver confer increased resistance to chemotherapy. Therefore, we propose that therapies designed to overcome liver-specific metabolic changes will yield improved outcomes for patients with leukemia.This article is highlighted in the In This Issue feature, p. 211.


Subject(s)
Leukemia/metabolism , Lipase/metabolism , Liver/metabolism , Animals , Cell Proliferation , Disease Models, Animal , Humans , Liver/pathology , Mice , Mice, Inbred C57BL , Tumor Microenvironment
17.
Clin Cancer Res ; 27(3): 819-830, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33109736

ABSTRACT

PURPOSE: The prognosis of patients with multiple myeloma who are resistant to proteasome inhibitors, immunomodulatory drugs (IMiD), and daratumumab is extremely poor. Even B-cell maturation antigen-specific chimeric antigen receptor T-cell therapies provide only a temporary benefit before patients succumb to their disease. In this article, we interrogate the unique sensitivity of multiple myeloma cells to the alternative strategy of blocking protein translation with omacetaxine. EXPERIMENTAL DESIGN: We determined protein translation levels (n = 17) and sensitivity to omacetaxine (n = 51) of primary multiple myeloma patient samples. Synergy was evaluated between omacetaxine and IMiDs in vitro, ex vivo, and in vivo. Underlying mechanism was investigated via proteomic analysis. RESULTS: Almost universally, primary patient multiple myeloma cells exhibit >2.5-fold increased rates of protein translation compared with normal marrow cells. Ex vivo treatment with omacetaxine resulted in >50% reduction in viable multiple myeloma cells. In this cohort, high levels of translation serve as a biomarker for patient multiple myeloma cell sensitivity to omacetaxine. Unexpectedly, omacetaxine demonstrated synergy with IMiDs in multiple myeloma cell lines in vitro. In addition, in an IMiD-resistant relapsed patient sample, omacetaxine/IMiD combination treatment resensitized the multiple myeloma cells to the IMiD. Proteomic analysis found that the omacetaxine/IMiD combination treatment produced a double-hit on the IRF4/c-MYC pathway, which is critical to multiple myeloma survival. CONCLUSIONS: Overall, protein translation inhibitors represent a potential new drug class for myeloma treatment and provide a rationale for conducting clinical trials with omacetaxine alone and in combination with IMiDs for patients with relapsed/refractory multiple myeloma.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Homoharringtonine/pharmacology , Multiple Myeloma/drug therapy , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bone Marrow/pathology , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Drug Synergism , Homoharringtonine/therapeutic use , Humans , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Interferon Regulatory Factors/antagonists & inhibitors , Interferon Regulatory Factors/metabolism , Mice , Multiple Myeloma/pathology , Primary Cell Culture , Protein Synthesis Inhibitors/therapeutic use , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/drug effects , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
18.
J Exp Med ; 218(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-33857288

ABSTRACT

Hematopoietic stem cells (HSCs) are capable of entering the cell cycle to replenish the blood system in response to inflammatory cues; however, excessive proliferation in response to chronic inflammation can lead to either HSC attrition or expansion. The mechanism(s) that limit HSC proliferation and expansion triggered by inflammatory signals are poorly defined. Here, we show that long-term HSCs (HSCLT) rapidly repress protein synthesis and cell cycle genes following treatment with the proinflammatory cytokine interleukin (IL)-1. This gene program is associated with activation of the transcription factor PU.1 and direct PU.1 binding at repressed target genes. Notably, PU.1 is required to repress cell cycle and protein synthesis genes, and IL-1 exposure triggers aberrant protein synthesis and cell cycle activity in PU.1-deficient HSCs. These features are associated with expansion of phenotypic PU.1-deficient HSCs. Thus, we identify a PU.1-dependent mechanism triggered by innate immune stimulation that limits HSC proliferation and pool size. These findings provide insight into how HSCs maintain homeostasis during inflammatory stress.


Subject(s)
Hematopoietic Stem Cells/metabolism , Inflammation/metabolism , Proto-Oncogene Proteins/metabolism , Stress, Physiological/physiology , Trans-Activators/metabolism , Animals , Cell Cycle/physiology , Cell Differentiation/physiology , Cell Proliferation/physiology , Homeostasis/physiology , Immunity, Innate/physiology , Mice , Mice, Inbred C57BL
19.
Blood ; 112(10): 4184-92, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18755985

ABSTRACT

Recent reports have shown that upon expression of appropriate oncogenes, both stem cells and more differentiated progenitor populations can serve as leukemia-initiating cells. These studies suggest that oncogenic mutations subvert normal development and induce reacquisition of stem-like features. However, no study has described how specific mutations influence the ability of differentiating cell subsets to serve as leukemia-initiating cells and if varying such cellular origins confers a functional difference. We have examined the role of the tumor suppressor gene p19(ARF) in a murine model of acute lymphoblastic leukemia and found that loss of p19(ARF) changes the spectrum of cells capable of tumor initiation. With intact p19(ARF), only hematopoietic stem cells (HSCs) can be directly transformed by BCR/ABL expression. In a p19(ARF)-null genetic background expression of the BCR/ABL fusion protein renders functionally defined HSCs, common lymphoid progenitors (CLP), and precursor B-lymphocytes competent to generate leukemia stem cells. Furthermore, we show that leukemias arising from p19(ARF)-null HSC versus pro-B cells differ biologically, including relative response to drug insult. Our observations elucidate a unique mechanism by which heterogeneity arises in tumor populations harboring identical genetic lesions and show that activity of p19(ARF) profoundly influences the nature of tumor-initiating cells during BCR/ABL-mediated leukemogenesis.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Fusion Proteins, bcr-abl/metabolism , Lymphoid Progenitor Cells/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Disease Models, Animal , Fusion Proteins, bcr-abl/genetics , Lymphoid Progenitor Cells/pathology , Mice , Mice, Transgenic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
20.
Nat Cancer ; 1(12): 1176-1187, 2020 12.
Article in English | MEDLINE | ID: mdl-33884374

ABSTRACT

Venetoclax with azacitidine (ven/aza) has emerged as a promising regimen for acute myeloid leukemia (AML), with a high percentage of clinical remissions in newly diagnosed patients. However, approximately 30% of newly diagnosed and the majority of relapsed patients do not achieve remission with ven/aza. We previously reported that ven/aza efficacy is based on eradication of AML stem cells through a mechanism involving inhibition of amino acid metabolism, a process which is required in primitive AML cells to drive oxidative phosphorylation. Herein we demonstrate that resistance to ven/aza occurs via up-regulation of fatty acid oxidation (FAO), which occurs due to RAS pathway mutations, or as a compensatory adaptation in relapsed disease. Utilization of FAO obviates the need for amino acid metabolism, thereby rendering ven/aza ineffective. Pharmacological inhibition of FAO restores sensitivity to ven/aza in drug resistant AML cells. We propose inhibition of FAO as a therapeutic strategy to address ven/aza resistance.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Leukemia, Myeloid, Acute , Amino Acids/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic , Fatty Acids/therapeutic use , Humans , Leukemia, Myeloid, Acute/drug therapy , Stem Cells , Sulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL