Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Nature ; 586(7830): 567-571, 2020 10.
Article in English | MEDLINE | ID: mdl-32756549

ABSTRACT

A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity1. This principle has been applied to design mRNA-1273, an mRNA vaccine that encodes a SARS-CoV-2 spike protein that is stabilized in the prefusion conformation. Here we show that mRNA-1273 induces potent neutralizing antibody responses to both wild-type (D614) and D614G mutant2 SARS-CoV-2 as well as CD8+ T cell responses, and protects against SARS-CoV-2 infection in the lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a phase III trial to evaluate its efficacy.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , 2019-nCoV Vaccine mRNA-1273 , Animals , Antibodies, Neutralizing/immunology , Betacoronavirus/genetics , CD8-Positive T-Lymphocytes/immunology , COVID-19 , COVID-19 Vaccines , Clinical Trials, Phase III as Topic , Coronavirus Infections/genetics , Coronavirus Infections/virology , Female , Lung/immunology , Lung/virology , Mice , Mutation , Nose/immunology , Nose/virology , Pneumonia, Viral/virology , RNA, Messenger/genetics , RNA, Viral/genetics , SARS-CoV-2 , Th1 Cells/immunology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/immunology , Viral Vaccines/chemistry , Viral Vaccines/genetics
2.
Antimicrob Agents Chemother ; 67(11): e0084023, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37800975

ABSTRACT

The unprecedented scale of the COVID-19 pandemic and the rapid evolution of SARS-CoV-2 variants underscore the need for broadly active inhibitors with a high barrier to resistance. The coronavirus main protease (Mpro) is an essential cysteine protease required for viral polyprotein processing and is highly conserved across human coronaviruses. Pomotrelvir is a novel Mpro inhibitor that has recently completed a phase 2 clinical trial. In this report, we demonstrated that pomotrelvir is a potent competitive inhibitor of SARS-CoV-2 Mpro with high selectivity against human proteases. In the enzyme assay, pomotrelvir is also active against Mpro proteins derived from human coronaviruses CoV-229E, CoV-OC43, CoV-HKU1, CoV-NL63, MERS, and SARS-CoV. In cell-based SARS-CoV-2 replicon and SARS-CoV-2 infection assays, pomotrelvir has shown potent inhibitory activity and is broadly active against SARS-CoV-2 clinical isolates including Omicron variants. Many resistance substitutions of the Mpro inhibitor nirmatrelvir confer cross-resistance to pomotrelvir, consistent with the finding from our enzymatic analysis that pomotrelvir and nirmatrelvir compete for the same binding site. In a SARS-CoV-2 infection assay, pomotrelvir is additive when combined with remdesivir or molnupiravir, two nucleoside analogs targeting viral RNA synthesis. In conclusion, our results from the in vitro characterization of pomotrelvir antiviral activity support its further clinical development as an alternative COVID-19 therapeutic option.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , SARS-CoV-2 , Pandemics , Antiviral Agents/pharmacology , Protease Inhibitors
3.
N Engl J Med ; 383(20): 1920-1931, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32663912

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and spread globally, prompting an international effort to accelerate development of a vaccine. The candidate vaccine mRNA-1273 encodes the stabilized prefusion SARS-CoV-2 spike protein. METHODS: We conducted a phase 1, dose-escalation, open-label trial including 45 healthy adults, 18 to 55 years of age, who received two vaccinations, 28 days apart, with mRNA-1273 in a dose of 25 µg, 100 µg, or 250 µg. There were 15 participants in each dose group. RESULTS: After the first vaccination, antibody responses were higher with higher dose (day 29 enzyme-linked immunosorbent assay anti-S-2P antibody geometric mean titer [GMT], 40,227 in the 25-µg group, 109,209 in the 100-µg group, and 213,526 in the 250-µg group). After the second vaccination, the titers increased (day 57 GMT, 299,751, 782,719, and 1,192,154, respectively). After the second vaccination, serum-neutralizing activity was detected by two methods in all participants evaluated, with values generally similar to those in the upper half of the distribution of a panel of control convalescent serum specimens. Solicited adverse events that occurred in more than half the participants included fatigue, chills, headache, myalgia, and pain at the injection site. Systemic adverse events were more common after the second vaccination, particularly with the highest dose, and three participants (21%) in the 250-µg dose group reported one or more severe adverse events. CONCLUSIONS: The mRNA-1273 vaccine induced anti-SARS-CoV-2 immune responses in all participants, and no trial-limiting safety concerns were identified. These findings support further development of this vaccine. (Funded by the National Institute of Allergy and Infectious Diseases and others; mRNA-1273 ClinicalTrials.gov number, NCT04283461).


Subject(s)
Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , RNA, Messenger/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/therapeutic use , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation , Betacoronavirus , COVID-19 , COVID-19 Vaccines , Female , Humans , Immunization, Secondary , Male , SARS-CoV-2 , T-Lymphocytes/immunology , Viral Vaccines/adverse effects , Young Adult
4.
N Engl J Med ; 383(25): 2427-2438, 2020 12 17.
Article in English | MEDLINE | ID: mdl-32991794

ABSTRACT

BACKGROUND: Testing of vaccine candidates to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in an older population is important, since increased incidences of illness and death from coronavirus disease 2019 (Covid-19) have been associated with an older age. METHODS: We conducted a phase 1, dose-escalation, open-label trial of a messenger RNA vaccine, mRNA-1273, which encodes the stabilized prefusion SARS-CoV-2 spike protein (S-2P) in healthy adults. The trial was expanded to include 40 older adults, who were stratified according to age (56 to 70 years or ≥71 years). All the participants were assigned sequentially to receive two doses of either 25 µg or 100 µg of vaccine administered 28 days apart. RESULTS: Solicited adverse events were predominantly mild or moderate in severity and most frequently included fatigue, chills, headache, myalgia, and pain at the injection site. Such adverse events were dose-dependent and were more common after the second immunization. Binding-antibody responses increased rapidly after the first immunization. By day 57, among the participants who received the 25-µg dose, the anti-S-2P geometric mean titer (GMT) was 323,945 among those between the ages of 56 and 70 years and 1,128,391 among those who were 71 years of age or older; among the participants who received the 100-µg dose, the GMT in the two age subgroups was 1,183,066 and 3,638,522, respectively. After the second immunization, serum neutralizing activity was detected in all the participants by multiple methods. Binding- and neutralizing-antibody responses appeared to be similar to those previously reported among vaccine recipients between the ages of 18 and 55 years and were above the median of a panel of controls who had donated convalescent serum. The vaccine elicited a strong CD4 cytokine response involving type 1 helper T cells. CONCLUSIONS: In this small study involving older adults, adverse events associated with the mRNA-1273 vaccine were mainly mild or moderate. The 100-µg dose induced higher binding- and neutralizing-antibody titers than the 25-µg dose, which supports the use of the 100-µg dose in a phase 3 vaccine trial. (Funded by the National Institute of Allergy and Infectious Diseases and others; mRNA-1273 Study ClinicalTrials.gov number, NCT04283461.).


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273 , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Neutralization Tests , Spike Glycoprotein, Coronavirus , T-Lymphocytes/physiology
5.
PLoS Pathog ; 17(1): e1009226, 2021 01.
Article in English | MEDLINE | ID: mdl-33465137

ABSTRACT

Recombination is proposed to be critical for coronavirus (CoV) diversity and emergence of SARS-CoV-2 and other zoonotic CoVs. While RNA recombination is required during normal CoV replication, the mechanisms and determinants of CoV recombination are not known. CoVs encode an RNA proofreading exoribonuclease (nsp14-ExoN) that is distinct from the CoV polymerase and is responsible for high-fidelity RNA synthesis, resistance to nucleoside analogues, immune evasion, and virulence. Here, we demonstrate that CoVs, including SARS-CoV-2, MERS-CoV, and the model CoV murine hepatitis virus (MHV), generate extensive and diverse recombination products during replication in culture. We show that the MHV nsp14-ExoN is required for native recombination, and that inactivation of ExoN results in decreased recombination frequency and altered recombination products. These results add yet another critical function to nsp14-ExoN, highlight the uniqueness of the evolved coronavirus replicase, and further emphasize nsp14-ExoN as a central, completely conserved, and vulnerable target for inhibitors and attenuation of SARS-CoV-2 and future emerging zoonotic CoVs.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Infections/drug therapy , Exoribonucleases/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Antiviral Agents/pharmacology , COVID-19/virology , Coronavirus Infections/virology , Exoribonucleases/genetics , Humans , Recombination, Genetic/drug effects , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/genetics , Virus Replication/genetics
7.
Org Biomol Chem ; 15(6): 1363-1380, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28074950

ABSTRACT

There is tremendous potential for oligonucleotide (ON) therapeutics, but low cellular penetration due to their polyanionic nature is a major obstacle. We addressed this problem by developing a new approach for ON charge neutralization in which multiple branched charge-neutralizing sleeves (BCNSs) are attached to the internucleoside phosphates of ON by phosphotriester bonds. The BCNSs are terminated with positively charged amino groups, and are optimized to form ion pairs with the neighboring phosphate groups. The new modified ONs can be prepared by standard automated phosphoramidite chemistry in good yield and purity. They possess good solubility and hybridization properties, are not involved in non-standard intramolecular aggregation, have low cytotoxicity, adequate chemical stability, improved serum stability, and above all, display significantly enhanced cellular uptake. Thus, the new ON derivatives exhibit properties that make them promising candidates for the development of novel therapeutics or research tools for modulation of the expression of target genes.


Subject(s)
Oligonucleotides/pharmacology , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Kinetics , Models, Molecular , Molecular Structure , Oligonucleotides/chemistry , Solubility , Structure-Activity Relationship
8.
Sci Transl Med ; 14(656): eabo0718, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35482820

ABSTRACT

The nucleoside analog remdesivir (RDV) is a Food and Drug Administration-approved antiviral for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Thus, it is critical to understand factors that promote or prevent RDV resistance. We passaged SARS-CoV-2 in the presence of increasing concentrations of GS-441524, the parent nucleoside of RDV. After 13 passages, we isolated three viral lineages with phenotypic resistance as defined by increases in half-maximal effective concentration from 2.7- to 10.4-fold. Sequence analysis identified nonsynonymous mutations in nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp): V166A, N198S, S759A, V792I, and C799F/R. Two lineages encoded the S759A substitution at the RdRp Ser759-Asp-Asp active motif. In one lineage, the V792I substitution emerged first and then combined with S759A. Introduction of S759A and V792I substitutions at homologous nsp12 positions in murine hepatitis virus demonstrated transferability across betacoronaviruses; introduction of these substitutions resulted in up to 38-fold RDV resistance and a replication defect. Biochemical analysis of SARS-CoV-2 RdRp encoding S759A demonstrated a roughly 10-fold decreased preference for RDV-triphosphate (RDV-TP) as a substrate, whereas nsp12-V792I diminished the uridine triphosphate concentration needed to overcome template-dependent inhibition associated with RDV. The in vitro-selected substitutions identified in this study were rare or not detected in the greater than 6 million publicly available nsp12-RdRp consensus sequences in the absence of RDV selection. The results define genetic and biochemical pathways to RDV resistance and emphasize the need for additional studies to define the potential for emergence of these or other RDV resistance mutations in clinical settings.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Drug Resistance, Viral , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Humans , Mice , Mutation/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics
9.
iScience ; 25(1): 103602, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34901783

ABSTRACT

The COVID-19 pandemic revealed an urgent need for rapid profiling of neutralizing antibody responses and development of antibody therapeutics. The current Food and Drug Administration-approved serological tests do not measure antibody-mediated viral neutralization, and there is a need for standardized quantitative neutralization assays. We report a high-throughput two-step profiling approach for identifying neutralizing convalescent plasma. Screening and downselection for serum antibody binding to the receptor-binding domain are followed by quantitative neutralization testing using a chimeric vesicular stomatitis virus expressing spike protein of SARS-CoV-2 in a real-time cell analysis assay. This approach enables a predictive screening process for identifying plasma units that neutralize SARS-CoV-2. To calibrate antibody neutralizing activity in serum from convalescent plasma donors, we introduce a neutralizing antibody standard reagent composed of two human antibodies that neutralize SARS-CoV strains, including SARS-CoV-2 variants of concern. Our results provide a framework for establishing a standardized assessment of antibody-based interventions against COVID-19.

10.
Chest ; 162(5): 982-994, 2022 11.
Article in English | MEDLINE | ID: mdl-35780813

ABSTRACT

BACKGROUND: Convalescent plasma has been one of the most common treatments for COVID-19, but most clinical trial data to date have not supported its efficacy. RESEARCH QUESTION: Is rigorously selected COVID-19 convalescent plasma with neutralizing anti-SARS-CoV-2 antibodies an efficacious treatment for adults hospitalized with COVID-19? STUDY DESIGN AND METHODS: This was a multicenter, blinded, placebo-controlled randomized clinical trial among adults hospitalized with SARS-CoV-2 infection and acute respiratory symptoms for < 14 days. Enrolled patients were randomly assigned to receive one unit of COVID-19 convalescent plasma (n = 487) or placebo (n = 473). The primary outcome was clinical status (disease severity) 14 days following study infusion measured with a seven-category ordinal scale ranging from discharged from the hospital with resumption of normal activities (lowest score) to death (highest score). The primary outcome was analyzed with a multivariable ordinal regression model, with an adjusted odds ratio (aOR) < 1.0 indicating more favorable outcomes with convalescent plasma than with placebo. In secondary analyses, trial participants were stratified according to the presence of endogenous anti-SARS-CoV-2 antibodies ("serostatus") at randomization. The trial included 13 secondary efficacy outcomes, including 28-day mortality. RESULTS: Among 974 randomized patients, 960 were included in the primary analysis. Clinical status on the ordinal outcome scale at 14 days did not differ between the convalescent plasma and placebo groups in the overall population (aOR, 1.04; one-seventh support interval [1/7 SI], 0.82-1.33), in patients without endogenous antibodies (aOR, 1.15; 1/7 SI, 0.74-1.80), or in patients with endogenous antibodies (aOR, 0.96; 1/7 SI, 0.72-1.30). None of the 13 secondary efficacy outcomes were different between groups. At 28 days, 89 of 482 (18.5%) patients in the convalescent plasma group and 80 of 465 (17.2%) patients in the placebo group had died (aOR, 1.04; 1/7 SI, 0.69-1.58). INTERPRETATION: Among adults hospitalized with COVID-19, including those seronegative for anti-SARS-CoV-2 antibodies, treatment with convalescent plasma did not improve clinical outcomes. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT04362176; URL: www. CLINICALTRIALS: gov.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/therapy , SARS-CoV-2 , Antibodies, Viral , Hospitalization , Treatment Outcome , COVID-19 Serotherapy
11.
Cell Rep ; 37(5): 109929, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34710354

ABSTRACT

Current coronavirus (CoV) vaccines primarily target immunodominant epitopes in the S1 subunit, which are poorly conserved and susceptible to escape mutations, thus threatening vaccine efficacy. Here, we use structure-guided protein engineering to remove the S1 subunit from the Middle East respiratory syndrome (MERS)-CoV spike (S) glycoprotein and develop stabilized stem (SS) antigens. Vaccination with MERS SS elicits cross-reactive ß-CoV antibody responses and protects mice against lethal MERS-CoV challenge. High-throughput screening of antibody-secreting cells from MERS SS-immunized mice led to the discovery of a panel of cross-reactive monoclonal antibodies. Among them, antibody IgG22 binds with high affinity to both MERS-CoV and severe acute respiratory syndrome (SARS)-CoV-2 S proteins, and a combination of electron microscopy and crystal structures localizes the epitope to a conserved coiled-coil region in the S2 subunit. Passive transfer of IgG22 protects mice against both MERS-CoV and SARS-CoV-2 challenge. Collectively, these results provide a proof of principle for cross-reactive CoV antibodies and inform the development of pan-CoV vaccines and therapeutic antibodies.


Subject(s)
Antibodies, Viral/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Cell Line , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Reactions , Drug Design , Epitope Mapping , Female , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred BALB C , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Viral Vaccines/immunology
12.
Sci Transl Med ; 12(541)2020 04 29.
Article in English | MEDLINE | ID: mdl-32253226

ABSTRACT

Coronaviruses (CoVs) traffic frequently between species resulting in novel disease outbreaks, most recently exemplified by the newly emerged SARS-CoV-2, the causative agent of COVID-19. Here, we show that the ribonucleoside analog ß-d-N4-hydroxycytidine (NHC; EIDD-1931) has broad-spectrum antiviral activity against SARS-CoV-2, MERS-CoV, SARS-CoV, and related zoonotic group 2b or 2c bat-CoVs, as well as increased potency against a CoV bearing resistance mutations to the nucleoside analog inhibitor remdesivir. In mice infected with SARS-CoV or MERS-CoV, both prophylactic and therapeutic administration of EIDD-2801, an orally bioavailable NHC prodrug (ß-d-N4-hydroxycytidine-5'-isopropyl ester), improved pulmonary function and reduced virus titer and body weight loss. Decreased MERS-CoV yields in vitro and in vivo were associated with increased transition mutation frequency in viral, but not host cell RNA, supporting a mechanism of lethal mutagenesis in CoV. The potency of NHC/EIDD-2801 against multiple CoVs and oral bioavailability highlights its potential utility as an effective antiviral against SARS-CoV-2 and other future zoonotic CoVs.


Subject(s)
Antiviral Agents/administration & dosage , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Ribonucleosides/administration & dosage , Virus Replication/drug effects , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Alanine/administration & dosage , Alanine/analogs & derivatives , Animals , Antibiotic Prophylaxis , Betacoronavirus/physiology , COVID-19 , Cell Line , Coronavirus Infections/pathology , Cytidine/administration & dosage , Cytidine/analogs & derivatives , Disease Models, Animal , Drug Resistance, Viral , Humans , Hydroxylamines , Lung/pathology , Mice , Mice, Inbred C57BL , Middle East Respiratory Syndrome Coronavirus/physiology , Models, Molecular , Mutation/drug effects , Pandemics , Pneumonia, Viral/pathology , Primary Cell Culture , RNA, Viral , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , Random Allocation , Respiratory System/cytology , SARS-CoV-2
13.
Cell Rep ; 32(3): 107940, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32668216

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the novel viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV) potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC50 = 0.01 µM). Weaker activity is observed in Vero E6 cells (EC50 = 1.65 µM) because of their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase of SARS-CoV-2. In mice infected with the chimeric virus, therapeutic RDV administration diminishes lung viral load and improves pulmonary function compared with vehicle-treated animals. These data demonstrate that RDV is potently active against SARS-CoV-2 in vitro and in vivo, supporting its further clinical testing for treatment of COVID-19.

14.
bioRxiv ; 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32511392

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 as the causative agent of the novel pandemic viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for safe, broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV), a monophosphoramidate prodrug of an adenosine analog, potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC 50 = 0.01 µM). Weaker activity was observed in Vero E6 cells (EC 50 = 1.65 µM) due to their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase, of SARS-CoV-2. In mice infected with chimeric virus, therapeutic RDV administration diminished lung viral load and improved pulmonary function as compared to vehicle treated animals. These data provide evidence that RDV is potently active against SARS-CoV-2 in vitro and in vivo , supporting its further clinical testing for treatment of COVID-19.

15.
bioRxiv ; 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32577634

ABSTRACT

A SARS-CoV-2 vaccine is needed to control the global COVID-19 public health crisis. Atomic-level structures directed the application of prefusion-stabilizing mutations that improved expression and immunogenicity of betacoronavirus spike proteins. Using this established immunogen design, the release of SARS-CoV-2 sequences triggered immediate rapid manufacturing of an mRNA vaccine expressing the prefusion-stabilized SARS-CoV-2 spike trimer (mRNA-1273). Here, we show that mRNA-1273 induces both potent neutralizing antibody and CD8 T cell responses and protects against SARS-CoV-2 infection in lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a Phase 2 clinical trial with a trajectory towards Phase 3 efficacy evaluation.

16.
Cell Rep ; 28(13): 3395-3405.e6, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31553909

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV.


Subject(s)
Epitopes/metabolism , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Humans
17.
Article in English | MEDLINE | ID: mdl-16962757

ABSTRACT

Lower levels of long-chain polyunsaturated fatty acids, particularly omega-3 fatty acids, in blood have repeatedly been associated with a variety of behavioral disorders including attention-deficit/hyperactivity disorder (ADHD). The exact nature of this relationship is not yet clear. We have studied children with ADHD who exhibited skin and thirst symptoms classically associated with essential fatty acid (EFA) deficiency, altered plasma and red blood cell fatty acid profiles, and dietary intake patterns that do not differ significantly from controls. This led us to focus on a potential metabolic insufficiency as the cause for the altered fatty acid phenotype. Here we review previous work and present new data expanding our observations into the young adult population. The frequency of thirst and skin symptoms was greater in newly diagnosed individuals with ADHD (n = 35) versus control individuals without behavioral problems (n = 112) drawn from the Purdue student population. A follow up case-control study with participants willing to provide a blood sample, a urine sample, a questionnaire about their general health, and dietary intake records was conducted with balancing based on gender, age, body mass index, smoking and ethnicity. A number of biochemical measures were analyzed including status markers for several nutrients and antioxidants, markers of oxidative stress, inflammation markers, and fatty acid profiles in the blood. The proportion of omega-3 fatty acids was found to be significantly lower in plasma phospholipids and erythrocytes in the ADHD group versus controls whereas saturated fatty acid proportions were higher. Intake of saturated fat was 30% higher in the ADHD group, but intake of all other nutrients was not different. Surprisingly, no evidence of elevated oxidative stress was found based on analysis of blood and urine samples. Indeed, serum ferritin, magnesium, and ascorbate concentrations were higher in the ADHD group, but iron, zinc, and vitamin B6 were not different. Our brief survey of biochemical and nutritional parameters did not give us any insight into the etiology of lower omega-3 fatty acids, but considering the consistency of the observation in multiple ADHD populations continued research in this field is encouraged.


Subject(s)
Attention Deficit Disorder with Hyperactivity/blood , Fatty Acids, Omega-3/blood , Adult , Attention Deficit Disorder with Hyperactivity/epidemiology , Behavior , Case-Control Studies , Diet , Fatty Acids, Unsaturated/blood , Fatty Acids, Unsaturated/deficiency , Feeding Behavior , Female , Food Analysis , Humans , Male , Skin Abnormalities/epidemiology , Thirst/physiology
18.
Clin Pediatr (Phila) ; 54(4): 309-21, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24764054

ABSTRACT

Artificial food colors (AFCs) are used to color many beverages, foods, and sweets in the United States and throughout the world. In the United States, the Food and Drug Administration (FDA) limits the AFCs allowed in the diet to 9 different colors. The FDA certifies each batch of manufactured AFCs to guarantee purity and safety. The amount certified has risen from 12 mg/capita/d in 1950 to 62 mg/capita/d in 2010. Previously, we reported the amounts of AFCs in commonly consumed beverages. In this article, the amounts of AFCs in commonly consumed foods and sweets are reported. In addition, the amount of sugars in each product is included. Amounts of AFCs reported here along with the beverage data show that many children could be consuming far more dyes than previously thought. Clinical guidance is given to help caregivers avoid AFCs and reduce the amount of sugars in children's diets.


Subject(s)
Dietary Sucrose/analysis , Food Analysis/statistics & numerical data , Food Coloring Agents/analysis , Candy/statistics & numerical data , Food/statistics & numerical data , Humans , Spectrophotometry , United States , United States Food and Drug Administration
19.
Clin Pediatr (Phila) ; 53(2): 133-40, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24037921

ABSTRACT

Artificial food colors (AFCs) are widely used to color foods and beverages. The amount of AFCs the Food and Drug Administration has certified over the years has increased more than 5-fold since 1950 (12 mg/capita/day) to 2012 (68 mg/capita/day). In the past 38 years, there have been studies of adverse behavioral reactions such as hyperactivity in children to double-blind challenges with AFCs. Studies that used 50 mg or more of AFCs as the challenge showed a greater negative effect on more children than those which used less. The study reported here is the first to quantify the amounts of AFCs in foods (specifically in beverages) commonly consumed by children in the United States. Consumption data for all foods would be helpful in the design of more challenge studies. The data summarized here should help clinicians advise parents about AFCs and beverage consumption.


Subject(s)
Beverages/analysis , Food Coloring Agents/analysis , Attention Deficit Disorder with Hyperactivity/chemically induced , Child , Food Coloring Agents/adverse effects , Humans , Spectrophotometry , United States
20.
PLoS One ; 9(10): e110158, 2014.
Article in English | MEDLINE | ID: mdl-25340613

ABSTRACT

Engineering resistance genes to gain effector recognition is emerging as an important step in attaining broad, durable resistance. We engineered potato resistance gene R3a to gain recognition of the virulent AVR3aEM effector form of Phytophthora infestans. Random mutagenesis, gene shuffling and site-directed mutagenesis of R3a were conducted to produce R3a* variants with gain of recognition towards AVR3aEM. Programmed cell death following gain of recognition was enhanced in iterative rounds of artificial evolution and neared levels observed for recognition of AVR3aKI by R3a. We demonstrated that R3a*-mediated recognition responses, like for R3a, are dependent on SGT1 and HSP90. In addition, this gain of response is associated with re-localisation of R3a* variants from the cytoplasm to late endosomes when co-expressed with either AVR3aKI or AVR3aEM a mechanism that was previously only seen for R3a upon co-infiltration with AVR3aKI. Similarly, AVR3aEM specifically re-localised to the same vesicles upon recognition by R3a* variants, but not with R3a. R3a and R3a* provide resistance to P. infestans isolates expressing AVR3aKI but not those homozygous for AVR3aEM.


Subject(s)
Directed Molecular Evolution , Disease Resistance/genetics , Genes, Plant , Phytophthora infestans/metabolism , Phytophthora infestans/pathogenicity , Solanum tuberosum/genetics , Solanum tuberosum/microbiology , Agrobacterium/physiology , Apoptosis , DNA Shuffling , Endosomes/metabolism , Homozygote , Mutagenesis, Site-Directed , Mutation/genetics , Phytophthora infestans/isolation & purification , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Recombinant Fusion Proteins/metabolism , Virulence , Virulence Factors
SELECTION OF CITATIONS
SEARCH DETAIL