Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
Add more filters

Publication year range
1.
Cell ; 154(5): 1151-1161, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23993102

ABSTRACT

The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: (1) associate with specific cancer-genomic alterations and (2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (http://www.broadinstitute.org/ctrp) to enable users to correlate genetic features to sensitivity in individual lineages and control for confounding factors of CCL profiling. We report a candidate dependency, associating activating mutations in the oncogene ß-catenin with sensitivity to the Bcl-2 family antagonist, navitoclax. The resource can be used to develop novel therapeutic hypotheses and to accelerate discovery of drugs matched to patients by their cancer genotype and lineage.


Subject(s)
Databases, Pharmaceutical , Drug Discovery , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Neoplasms/genetics
2.
PLoS Genet ; 20(3): e1011187, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457464

ABSTRACT

BACKGROUND: Recent developments in CRISPR/Cas9 genome-editing tools have facilitated the introduction of precise alleles, including genetic intervals spanning several kilobases, directly into the embryo. However, the introduction of donor templates, via homology directed repair, can be erroneous or incomplete and these techniques often produce mosaic founder animals. Thus, newly generated alleles must be verified at the sequence level across the targeted locus. Screening for the presence of the desired mutant allele using traditional sequencing methods can be challenging due to the size of the interval to be sequenced, together with the mosaic nature of founders. METHODOLOGY/PRINCIPAL FINDINGS: In order to help disentangle the genetic complexity of these animals, we tested the application of Oxford Nanopore Technologies long-read sequencing at the targeted locus and found that the achievable depth of sequencing is sufficient to offset the sequencing error rate associated with the technology used to validate targeted regions of interest. We have assembled an analysis workflow that facilitates interrogating the entire length of a targeted segment in a single read, to confirm that the intended mutant sequence is present in both heterozygous animals and mosaic founders. We used this workflow to compare the output of PCR-based and Cas9 capture-based targeted sequencing for validation of edited alleles. CONCLUSION: Targeted long-read sequencing supports in-depth characterisation of all experimental models that aim to produce knock-in or conditional alleles, including those that contain a mix of genome-edited alleles. PCR- or Cas9 capture-based modalities bring different advantages to the analysis.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , CRISPR-Cas Systems/genetics , Alleles , Gene Editing/methods , Recombinational DNA Repair , Polymerase Chain Reaction
3.
Hum Mol Genet ; 31(17): 2951-2963, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35416977

ABSTRACT

Pierpont syndrome is a rare disorder characterized mainly by global developmental delay, unusual facial features, altered fat distribution in the limbs and hearing loss. A specific mutation (p.Tyr446Cys) in TBL1XR1, encoding a WD40 repeat-containing protein, which is a component of the SMRT/NCoR (silencing mediator retinoid and thyroid hormone receptors/nuclear receptor corepressors), has been reported as the genetic cause of Pierpont syndrome. Here, we used CRISPR-cas9 technology to generate a mutant mouse with the Y446C mutation in Tbl1xr1, which is also present in Pierpont syndrome. Several aspects of the phenotype were studied in the mutant mice: growth, body composition, hearing, motor behavior, thyroid hormone state and lipid and glucose metabolism. The mutant mice (Tbl1xr1Y446C/Y446C) displayed delayed growth, altered body composition with increased relative lean mass and impaired hearing. Expression of several genes involved in fatty acid metabolism differed in white adipose tissue, but not in liver or muscle of mutant mice compared to wild-type mice (Tbl1xr1+/+). No difference in thyroid hormone plasma concentrations was observed. Tbl1xr1Y446C/Y446C mice can be used as a model for distinct features of Pierpont syndrome, which will enable future studies on the pathogenic mechanisms underlying the various phenotypic characteristics.


Subject(s)
Nuclear Proteins , Repressor Proteins , Animals , Developmental Disabilities , Disease Models, Animal , Facies , Lipomatosis , Mice , Mutation , Nuclear Proteins/genetics , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Repressor Proteins/genetics , Thyroid Hormones
4.
Hum Mol Genet ; 30(10): 880-892, 2021 05 29.
Article in English | MEDLINE | ID: mdl-33729479

ABSTRACT

Adaptor protein 2 (AP2), a heterotetrameric complex comprising AP2α, AP2ß2, AP2µ2 and AP2σ2 subunits, is ubiquitously expressed and involved in endocytosis and trafficking of membrane proteins, such as the calcium-sensing receptor (CaSR), a G-protein coupled receptor that signals via Gα11. Mutations of CaSR, Gα11 and AP2σ2, encoded by AP2S1, cause familial hypocalciuric hypercalcaemia types 1-3 (FHH1-3), respectively. FHH3 patients have heterozygous AP2S1 missense Arg15 mutations (p.Arg15Cys, p.Arg15His or p.Arg15Leu) with hypercalcaemia, which may be marked and symptomatic, and occasional hypophosphataemia and osteomalacia. To further characterize the phenotypic spectrum and calcitropic pathophysiology of FHH3, we used CRISPR/Cas9 genome editing to generate mice harboring the AP2S1 p.Arg15Leu mutation, which causes the most severe FHH3 phenotype. Heterozygous (Ap2s1+/L15) mice were viable, and had marked hypercalcaemia, hypermagnesaemia, hypophosphataemia, and increases in alkaline phosphatase activity and fibroblast growth factor-23. Plasma 1,25-dihydroxyvitamin D was normal, and no alterations in bone mineral density or bone turnover were noted. Homozygous (Ap2s1L15/L15) mice invariably died perinatally. Co-immunoprecipitation studies showed that the AP2S1 p.Arg15Leu mutation impaired protein-protein interactions between AP2σ2 and the other AP2 subunits, and also with the CaSR. Cinacalcet, a CaSR positive allosteric modulator, decreased plasma calcium and parathyroid hormone concentrations in Ap2s1+/L15 mice, but had no effect on the diminished AP2σ2-CaSR interaction in vitro. Thus, our studies have established a mouse model that is representative for FHH3 in humans, and demonstrated that the AP2S1 p.Arg15Leu mutation causes a predominantly calcitropic phenotype, which can be ameliorated by treatment with cinacalcet.


Subject(s)
Adaptor Protein Complex 2/genetics , Adaptor Protein Complex sigma Subunits/genetics , Fibroblast Growth Factor-23/genetics , Hypercalcemia/genetics , Receptors, Calcium-Sensing/genetics , Animals , Bone Density/genetics , CRISPR-Cas Systems/genetics , Calcium/metabolism , Cinacalcet/pharmacology , Disease Models, Animal , Gene Editing , Humans , Hypercalcemia/drug therapy , Hypercalcemia/metabolism , Hypercalcemia/pathology , Mice , Mutation/genetics , Phenotype
5.
Mamm Genome ; 34(2): 180-199, 2023 06.
Article in English | MEDLINE | ID: mdl-37294348

ABSTRACT

Reference ranges provide a powerful tool for diagnostic decision-making in clinical medicine and are enormously valuable for understanding normality in pre-clinical scientific research that uses in vivo models. As yet, there are no published reference ranges for electrocardiography (ECG) in the laboratory mouse. The first mouse-specific reference ranges for the assessment of electrical conduction are reported herein generated from an ECG dataset of unprecedented scale. International Mouse Phenotyping Consortium data from over 26,000 conscious or anesthetized C57BL/6N wildtype control mice were stratified by sex and age to develop robust ECG reference ranges. Interesting findings include that heart rate and key elements from the ECG waveform (RR-, PR-, ST-, QT-interval, QT corrected, and QRS complex) demonstrate minimal sexual dimorphism. As expected, anesthesia induces a decrease in heart rate and was shown for both inhalation (isoflurane) and injectable (tribromoethanol) anesthesia. In the absence of pharmacological, environmental, or genetic challenges, we did not observe major age-related ECG changes in C57BL/6N-inbred mice as the differences in the reference ranges of 12-week-old compared to 62-week-old mice were negligible. The generalizability of the C57BL/6N substrain reference ranges was demonstrated by comparison with ECG data from a wide range of non-IMPC studies. The close overlap in data from a wide range of mouse strains suggests that the C57BL/6N-based reference ranges can be used as a robust and comprehensive indicator of normality. We report a unique ECG reference resource of fundamental importance for any experimental study of cardiac function in mice.


Subject(s)
Electrocardiography , Electrophysiologic Techniques, Cardiac , Mice , Animals , Mice, Inbred C57BL , Mice, Inbred Strains
6.
Mol Cell ; 57(5): 873-886, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25684204

ABSTRACT

BCL-2 is a negative regulator of apoptosis implicated in homeostatic and pathologic cell survival. The canonical anti-apoptotic mechanism involves entrapment of activated BAX by a groove on BCL-2, preventing BAX homo-oligomerization and mitochondrial membrane poration. The BCL-2 BH4 domain also confers anti-apoptotic functionality, but the mechanism is unknown. We find that a synthetic α-helical BH4 domain binds to BAX with nanomolar affinity and independently inhibits the conformational activation of BAX. Hydrogen-deuterium exchange mass spectrometry demonstrated that the N-terminal conformational changes in BAX induced by a triggering BIM BH3 helix were suppressed by the BCL-2 BH4 helix. Structural analyses localized the BH4 interaction site to a groove formed by residues of α1, α1-α2 loop, and α2-α3 and α5-α6 hairpins on the BAX surface. These data reveal a previously unappreciated binding site for targeted inhibition of BAX and suggest that the BCL-2 BH4 domain may participate in apoptosis blockade by a noncanonical interaction mechanism.


Subject(s)
Apoptosis , Protein Structure, Secondary , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/chemistry , bcl-2-Associated X Protein/chemistry , Amino Acid Sequence , Binding Sites/genetics , Deuterium Exchange Measurement/methods , HeLa Cells , Humans , Mass Spectrometry/methods , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding , Protein Conformation , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
7.
Proc Natl Acad Sci U S A ; 117(29): 17195-17203, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32606248

ABSTRACT

The vast majority of intracellular protein targets are refractory toward small-molecule therapeutic engagement, and additional therapeutic modalities are needed to overcome this deficiency. Here, the identification and characterization of a natural product, WDB002, reveals a therapeutic modality that dramatically expands the currently accepted limits of druggability. WDB002, in complex with the FK506-binding protein (FKBP12), potently and selectively binds the human centrosomal protein 250 (CEP250), resulting in disruption of CEP250 function in cells. The recognition mode is unprecedented in that the targeted domain of CEP250 is a coiled coil and is topologically featureless, embodying both a structural motif and surface topology previously considered on the extreme limits of "undruggability" for an intracellular target. Structural studies reveal extensive protein-WDB002 and protein-protein contacts, with the latter being distinct from those seen in FKBP12 ternary complexes formed by FK506 and rapamycin. Outward-facing structural changes in a bound small molecule can thus reprogram FKBP12 to engage diverse, otherwise "undruggable" targets. The flat-targeting modality demonstrated here has the potential to expand the druggable target range of small-molecule therapeutics. As CEP250 was recently found to be an interaction partner with the Nsp13 protein of the SARS-CoV-2 virus that causes COVID-19 disease, it is possible that WDB002 or an analog may exert useful antiviral activity through its ability to form high-affinity ternary complexes containing CEP250 and FKBP12.


Subject(s)
Actinobacteria/genetics , Antiviral Agents/pharmacology , Genome, Bacterial , Macrolides/pharmacology , Protein Interaction Domains and Motifs/drug effects , Small Molecule Libraries/pharmacology , Tacrolimus Binding Protein 1A/chemistry , Tacrolimus Binding Protein 1A/metabolism , Actinobacteria/metabolism , Amino Acid Sequence , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Autoantigens/genetics , Autoantigens/metabolism , Calcineurin/genetics , Calcineurin/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Evolution, Molecular , HEK293 Cells , Humans , Macrolides/chemistry , Macrolides/metabolism , Models, Molecular , Protein Conformation , Sequence Homology , Sirolimus/chemistry , Sirolimus/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
8.
Int J Mol Sci ; 24(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894872

ABSTRACT

With the increasing popularity of cryo-electron tomography (cryo-ET) in recent years, the quest to establish a method for growing primary neurons directly on electron microscopy grids (EM grids) has been ongoing. Here we describe a straightforward way to establish a mature neuronal network on EM grids, which includes formation of synaptic contacts. These synapses were thin enough to allow for direct visualization of small filaments such as SNARE proteins tethering the synaptic vesicle (SV) to the active zone plasma membrane on a Titan Krios without prior focused ion-beam milling.


Subject(s)
Astrocytes , Synapses , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Neurons
9.
EMBO J ; 37(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29764981

ABSTRACT

TDP-43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP-43 function at physiological levels both in vitro and in vivo Interestingly, we find that mutations within the C-terminal domain of TDP-43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP-43 loss- and gain-of-function effects. TDP-43 gain-of-function effects in these mice reveal a novel category of splicing events controlled by TDP-43, referred to as "skiptic" exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain-of-function mutation in endogenous Tardbp causes an adult-onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain-of-function and skiptic exons in ALS patient-derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP-43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation/genetics , RNA-Binding Proteins/genetics , Alternative Splicing/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Exons/genetics , Humans , Mice , Motor Neurons/metabolism , Motor Neurons/pathology , Mutation , RNA Splicing/genetics
10.
PLoS Biol ; 17(9): e3000414, 2019 09.
Article in English | MEDLINE | ID: mdl-31479441

ABSTRACT

Bardet-Biedl syndrome (BBS), a ciliopathy, is a rare genetic condition characterised by retinal degeneration, obesity, kidney failure, and cognitive impairment. In spite of progress made in our general understanding of BBS aetiology, the molecular and cellular mechanisms underlying cognitive impairment in BBS remain elusive. Here, we report that the loss of BBS proteins causes synaptic dysfunction in principal neurons, providing a possible explanation for the cognitive impairment phenotype observed in BBS patients. Using synaptosomal proteomics and immunocytochemistry, we demonstrate the presence of Bbs proteins in the postsynaptic density (PSD) of hippocampal neurons. Loss of Bbs results in a significant reduction of dendritic spines in principal neurons of Bbs mouse models. Furthermore, we show that spine deficiency correlates with events that destabilise spine architecture, such as impaired spine membrane receptor signalling, known to be involved in the maintenance of dendritic spines. Our findings suggest a role for BBS proteins in dendritic spine homeostasis that may be linked to the cognitive phenotype observed in BBS.


Subject(s)
Bardet-Biedl Syndrome/pathology , Cytoskeletal Proteins/metabolism , Dendritic Spines/pathology , Animals , Anxiety , Bardet-Biedl Syndrome/metabolism , Bardet-Biedl Syndrome/physiopathology , Bardet-Biedl Syndrome/psychology , Dentate Gyrus/physiopathology , Disease Models, Animal , Excitatory Postsynaptic Potentials , Female , Male , Memory , Mice , Receptor, IGF Type 1/metabolism , Synaptosomes/metabolism
12.
Behav Sci Law ; 40(1): 14-30, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34708434

ABSTRACT

In 2008, the Truth and Reconciliation Commission of Canada engaged in a public project of national reconciliation to address the ongoing impacts of settler colonialism including the disproportionate number of Indigenous adults and youth who are held in remand facilities awaiting trial or sentence as well as those who are convicted and sentenced to periods of incarceration. Efforts to further reconciliation by reducing Indigenous incarceration rates have relied largely on the courts and their application of a sentencing principle rooted in the Supreme Court's ruling in R. v. Gladue [1999] 1 SCR 688. In this article, we argue that the Gladue sentencing principle is being fundamentally undermined in the courts through risk models that actively displace the very context that Gladue reports seek to illuminate. Included in the analysis are the compounding impacts facing Indigenous individuals struggling with a complex disability like Fetal Alcohol Spectrum Disorder.


Subject(s)
Colonialism , Fetal Alcohol Spectrum Disorders , Adolescent , Adult , Canada , Female , Humans , Law Enforcement , Pregnancy
13.
N Engl J Med ; 379(11): 1007-1016, 2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30145929

ABSTRACT

BACKGROUND: Transthyretin amyloid cardiomyopathy is caused by the deposition of transthyretin amyloid fibrils in the myocardium. The deposition occurs when wild-type or variant transthyretin becomes unstable and misfolds. Tafamidis binds to transthyretin, preventing tetramer dissociation and amyloidogenesis. METHODS: In a multicenter, international, double-blind, placebo-controlled, phase 3 trial, we randomly assigned 441 patients with transthyretin amyloid cardiomyopathy in a 2:1:2 ratio to receive 80 mg of tafamidis, 20 mg of tafamidis, or placebo for 30 months. In the primary analysis, we hierarchically assessed all-cause mortality, followed by frequency of cardiovascular-related hospitalizations according to the Finkelstein-Schoenfeld method. Key secondary end points were the change from baseline to month 30 for the 6-minute walk test and the score on the Kansas City Cardiomyopathy Questionnaire-Overall Summary (KCCQ-OS), in which higher scores indicate better health status. RESULTS: In the primary analysis, all-cause mortality and rates of cardiovascular-related hospitalizations were lower among the 264 patients who received tafamidis than among the 177 patients who received placebo (P<0.001). Tafamidis was associated with lower all-cause mortality than placebo (78 of 264 [29.5%] vs. 76 of 177 [42.9%]; hazard ratio, 0.70; 95% confidence interval [CI], 0.51 to 0.96) and a lower rate of cardiovascular-related hospitalizations, with a relative risk ratio of 0.68 (0.48 per year vs. 0.70 per year; 95% CI, 0.56 to 0.81). At month 30, tafamidis was also associated with a lower rate of decline in distance for the 6-minute walk test (P<0.001) and a lower rate of decline in KCCQ-OS score (P<0.001). The incidence and types of adverse events were similar in the two groups. CONCLUSIONS: In patients with transthyretin amyloid cardiomyopathy, tafamidis was associated with reductions in all-cause mortality and cardiovascular-related hospitalizations and reduced the decline in functional capacity and quality of life as compared with placebo. (Funded by Pfizer; ATTR-ACT ClinicalTrials.gov number, NCT01994889 .).


Subject(s)
Amyloid Neuropathies, Familial/drug therapy , Benzoxazoles/therapeutic use , Cardiomyopathies/drug therapy , Prealbumin/antagonists & inhibitors , Administration, Oral , Aged , Aged, 80 and over , Amyloid Neuropathies, Familial/complications , Benzoxazoles/adverse effects , Cardiomyopathies/complications , Disease Progression , Double-Blind Method , Female , Heart Failure/etiology , Heart Failure/mortality , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Quality of Life , Survival Analysis , Walk Test
14.
Mamm Genome ; 32(2): 94-103, 2021 04.
Article in English | MEDLINE | ID: mdl-33713180

ABSTRACT

The small EDRK-rich factor 2 (SERF2) is a highly conserved protein that modifies amyloid fibre assembly in vitro and promotes protein misfolding. However, the role of SERF2 in regulating age-related proteotoxicity remains largely unexplored due to a lack of in vivo models. Here, we report the generation of Serf2 knockout mice using an ES cell targeting approach, with Serf2 knockout alleles being bred onto different defined genetic backgrounds. We highlight phenotyping data from heterozygous Serf2+/- mice, including unexpected male-specific phenotypes in startle response and pre-pulse inhibition. We report embryonic lethality in Serf2-/- null animals when bred onto a C57BL/6 N background. However, homozygous null animals were viable on a mixed genetic background and, remarkably, developed without obvious abnormalities. The Serf2 knockout mice provide a powerful tool to further investigate the role of SERF2 protein in previously unexplored pathophysiological pathways in the context of a whole organism.


Subject(s)
Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Intracellular Signaling Peptides and Proteins/genetics , Phenotype , Age Factors , Alleles , Alternative Splicing , Animals , Cell Line , Disease Models, Animal , Embryonic Stem Cells/metabolism , Female , Gene Expression Regulation , Genetic Association Studies/methods , Genetic Background , Genetic Loci , Genotype , Male , Mice , Mice, Knockout , Organ Specificity , X-Ray Microtomography
15.
Hum Mol Genet ; 27(10): 1723-1731, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29509900

ABSTRACT

Polyglutamine expansions in the huntingtin gene cause Huntington's disease (HD). Huntingtin is ubiquitously expressed, leading to pathological alterations also in peripheral organs. Variations in the length of the polyglutamine tract explain up to 70% of the age-at-onset variance, with the rest of the variance attributed to genetic and environmental modifiers. To identify novel disease modifiers, we performed an unbiased mutagenesis screen on an HD mouse model, identifying a mutation in the skeletal muscle voltage-gated sodium channel (Scn4a, termed 'draggen' mutation) as a novel disease enhancer. Double mutant mice (HD; Scn4aDgn/+) had decreased survival, weight loss and muscle atrophy. Expression patterns show that the main tissue affected is skeletal muscle. Intriguingly, muscles from HD; Scn4aDgn/+ mice showed adaptive changes similar to those found in endurance exercise, including AMPK activation, fibre type switching and upregulation of mitochondrial biogenesis. Therefore, we evaluated the effects of endurance training on HD mice. Crucially, this training regime also led to detrimental effects on HD mice. Overall, these results reveal a novel role for skeletal muscle in modulating systemic HD pathogenesis, suggesting that some forms of physical exercise could be deleterious in neurodegeneration.


Subject(s)
Huntington Disease/genetics , Muscular Atrophy/genetics , NAV1.4 Voltage-Gated Sodium Channel/genetics , Animals , Disease Models, Animal , Endurance Training , Enhancer Elements, Genetic , Humans , Huntingtin Protein/genetics , Huntington Disease/physiopathology , Huntington Disease/therapy , Mice , Muscular Atrophy/physiopathology , Muscular Atrophy/therapy , Mutation , Neurons/pathology , Neurons/physiology , Organelle Biogenesis , Peptides/genetics , Physical Conditioning, Animal , Trinucleotide Repeat Expansion/genetics
16.
Am J Hum Genet ; 98(6): 1249-1255, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27236917

ABSTRACT

Glutamatergic neurotransmission governs excitatory signaling in the mammalian brain, and abnormalities of glutamate signaling have been shown to contribute to both epilepsy and hyperkinetic movement disorders. The etiology of many severe childhood movement disorders and epilepsies remains uncharacterized. We describe a neurological disorder with epilepsy and prominent choreoathetosis caused by biallelic pathogenic variants in FRRS1L, which encodes an AMPA receptor outer-core protein. Loss of FRRS1L function attenuates AMPA-mediated currents, implicating chronic abnormalities of glutamatergic neurotransmission in this monogenic neurological disease of childhood.


Subject(s)
Brain Diseases/genetics , Epilepsy/genetics , Hyperkinesis/genetics , Membrane Proteins/genetics , Mutation/genetics , Nerve Tissue Proteins/genetics , Synaptic Transmission/physiology , Electrophysiology , Female , Humans , Infant , Male , Pedigree , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
17.
BMC Biol ; 16(1): 70, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29925374

ABSTRACT

BACKGROUND: Recent advances in clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing have led to the use of long single-stranded DNA (lssDNA) molecules for generating conditional mutations. However, there is still limited available data on the efficiency and reliability of this method. RESULTS: We generated conditional mouse alleles using lssDNA donor templates and performed extensive characterization of the resulting mutations. We observed that the use of lssDNA molecules as donors efficiently yielded founders bearing the conditional allele, with seven out of nine projects giving rise to modified alleles. However, rearranged alleles including nucleotide changes, indels, local rearrangements and additional integrations were also frequently generated by this method. Specifically, we found that alleles containing unexpected point mutations were found in three of the nine projects analyzed. Alleles originating from illegitimate repairs or partial integration of the donor were detected in eight projects. Furthermore, additional integrations of donor molecules were identified in four out of the seven projects analyzed by copy counting. This highlighted the requirement for a thorough allele validation by polymerase chain reaction, sequencing and copy counting of the mice generated through this method. We also demonstrated the feasibility of using lssDNA donors to generate thus far problematic point mutations distant from active CRISPR cutting sites by targeting two distinct genes (Gckr and Rims1). We propose a strategy to perform extensive quality control and validation of both types of mouse models generated using lssDNA donors. CONCLUSION: lssDNA donors reproducibly generate conditional alleles and can be used to introduce point mutations away from CRISPR/Cas9 cutting sites in mice. However, our work demonstrates that thorough quality control of new models is essential prior to reliably experimenting with mice generated by this method. These advances in genome editing techniques shift the challenge of mutagenesis from generation to the validation of new mutant models.


Subject(s)
DNA, Single-Stranded , Gene Editing/methods , Gene Targeting , Mice/genetics , Alleles , Animals , CRISPR-Cas Systems , Mutation , Reproducibility of Results
18.
Hum Mol Genet ; 25(2): 291-307, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26604141

ABSTRACT

Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid-protein and protein-protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function. To further investigate the function of ZFP106, we performed an in-depth characterization of Zfp106 deficient mice (Zfp106(-/-)), and we report a novel role for ZFP106 in motor and sensory neuronal maintenance and survival. Zfp106(-/-) mice develop severe motor abnormalities, major deficits in muscle strength and histopathological changes in muscle. Intriguingly, despite being highly expressed throughout the central nervous system, Zfp106(-/-) mice undergo selective motor and sensory neuronal and axonal degeneration specific to the spinal cord and peripheral nervous system. Neurodegeneration does not occur during development of Zfp106(-/-) mice, suggesting that ZFP106 is likely required for the maintenance of mature peripheral motor and sensory neurons. Analysis of embryonic Zfp106(-/-) motor neurons revealed deficits in mitochondrial function, with an inhibition of Complex I within the mitochondrial electron transport chain. Our results highlight a vital role for ZFP106 in sensory and motor neuron maintenance and reveal a novel player in mitochondrial dysfunction and neurodegeneration.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Motor Neurons/metabolism , Neurodegenerative Diseases/genetics , Sensory Receptor Cells/metabolism , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondria/physiology , Motor Neurons/physiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Sensory Receptor Cells/physiology
19.
Muscle Nerve ; 57(5): 829-837, 2018 05.
Article in English | MEDLINE | ID: mdl-29211930

ABSTRACT

INTRODUCTION: This study sought to estimate the global prevalence of transthyretin familial amyloid polyneuropathy (ATTR-FAP). METHODS: Prevalence estimates and information supporting prevalence calculations was extracted from records yielded by reference-database searches (2005-2016), conference proceedings, and nonpeer reviewed sources. Prevalence was calculated as prevalence rate multiplied by general population size, then extrapolated to countries without prevalence estimates but with reported cases. RESULTS: Searches returned 3,006 records; 1,001 were fully assessed and 10 retained, yielding prevalence for 10 "core" countries, then extrapolated to 32 additional countries. ATTR-FAP prevalence in core countries, extrapolated countries, and globally was 3,762 (range 3639-3884), 6424 (range, 1,887-34,584), and 10,186 (range, 5,526-38,468) persons, respectively. DISCUSSION: The mid global prevalence estimate (10,186) approximates the maximum commonly accepted estimate (5,000-10,000). The upper limit (38,468) implies potentially higher prevalence. These estimates should be interpreted carefully because contributing evidence was heterogeneous and carried an overall moderate risk of bias. This highlights the requirement for increasing rare-disease epidemiological assessment and clinician awareness. Muscle Nerve 57: 829-837, 2018.


Subject(s)
Amyloid Neuropathies, Familial/diagnosis , Amyloid Neuropathies, Familial/epidemiology , Global Health , Electronics, Medical/statistics & numerical data , Female , Humans , Male , Prevalence
20.
Methods ; 121-122: 68-76, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28363792

ABSTRACT

The application of CRISPR/Cas9 technology has revolutionised genetics by greatly enhancing the efficacy of genome editing in the early embryo. Furthermore, the system has enabled the generation of allele types previously incompatible with in vivo mutagenesis. Despite its versatility and ease of implementation, CRISPR/Cas9 editing outcome is unpredictable and can generate mosaic founders. Therefore, careful genotyping and characterisation of new mutants is proving essential. The literature presents a wide range of protocols for molecular characterisation, each representing different levels of investment. We present strategies and protocols for designing, producing and screening CRISPR/Cas9 edited founders and genotyping their offspring according to desired allele type (indel, point mutation and deletion).


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems , Endonucleases/genetics , Gene Editing/methods , Gene Knockout Techniques , Gene Transfer Techniques , RNA, Guide, Kinetoplastida/genetics , Alleles , Animals , Animals, Newborn , Bacterial Proteins/metabolism , CRISPR-Associated Protein 9 , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Embryo, Mammalian , Endonucleases/metabolism , Gene Targeting/methods , Genome , Genotyping Techniques , INDEL Mutation , Mice , Mice, Transgenic , Microinjections , Point Mutation , Quality Control , RNA, Guide, Kinetoplastida/metabolism , Recombinational DNA Repair , Zygote/cytology , Zygote/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL