Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Cancer ; 23(1): 115, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811992

ABSTRACT

BACKGROUND: We explored potential predictive biomarkers of immunotherapy response in patients with extensive-stage small-cell lung cancer (ES-SCLC) treated with durvalumab (D) + tremelimumab (T) + etoposide-platinum (EP), D + EP, or EP in the randomized phase 3 CASPIAN trial. METHODS: 805 treatment-naïve patients with ES-SCLC were randomized (1:1:1) to receive D + T + EP, D + EP, or EP. The primary endpoint was overall survival (OS). Patients were required to provide an archived tumor tissue block (or ≥ 15 newly cut unstained slides) at screening, if these samples existed. After assessment for programmed cell death ligand-1 expression and tissue tumor mutational burden, residual tissue was used for additional molecular profiling including by RNA sequencing and immunohistochemistry. RESULTS: In 182 patients with transcriptional molecular subtyping, OS with D ± T + EP was numerically highest in the SCLC-inflamed subtype (n = 10, median 24.0 months). Patients derived benefit from immunotherapy across subtypes; thus, additional biomarkers were investigated. OS benefit with D ± T + EP versus EP was greater with high versus low CD8A expression/CD8 cell density by immunohistochemistry, but with no additional benefit with D + T + EP versus D + EP. OS benefit with D + T + EP versus D + EP was associated with high expression of CD4 (median 25.9 vs. 11.4 months) and antigen-presenting and processing machinery (25.9 vs. 14.6 months) and MHC I and II (23.6 vs. 17.3 months) gene signatures, and with higher MHC I expression by immunohistochemistry. CONCLUSIONS: These findings demonstrate the tumor microenvironment is important in mediating better outcomes with D ± T + EP in ES-SCLC, with canonical immune markers associated with hypothesized immunotherapy mechanisms of action defining patient subsets that respond to D ± T. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03043872.


Subject(s)
Biomarkers, Tumor , Immunotherapy , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/mortality , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Female , Male , Immunotherapy/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Middle Aged , Aged , Antibodies, Monoclonal/therapeutic use , Treatment Outcome , Neoplasm Staging , Antibodies, Monoclonal, Humanized/therapeutic use , Prognosis , Adult
2.
Lancet Oncol ; 22(9): 1275-1289, 2021 09.
Article in English | MEDLINE | ID: mdl-34363762

ABSTRACT

BACKGROUND: Although most patients with epithelial ovarian cancer respond to frontline platinum-based chemotherapy, around 70% will relapse within 3 years. The phase 3 JAVELIN Ovarian 100 trial compared avelumab (anti-PD-L1 monoclonal antibody) in combination with chemotherapy followed by avelumab maintenance, or chemotherapy followed by avelumab maintenance, versus chemotherapy alone in patients with treatment-naive epithelial ovarian cancer. METHODS: JAVELIN Ovarian 100 was a global, open-label, three-arm, parallel, randomised, phase 3 trial run at 159 hospitals and cancer treatment centres in 25 countries. Eligible women were aged 18 years and older with stage III-IV epithelial ovarian, fallopian tube, or peritoneal cancer (following debulking surgery, or candidates for neoadjuvant chemotherapy), and had an Eastern Cooperative Oncology Group performance status of 0 or 1. Patients were randomly assigned (1:1:1) via interactive response technology to receive chemotherapy (six cycles; carboplatin dosed at an area under the serum-concentration-time curve of 5 or 6 intravenously every 3 weeks plus paclitaxel 175 mg/m2 every 3 weeks or 80 mg/m2 once a week [investigators' choice]) followed by avelumab maintenance (10 mg/kg intravenously every 2 weeks; avelumab maintenance group); chemotherapy plus avelumab (10 mg/kg intravenously every 3 weeks) followed by avelumab maintenance (avelumab combination group); or chemotherapy followed by observation (control group). Randomisation was in permuted blocks of size six and stratified by paclitaxel regimen and resection status. Patients and investigators were masked to assignment to the two chemotherapy groups without avelumab at the time of randomisation until completion of the chemotherapy phase. The primary endpoint was progression-free survival assessed by blinded independent central review in all randomly assigned patients (analysed by intention to treat). Safety was analysed in all patients who received at least one dose of study treatment. This trial is registered with ClinicalTrials.gov, NCT02718417. The trial was fully enrolled and terminated at interim analysis due to futility, and efficacy is no longer being assessed. FINDINGS: Between May 19, 2016 and Jan 23, 2018, 998 patients were randomly assigned (avelumab maintenance n=332, avelumab combination n=331, and control n=335). At the planned interim analysis (data cutoff Sept 7, 2018), prespecified futility boundaries were crossed for the progression-free survival analysis, and the trial was stopped as recommended by the independent data monitoring committee and endorsed by the protocol steering committee. Median follow-up for progression-free survival for all patients was 10·8 months (IQR 7·1-14·9); 11·1 months (7·0-15·3) for the avelumab maintenance group, 11·0 months (7·4-14·5) for the avelumab combination group, and 10·2 months (6·7-14·0) for the control group. Median progression-free survival was 16·8 months (95% CI 13·5-not estimable [NE]) with avelumab maintenance, 18·1 months (14·8-NE) with avelumab combination treatment, and NE (18·2 months-NE) with control treatment. The stratified hazard ratio for progression-free survival was 1·43 (95% CI 1·05-1·95; one-sided p=0·99) with the avelumab maintenance regimen and 1·14 (0·83-1·56; one-sided p=0·79) with the avelumab combination regimen, versus control treatment. The most common grade 3-4 adverse events were anaemia (69 [21%] patients in the avelumab maintenance group, 63 [19%] in the avelumab combination group, and 53 [16%] in the control group), neutropenia (91 [28%], 99 [30%], and 88 [26%]), and neutrophil count decrease (49 [15%], 45 [14%], and 59 [18%]). Serious adverse events of any grade occurred in 92 (28%) patients in the avelumab maintenance group, 118 (36%) in the avelumab combination group, and 64 (19%) in the control group. Treatment-related deaths occurred in one (<1%) patient in the avelumab maintenance group (due to atrial fibrillation) and one (<1%) patient in the avelumab combination group (due to disease progression). INTERPRETATION: Although no new safety signals were observed, results do not support the use of avelumab in the frontline treatment setting. Alternative treatment regimens are needed to improve outcomes in patients with advanced epithelial ovarian cancer. FUNDING: Pfizer and Merck KGaA, Darmstadt, Germany.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Ovarian Neoplasms/drug therapy , Aged , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Carcinoma, Ovarian Epithelial/pathology , Drug-Related Side Effects and Adverse Reactions , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Maintenance Chemotherapy , Middle Aged , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Progression-Free Survival
3.
Lancet Oncol ; 22(7): 1034-1046, 2021 07.
Article in English | MEDLINE | ID: mdl-34143970

ABSTRACT

BACKGROUND: Most patients with ovarian cancer will relapse after receiving frontline platinum-based chemotherapy and eventually develop platinum-resistant or platinum-refractory disease. We report results of avelumab alone or avelumab plus pegylated liposomal doxorubicin (PLD) compared with PLD alone in patients with platinum-resistant or platinum-refractory ovarian cancer. METHODS: JAVELIN Ovarian 200 was an open-label, parallel-group, three-arm, randomised, phase 3 trial, done at 149 hospitals and cancer treatment centres in 24 countries. Eligible patients were aged 18 years or older with epithelial ovarian, fallopian tube, or peritoneal cancer (maximum of three previous lines for platinum-sensitive disease, none for platinum-resistant disease) and an Eastern Cooperative Oncology Group performance status of 0 or 1. Patients were randomly assigned (1:1:1) via interactive response technology to avelumab (10 mg/kg intravenously every 2 weeks), avelumab plus PLD (40 mg/m2 intravenously every 4 weeks), or PLD and stratified by disease platinum status, number of previous anticancer regimens, and bulky disease. Primary endpoints were progression-free survival by blinded independent central review and overall survival in all randomly assigned patients, with the objective to show whether avelumab alone or avelumab plus PLD is superior to PLD. Safety was assessed in all patients who received at least one dose of study treatment. This trial is registered with ClinicalTrials.gov, NCT02580058. The trial is no longer enrolling patients and this is the final analysis of both primary endpoints. FINDINGS: Between Jan 5, 2016, and May 16, 2017, 566 patients were enrolled and randomly assigned (combination n=188; PLD n=190, avelumab n=188). At data cutoff (Sept 19, 2018), median duration of follow-up for overall survival was 18·4 months (IQR 15·6-21·9) for the combination group, 17·4 months (15·2-21·3) for the PLD group, and 18·2 months (15·8-21·2) for the avelumab group. Median progression-free survival by blinded independent central review was 3·7 months (95% CI 3·3-5·1) in the combination group, 3·5 months (2·1-4·0) in the PLD group, and 1·9 months (1·8-1·9) in the avelumab group (combination vs PLD: stratified HR 0·78 [repeated 93·1% CI 0·59-1·24], one-sided p=0·030; avelumab vs PLD: 1·68 [1·32-2·60], one-sided p>0·99). Median overall survival was 15·7 months (95% CI 12·7-18·7) in the combination group, 13·1 months (11·8-15·5) in the PLD group, and 11·8 months (8·9-14·1) in the avelumab group (combination vs PLD: stratified HR 0·89 [repeated 88·85% CI 0·74-1·24], one-sided p=0·21; avelumab vs PLD: 1·14 [0·95-1·58], one-sided p=0·83]). The most common grade 3 or worse treatment-related adverse events were palmar-plantar erythrodysesthesia syndrome (18 [10%] in the combination group vs nine [5%] in the PLD group vs none in the avelumab group), rash (11 [6%] vs three [2%] vs none), fatigue (ten [5%] vs three [2%] vs none), stomatitis (ten [5%] vs five [3%] vs none), anaemia (six [3%] vs nine [5%] vs three [2%]), neutropenia (nine [5%] vs nine [5%] vs none), and neutrophil count decreased (eight [5%] vs seven [4%] vs none). Serious treatment-related adverse events occurred in 32 (18%) patients in the combination group, 19 (11%) in the PLD group, and 14 (7%) in the avelumab group. Treatment-related adverse events resulted in death in one patient each in the PLD group (sepsis) and avelumab group (intestinal obstruction). INTERPRETATION: Neither avelumab plus PLD nor avelumab alone significantly improved progression-free survival or overall survival versus PLD. These results provide insights for patient selection in future studies of immune checkpoint inhibitors in platinum-resistant or platinum-refractory ovarian cancer. FUNDING: Pfizer and Merck KGaA, Darmstadt, Germany.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Ovarian Neoplasms/drug therapy , Platinum Compounds/therapeutic use , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Disease Progression , Disease-Free Survival , Doxorubicin/analogs & derivatives , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm , Female , Humans , Immune Checkpoint Inhibitors/adverse effects , Middle Aged , Ovarian Neoplasms/immunology , Ovarian Neoplasms/mortality , Platinum Compounds/adverse effects , Polyethylene Glycols/therapeutic use , Time Factors
4.
MAbs ; 13(1): 1857100, 2021.
Article in English | MEDLINE | ID: mdl-33397194

ABSTRACT

Preclinical studies of PD-L1 and CTLA-4 blockade have relied heavily on mouse syngeneic tumor models with intact immune systems, which facilitate dissection of immunosuppressive mechanisms in the tumor microenvironment. Commercially developed monoclonal antibodies (mAbs) targeting human PD-L1, PD-1, and CTLA-4 may not demonstrate cross-reactive binding to their mouse orthologs, and surrogate anti-mouse antibodies are often used in their place to inhibit these immune checkpoints. In each case, multiple choices exist for surrogate antibodies, which differ with respect to species of origin, affinity, and effector function. To develop relevant murine surrogate antibodies for the anti-human PD-L1 mAb durvalumab and the anti-human CTLA-4 mAb tremelimumab, rat/mouse chimeric or fully murine mAbs engineered for reduced effector function were developed and compared with durvalumab and tremelimumab. Characterization included determination of target affinity, in vivo effector function, pharmacokinetic profile, and anti-tumor efficacy in mouse syngeneic tumor models. Results showed that anti-PD-L1 and anti-CTLA-4 murine surrogates with pharmacologic properties similar to those of durvalumab and tremelimumab demonstrated anti-tumor activity in a subset of commonly used mouse syngeneic tumor models. This activity was not entirely dependent on antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis effector function, or regulatory T-cell depletion, as antibodies engineered to lack these features showed activity in models historically sensitive to checkpoint inhibition, albeit at a significantly lower level than antibodies with intact effector function.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Neoplasms, Experimental/drug therapy , T-Lymphocytes, Regulatory/drug effects , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized/immunology , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen/immunology , CTLA-4 Antigen/immunology , Cell Line, Tumor , Female , Humans , Kaplan-Meier Estimate , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Rats, Sprague-Dawley , T-Lymphocytes, Regulatory/immunology , Tumor Burden/drug effects , Tumor Burden/immunology
5.
Cancer Res ; 78(24): 6717-6725, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30498083

ABSTRACT

PARP inhibitors drive increased DNA damage, particularly in tumors with existing defects in DNA repair. This damage not only promotes immune priming through a range of molecular mechanisms, but also leads to adaptive upregulation of programmed death ligand 1 (PD-L1) expression. In this context, PARP inhibition and programmed cell death 1(PD-1)/PD-L1-targeting antibodies represent a rationale combination. In this review, we detail the basic and translational science underpinning this promising new combination, summarize available clinical data, and discuss the key questions that remain to be addressed during future development.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Antibodies/chemistry , CTLA-4 Antigen/metabolism , Cell Death , DNA Damage , Disease Progression , Humans , Immune System , Immunotherapy , Inflammation , Neoplasms/drug therapy , Neoplasms/immunology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Translational Research, Biomedical
6.
Blood Adv ; 1(10): 577-589, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-29296700

ABSTRACT

Innate lymphoid cells (ILCs) represent a distinct branch of the lymphoid lineage composed of 3 major subpopulations: ILC1, ILC2, and ILC3. ILCs are mainly described as tissue-resident cells but can be detected at low levels in human blood. However, unlike mouse ILCs, there is still no consistent methodology to purify and culture these cells that enables in-depth analysis of their intrinsic biology. Here, we describe defined culture conditions for ILC2s, which allowed us to dissect the roles of interleukin 2 (IL-2), IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) individually, or in combination, in modulating ILC2 phenotype and function. We show that TSLP is important for ILC2 survival, while ILC2 activation is more dependent on IL-33, especially when in combination with IL-2 or TSLP. We found that activation of ILC2s by IL-33 and TSLP dramatically upregulated their surface expression of c-Kit and downregulated expression of the canonical markers IL-7Rα and CRTH2. IL-2 further amplified ILC2 production of IL-5, IL-13, and granulocyte-macrophage colony-stimulating factor but also induced a more natural killer (NK)-like phenotype in ILC2, with upregulation of granzyme B production by these cells. Furthermore, ILC2 plasticity was observed in serum-free SFEM II media in response to IL-33, IL-25, and TSLP stimulation and independently of IL-12 and IL-1ß. This is the first comprehensive report of an in vitro culture system for human ILC2s, without the use of feeder layers, which additionally evaluates the impact of IL-25, IL-33, and TSLP alone or in combination on ILC2 surface phenotype and activation status.

SELECTION OF CITATIONS
SEARCH DETAIL