Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chem Senses ; 492024 01 01.
Article in English | MEDLINE | ID: mdl-38175732

ABSTRACT

Although studies have shown that olfaction may contribute to the perception of tastant, literature is scarce or circumstantial, especially in humans. This study aims to (i) explore whether humans can perceive solutions of basic prototypical tastants through orthonasal and retronasal olfaction and (ii) to examine what volatile odor compounds (VOCs) underlie this ability. Solutions of 5 basic tastants (sucrose, sodium chloride, citric acid, monosodium glutamate [MSG], quinine) dissolved in water, and 2 fatty acids (oleic and linoleic acid) dissolved in mineral oil were prepared. Triangle discrimination tests were performed (n = 41 in duplicate) to assess whether the tastant solutions can be distinguished from blanks (solvents) through ortho- and retronasal olfaction. Participants were able to distinguish all tastant solutions from blank through orthonasal olfaction. Only sucrose, sodium chloride, oleic acid, and linoleic acid were distinguished from blank by retronasal olfaction. Ethyl dichloroacetate, methylene chloride, and/or acetone were identified in the headspace of sucrose, MSG, and quinine solutions but not in the headspace of water, sodium chloride, and citric acid solutions. Fat oxidation compounds such as alcohols and aldehydes were detected in the headspace of the oleic and linoleic acid solutions but not the mineral oil. We conclude that prototypical tastant solutions can be discriminated from water and fatty acid solutions from mineral oil through orthonasal olfaction. Differences in the volatile headspace composition between blanks and tastant solutions may have facilitated the olfactory discrimination. These findings can have methodological implications for future studies assessing gustatory perception using these prototypical taste compounds.


Subject(s)
Smell , Sodium Chloride , Humans , Sodium Glutamate , Quinine , Mineral Oil , Taste , Water , Sucrose , Citric Acid/pharmacology , Linoleic Acids
2.
Food Res Int ; 179: 114051, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342550

ABSTRACT

The aim of this study was to investigate the effects of carrot shape (cube vs. julienne) and oral processing behaviour, specifically chewing time, on bolus properties and bioaccessibility of ß-carotene in raw carrots. Participants (n = 20) consumed raw carrot cubes (15 × 15 × 15 mm, 4.2 g/bite) and raw carrot julienne (2 × 3 × 90 mm, 4.2 g/bite) with normal (cube: 20 s/bite; julienne: 28 s/bite) and short (cube: 10 s/bite; julienne: 14 s/bite) chewing time. Expectorated boli were collected and characterized for number and mean area of carrot bolus particles. The proportion of easily extractable ß-carotene of the carrot bolus was taken as an approximate indicator of the potentially bioaccessible ß-carotene. Longer chewing time resulted in significantly more and smaller carrot bolus particles, larger particle surface area (p < 0.01) and higher proportion of easily extractable ß-carotene than shorter chewing of raw carrots of both shapes (Cube_Normal vs. Cube_Short: 29 ± 7 % vs. 23 ± 7 %; Julienne_Normal vs. Julienne Short: 31 ± 8 % vs. 26 ± 6 %, p < 0.05). Carrot shape significantly influenced number and size of bolus particles (p < 0.01) with carrot julienne generating more and smaller carrot bolus particles than carrot cubes. These differences in bolus properties between carrot julienne and cubes did not influence the proportion of easily extractable ß-carotene (p > 0.05). We conclude that differences in oral processing behaviour and the corresponding differences in bolus properties produce only modest differences in ß-carotene bioaccessibility of raw carrots regardless of carrot shape.


Subject(s)
Daucus carota , beta Carotene , Humans , Mastication
3.
J Agric Food Chem ; 72(12): 6723-6734, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38478988

ABSTRACT

This study investigated the effects of chewing rate and food composition on in vivo aroma release and perception of composite foods. Bread or sponge cake paired with varying sugar content and viscosity strawberry jams, spiked with citral and limonene, were examined. In-nose release was characterized using Proton-Transfer-Reaction-Time-of-Flight-Mass-Spectrometry (PTR-ToF-MS). Simultaneously, Time-Intensity (TI) profiling assessed citrus aroma perception (n = 8, triplicate) while fast and slow chewing protocols were applied (fast: 1.33 chews/s; slow 0.66 chews/s; each for 25 s). Chewing rate did not significantly impact the area under the curve and maximum intensity of in vivo citral and limonene release and citrus aroma perception. Faster chewing rates significantly decreased the time to reach maximum intensity of aroma release (p < 0.05) and citrus aroma perception (p < 0.001). Faster chewing rates probably accelerated structural breakdown, inducing an earlier aroma release and perception without affecting aroma intensity. Adding carriers to jams significantly (p < 0.05) increased aroma release, while perceived citrus aroma intensity significantly (p < 0.05) decreased regardless of chewing rate. In conclusion, chewing rate affects the temporality of in vivo aroma release and perception without affecting its intensity, and carrier addition increases in vivo aroma release while diminishing aroma perception.


Subject(s)
Acyclic Monoterpenes , Mastication , Odorants , Odorants/analysis , Limonene , Perception
SELECTION OF CITATIONS
SEARCH DETAIL