ABSTRACT
Structural variations of DNA greater than 1 kilobase in size account for most bases that vary among human genomes, but are still relatively under-ascertained. Here we use tiling oligonucleotide microarrays, comprising 42 million probes, to generate a comprehensive map of 11,700 copy number variations (CNVs) greater than 443 base pairs, of which most (8,599) have been validated independently. For 4,978 of these CNVs, we generated reference genotypes from 450 individuals of European, African or East Asian ancestry. The predominant mutational mechanisms differ among CNV size classes. Retrotransposition has duplicated and inserted some coding and non-coding DNA segments randomly around the genome. Furthermore, by correlation with known trait-associated single nucleotide polymorphisms (SNPs), we identified 30 loci with CNVs that are candidates for influencing disease susceptibility. Despite this, having assessed the completeness of our map and the patterns of linkage disequilibrium between CNVs and SNPs, we conclude that, for complex traits, the heritability void left by genome-wide association studies will not be accounted for by common CNVs.
Subject(s)
DNA Copy Number Variations/genetics , Genetic Predisposition to Disease/genetics , Genome, Human/genetics , Mutagenesis/genetics , Gene Duplication , Genome-Wide Association Study , Genotype , Haplotypes/genetics , Humans , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , Racial Groups/genetics , Reproducibility of ResultsABSTRACT
Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed approximately 19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated approximately 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.
Subject(s)
DNA Copy Number Variations/genetics , Disease , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Arthritis, Rheumatoid/genetics , Case-Control Studies , Crohn Disease/genetics , Diabetes Mellitus/genetics , Gene Frequency/genetics , Humans , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Pilot Projects , Polymorphism, Single Nucleotide/genetics , Quality ControlABSTRACT
The major spliceosome comprises the five snRNAs U1, U2, U4, U5 and U6. We recently showed that mutations in RNU4- 2, which encodes U4 snRNA, cause one of the most prevalent monogenic neurodevelopmental disorders. Here, we report that recurrent germline mutations in RNU2-2P , a 191bp gene encoding U2 snRNA, are responsible for a related disorder. By genetic association, we implicated recurrent de novo single nucleotide mutations at nucleotide positions 4 and 35 of RNU2-2P among nine cases. We replicated this finding in six additional cases, bringing the total to 15. The disorder is characterized by intellectual disability, neurodevelopmental delay, autistic behavior, microcephaly, hypotonia, epilepsy and hyperventilation. All cases display a severe and complex seizure phenotype. Our findings cement the role of major spliceosomal snRNAs in the etiologies of neurodevelopmental disorders.
ABSTRACT
To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1-11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely.