Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Semin Cell Dev Biol ; 143: 3-16, 2023 07 15.
Article in English | MEDLINE | ID: mdl-35351374

ABSTRACT

Endurance exercise is well established to increase mitochondrial content and function in skeletal muscle, a process termed mitochondrial biogenesis. Current understanding is that exercise initiates skeletal muscle mitochondrial remodeling via modulation of cellular nutrient, energetic and contractile stress pathways. These subtle changes in the cellular milieu are sensed by numerous transduction pathways that serve to initiate and coordinate an increase in mitochondrial gene transcription and translation. The result of these acute signaling events is the promotion of growth and assembly of mitochondria, coupled to a greater capacity for aerobic ATP provision in skeletal muscle. The aim of this review is to highlight the acute metabolic events induced by endurance exercise and the subsequent molecular pathways that sense this transient change in cellular homeostasis to drive mitochondrial adaptation and remodeling.


Subject(s)
Exercise , Mitochondria , Mitochondria/metabolism , Exercise/physiology , Muscle, Skeletal/metabolism , Adaptation, Physiological/physiology , Homeostasis
2.
Mol Cell Proteomics ; 21(3): 100207, 2022 03.
Article in English | MEDLINE | ID: mdl-35093608

ABSTRACT

Obesity leads to the development of nonalcoholic fatty liver disease (NAFLD) and associated alterations to the plasma proteome. To elucidate the underlying changes associated with obesity, we performed liquid chromatography-tandem mass spectrometry in the liver and plasma of obese leptin-deficient ob/ob mice and integrated these data with publicly available transcriptomic and proteomic datasets of obesity and metabolic diseases in preclinical and clinical cohorts. We quantified 7173 and 555 proteins in the liver and plasma proteomes, respectively. The abundance of proteins related to fatty acid metabolism were increased, alongside peroxisomal proliferation in ob/ob liver. Putatively secreted proteins and the secretory machinery were also dysregulated in the liver, which was mirrored by a substantial alteration of the plasma proteome. Greater than 50% of the plasma proteins were differentially regulated, including NAFLD biomarkers, lipoproteins, the 20S proteasome, and the complement and coagulation cascades of the immune system. Integration of the liver and plasma proteomes identified proteins that were concomitantly regulated in the liver and plasma in obesity, suggesting that the systemic abundance of these plasma proteins is regulated by secretion from the liver. Many of these proteins are systemically regulated during type 2 diabetes and/or NAFLD in humans, indicating the clinical importance of liver-plasma cross talk and the relevance of our investigations in ob/ob mice. Together, these analyses yield a comprehensive insight into obesity and provide an extensive resource for obesity research in a prevailing model organism.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/metabolism , Proteomics
3.
Am J Physiol Cell Physiol ; 321(5): C770-C778, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34495765

ABSTRACT

Skeletal muscle is an endocrine organ secreting exercise-induced factors (exerkines), which play a pivotal role in interorgan cross talk. Using mass spectrometry (MS)-based proteomics, we characterized the secretome and identified thymosin ß4 (TMSB4X) as the most upregulated secreted protein in the media of contracting C2C12 myotubes. TMSB4X was also acutely increased in the plasma of exercising humans irrespective of the insulin resistance condition or exercise mode. Treatment of mice with TMSB4X did not ameliorate the metabolic disruptions associated with diet induced-obesity, nor did it enhance muscle regeneration in vivo. However, TMSB4X increased osteoblast proliferation and neurite outgrowth, consistent with its WADA classification as a prohibited growth factor. Therefore, we report TMSB4X as a human exerkine with a potential role in cellular cross talk.


Subject(s)
Cell Proliferation/drug effects , Muscle Contraction , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Neuronal Outgrowth/drug effects , Osteoblasts/drug effects , Thymosin/metabolism , Thymosin/pharmacology , Animals , Case-Control Studies , Cell Line, Tumor , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Humans , Insulin Resistance , Male , Mice, Inbred C57BL , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Muscular Diseases/physiopathology , Osteoblasts/pathology , Physical Endurance , Proteomics , Signal Transduction , Tandem Mass Spectrometry
4.
J Physiol ; 599(5): 1513-1531, 2021 03.
Article in English | MEDLINE | ID: mdl-33492681

ABSTRACT

KEY POINTS: Acute nicotinamide riboside (NR) supplementation does not alter substrate metabolism at rest, during or in recovery from endurance exercise. NR does not alter NAD+ -sensitive signalling pathways in human skeletal muscle. NR supplementation and acute exercise influence the NAD+ metabolome. ABSTRACT: Oral supplementation of the NAD+ precursor nicotinamide riboside (NR) has been reported to alter metabolism alongside increasing sirtuin (SIRT) signalling and mitochondrial biogenesis in rodent skeletal muscle. However, whether NR supplementation can elicit a similar response in human skeletal muscle is unclear. This study assessed the effect of 7-day NR supplementation on whole-body metabolism and exercise-induced mitochondrial biogenic signalling in skeletal muscle. Eight male participants (age: 23 ± 4 years, V̇O2peak 46.5 ± 4.4 ml kg-1  min-1 ) received 1 week of NR or cellulose placebo (PLA) supplementation (1000 mg day-1 ). Muscle biopsies were collected from the medial vastus lateralis prior to supplementation and pre-, immediately post- and 3 h post-exercise (1 h of 60% Wmax cycling) performed following the supplementation period. There was no effect of NR supplementation on substrate utilisation at rest or during exercise or on skeletal muscle mitochondrial respiration. Global acetylation, auto-PARylation of poly ADP-ribose polymerase 1 (PARP1), acetylation of Tumour protein 53 (p53)Lys382 and Manganese superoxide dismutase (MnSOD)Lys122 were also unaffected by NR supplementation or exercise. NR supplementation did not increase skeletal muscle NAD+ concentration, but it did increase the concentration of deaminated NAD+ precursors nicotinic acid riboside (NAR) and nicotinic acid mononucleotide (NAM) and methylated nicotinamide breakdown products (Me2PY and Me4PY), demonstrating the skeletal muscle bioavailability of NR supplementation. In summary, 1 week of NR supplementation does not alter whole-body metabolism or skeletal muscle signal transduction pathways implicated in the mitochondrial adaptation to endurance exercise.


Subject(s)
Muscle, Skeletal , Niacinamide , Dietary Supplements , Exercise , Male , NAD , Niacinamide/analogs & derivatives , Pyridinium Compounds
5.
Am J Physiol Endocrinol Metab ; 316(2): E230-E238, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30512989

ABSTRACT

Exercise performed in the fasted state acutely increases fatty acid availability and utilization. Furthermore, activation of energy-sensing pathways and fatty acid metabolic genes can be augmented by fasting and fasted exercise. However, whether a similar effect occurs at higher exercise intensities remains poorly understood. This study aimed to assess the effect of fed and fasted exercise upon postexercise signaling and mRNA responses during moderate- to high-intensity steady-state exercise. Eight male participants [age: 25 (SD 2) yr, V̇o2peak: 47.9 (SD 3.8) ml·kg-1·min-1] performed 1 h of cycling at 70% Wmax in the fasted (FAST) state or 2 h following ingestion of a carbohydrate-rich mixed-macronutrient breakfast (FED). Muscle biopsies were collected pre-, immediately, and 3 h postexercise from the medial vastus lateralis, while venous blood samples were collected throughout the trial. Plasma, nonesterified fatty acid, and glycerol concentrations were elevated during FAST compared with FED, although substrate utilization during exercise was similar. AMPKThr172 phosphorylation was ~2.5-fold elevated postexercise in both trials and was significantly augmented by ~30% during FAST. CREBSer133 phosphorylation was elevated approximately twofold during FAST, although CREBSer133 phosphorylation acutely decreased by ~50% immediately postexercise. mRNA expression of PDK4 was approximately three- to fourfold augmented by exercise and approximately twofold elevated throughout FAST, while expression of PPARGC1A mRNA was similarly activated (~10-fold) by exercise in both FED and FAST. In summary, performing moderate- to high-intensity steady-state exercise in the fasted state increases systemic lipid availability, elevates phosphorylation of AMPKThr172 and CREBSer133, and augments PDK4 mRNA expression without corresponding increases in whole body fat oxidation and the mRNA expression of PPARGC1A.


Subject(s)
Exercise/physiology , Fasting/metabolism , Muscle, Skeletal/metabolism , Postprandial Period/physiology , RNA, Messenger/metabolism , Adenylate Kinase/metabolism , Adult , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Endurance Training , Fatty Acids, Nonesterified/metabolism , Glycerol/metabolism , Humans , Male , Oxygen Consumption , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Signal Transduction , Young Adult
6.
FASEB J ; 30(4): 1623-33, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26712218

ABSTRACT

The acetyltransferase, E1a-binding protein (p300), is proposed to regulate various aspects of skeletal muscle development, metabolism, and mitochondrial function,viaits interaction with numerous transcriptional regulators and other proteins. Remarkably, however, the contribution of p300 to skeletal muscle function and metabolism,in vivo, is poorly understood. To address this, we used Cre-LoxP methodology to generate mice with skeletal muscle-specific knockout of E1a-binding protein (mKO). mKO mice were indistinguishable from their wild-type/floxed littermates, with no differences in lean mass, skeletal muscle structure, fiber type, respirometry flux, or metabolites of fatty acid and amino acid metabolism.Ex vivomuscle function in extensor digitorum longus and soleus muscles, including peak stress and time to fatigue, as well asin vivorunning capacity were also comparable. Moreover, expected adaptations to a 20 d voluntary wheel running regime were not compromised in mKO mice. Taken together, these findings demonstrate that p300 is not required for the normal development or functioning of adult skeletal muscle, nor is it required for endurance exercise-mediated mitochondrial adaptations.-LaBarge, S. A., Migdal, C. W., Buckner, E. H., Okuno, H., Gertsman, I., Stocks, B., Barshop, B. A., Nalbandian, S. R., Philp, A., McCurdy, C. E., Schenk, S. p300 is not required for metabolic adaptation to endurance exercise training.


Subject(s)
Adaptation, Physiological/physiology , E1A-Associated p300 Protein/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Adaptation, Physiological/genetics , Amino Acids/metabolism , Animals , E1A-Associated p300 Protein/genetics , Energy Metabolism/genetics , Energy Metabolism/physiology , Fatty Acids/metabolism , Gene Expression , Immunoblotting , Male , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/genetics , Motor Activity/physiology , Muscle Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction
7.
Cell Metab ; 36(2): 278-300, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38183980

ABSTRACT

The risk associated with multiple cancers, cardiovascular disease, diabetes, and all-cause mortality is decreased in individuals who meet the current recommendations for physical activity. Therefore, regular exercise remains a cornerstone in the prevention and treatment of non-communicable diseases. An acute bout of exercise results in the coordinated interaction between multiple tissues to meet the increased energy demand of exercise. Over time, the associated metabolic stress of each individual exercise bout provides the basis for long-term adaptations across tissues, including the cardiovascular system, skeletal muscle, adipose tissue, liver, pancreas, gut, and brain. Therefore, regular exercise is associated with a plethora of benefits throughout the whole body, including improved cardiorespiratory fitness, physical function, and glycemic control. Overall, we summarize the exercise-induced adaptations that occur within multiple tissues and how they converge to ultimately improve cardiometabolic health.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , Humans , Exercise/physiology , Muscle, Skeletal/metabolism , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/metabolism , Adipose Tissue
8.
Endocr Rev ; 43(4): 654-677, 2022 07 13.
Article in English | MEDLINE | ID: mdl-34730177

ABSTRACT

Diabetes is a global epidemic, of which type 2 diabetes makes up the majority of cases. Nonetheless, for some individuals, type 2 diabetes is eminently preventable and treatable via lifestyle interventions. Glucose uptake into skeletal muscle increases during and in recovery from exercise, with exercise effective at controlling glucose homeostasis in individuals with type 2 diabetes. Furthermore, acute and chronic exercise sensitizes skeletal muscle to insulin. A complex network of signals converge and interact to regulate glucose metabolism and insulin sensitivity in response to exercise. Numerous forms of post-translational modifications (eg, phosphorylation, ubiquitination, acetylation, ribosylation, and more) are regulated by exercise. Here we review the current state of the art of the role of post-translational modifications in transducing exercise-induced signals to modulate glucose uptake and insulin sensitivity within skeletal muscle. Furthermore, we consider emerging evidence for noncanonical signaling in the control of glucose homeostasis and the potential for regulation by exercise. While exercise is clearly an effective intervention to reduce glycemia and improve insulin sensitivity, the insulin- and exercise-sensitive signaling networks orchestrating this biology are not fully clarified. Elucidation of the complex proteome-wide interactions between post-translational modifications and the associated functional implications will identify mechanisms by which exercise regulates glucose homeostasis and insulin sensitivity. In doing so, this knowledge should illuminate novel therapeutic targets to enhance insulin sensitivity for the clinical management of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Humans , Insulin/metabolism , Insulin Resistance/physiology , Muscle, Skeletal/metabolism , Protein Processing, Post-Translational
9.
STAR Protoc ; 3(1): 101135, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35128478

ABSTRACT

The assembly of mitochondrial respiratory complexes into supercomplexes has significant implications for mitochondrial function. This protocol details mitochondrial isolation from mouse tissues and the use of blue native gel electrophoresis (BN-PAGE) to separate pre-identified mitochondrial supercomplexes into different gel bands. We then describe the excision of the individual bands, followed by in-gel protein digestion and peptide desalting for mass spectrometry (MS)-based proteomics. This protocol provides a time-efficient measurement of the abundance and distribution of proteins within known supercomplexes. For complete details on the use and execution of this profile, please refer to Gonzalez-Franquesa et al. (2021).


Subject(s)
Mitochondria , Proteomics , Animals , Electrophoresis , Mass Spectrometry , Mice , Mitochondria/chemistry , Proteomics/methods
10.
Metabolism ; 135: 155268, 2022 10.
Article in English | MEDLINE | ID: mdl-35908579

ABSTRACT

AIMS/HYPOTHESIS: Metabolic effects of exercise may partly depend on the time-of-day when exercise is performed. We tested the hypothesis that exercise timing affects the adaptations in multi-tissue metabolome and skeletal muscle proteome profiles in men with type 2 diabetes. METHODS: Men fitting the inclusion (type 2 diabetes, age 45-68 years and body mass index 23-33 kg/m2) and exclusion criteria (insulin treatment, smoking, concurrent systemic disease, and regular exercise training) were included in a randomized crossover trial (n = 15). Participants included in this metabolomics and proteomics analysis fully completed all exercise sessions (n = 8). The trial consisted of two weeks of high-intensity interval training (HIT) (three sessions/week) either in the morning (08:00, n = 5) or afternoon (16:45, n = 3), a two-week wash-out period, and an additional two weeks of HIT at the opposing time. Participants and researchers were not blinded to group allocation. Blood, skeletal muscle and subcutaneous adipose tissue were obtained before the first, and after each training period. Broad-spectrum, untargeted proteomic analysis was performed on skeletal muscle, and metabolomic analysis was performed on all biosamples. Differential content was assessed by linear regression and pathway set enrichment analyses were performed. Coordinated metabolic changes across tissues were identified by Spearman correlation analysis. RESULTS: Metabolic and proteomic profiles remained stable after two weeks of HIT, and individual metabolites and proteins were not altered, irrespective of the time of day at which the training was performed. However, coordinated changes in relevant metabolic pathways and protein categories were identified. Morning and afternoon HIT similarly increased plasma diacylglycerols, skeletal muscle acyl-carnitines, and subcutaneous adipose tissue sphingomyelins and lysophospholipids. Acyl-carnitines were central to training-induced metabolic cross-talk across tissues. Plasma carbohydrates, via the penthose phosphate pathway, were increased and skeletal muscle lipids were decreased after morning compared to afternoon HIT. Skeletal muscle lipoproteins were higher, and mitochondrial complex III abundance was lower after morning compared to afternoon HIT. CONCLUSIONS/INTERPRETATION: We provide a comprehensive analysis of a multi-tissue metabolomic and skeletal muscle proteomic responses to training at different times of the day in men with type 2 diabetes. Increased circulating lipids and changes in adipose tissue lipid composition were common between morning and afternoon HIT. However, afternoon HIT increased skeletal muscle lipids and mitochondrial content to a greater degree than morning training. Thus, there is a diurnal component in the metabolomic and proteomic response to exercise in men with type 2 diabetes. The clinical relevance of this response warrants further investigation.


Subject(s)
Diabetes Mellitus, Type 2 , Proteome , Aged , Cross-Over Studies , Diabetes Mellitus, Type 2/metabolism , Exercise/physiology , Humans , Lipids , Male , Metabolome , Middle Aged , Muscle, Skeletal/metabolism , Proteome/metabolism , Proteomics
11.
Elife ; 112022 05 31.
Article in English | MEDLINE | ID: mdl-35638262

ABSTRACT

Exercise is an effective strategy in the prevention and treatment of metabolic diseases. Alterations in the skeletal muscle proteome, including post-translational modifications, regulate its metabolic adaptations to exercise. Here, we examined the effect of high-intensity interval training (HIIT) on the proteome and acetylome of human skeletal muscle, revealing the response of 3168 proteins and 1263 lysine acetyl-sites on 464 acetylated proteins. We identified global protein adaptations to exercise training involved in metabolism, excitation-contraction coupling, and myofibrillar calcium sensitivity. Furthermore, HIIT increased the acetylation of mitochondrial proteins, particularly those of complex V. We also highlight the regulation of exercise-responsive histone acetyl-sites. These data demonstrate the plasticity of the skeletal muscle proteome and acetylome, providing insight into the regulation of contractile, metabolic and transcriptional processes within skeletal muscle. Herein, we provide a substantial hypothesis-generating resource to stimulate further mechanistic research investigating how exercise improves metabolic health.


Subject(s)
High-Intensity Interval Training , Adaptation, Physiological/physiology , Humans , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Proteome/metabolism
12.
Cell Rep ; 35(8): 109180, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34038727

ABSTRACT

Mitochondrial respiratory complex subunits assemble in supercomplexes. Studies of supercomplexes have typically relied upon antibody-based quantification, often limited to a single subunit per respiratory complex. To provide a deeper insight into mitochondrial and supercomplex plasticity, we combine native electrophoresis and mass spectrometry to determine the supercomplexome of skeletal muscle from sedentary and exercise-trained mice. We quantify 422 mitochondrial proteins within 10 supercomplex bands in which we show the debated presence of complexes II and V. Exercise-induced mitochondrial biogenesis results in non-stoichiometric changes in subunits and incorporation into supercomplexes. We uncover the dynamics of supercomplex-related assembly proteins and mtDNA-encoded subunits after exercise. Furthermore, exercise affects the complexing of Lactb, an obesity-associated mitochondrial protein, and ubiquinone biosynthesis proteins. Knockdown of ubiquinone biosynthesis proteins leads to alterations in mitochondrial respiration. Our approach can be applied to broad biological systems. In this instance, comprehensively analyzing respiratory supercomplexes illuminates previously undetectable complexity in mitochondrial plasticity.


Subject(s)
Mass Spectrometry/methods , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Proteomics/methods , Animals , Female , Humans , Mice , Oxidative Phosphorylation
14.
Med Sci Sports Exerc ; 51(10): 2125-2134, 2019 10.
Article in English | MEDLINE | ID: mdl-31083048

ABSTRACT

PURPOSE: Across the lifespan, physical activity levels decrease and time spent sedentary typically increases. However, little is known about the impact that these behavioral changes have on skeletal muscle mass regulation. The primary aim of this study was to use a step reduction model to determine the impact of reduced physical activity and increased sedentary time on daily myofibrillar protein synthesis rates in healthy young men. METHODS: Eleven men (22 ± 2 yr) completed 7 d of habitual physical activity (HPA) followed by 7 d of step reduction (SR). Myofibrillar protein synthesis rates were determined during HPA and SR using the deuterated water (H2O) method combined with the collection of skeletal muscle biopsies and daily saliva samples. Gene expression of selected proteins related to muscle mass regulation and oxidative metabolism were determined via real time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS: Daily step count was reduced by approximately 91% during SR (from 13,054 ± 2763 steps per day to 1192 ± 330 steps per day; P < 0.001) and this led to an increased contribution of sedentary time to daily activity (73% ± 6% to 90% ± 3%; P < 0.001). Daily myofibrillar protein synthesis decreased by approximately 27% from 1.39 ± 0.32%·d during HPA to 1.01 ± 0.38%·d during SR (P < 0.05). Muscle atrophy F-box and myostatin mRNA expression were upregulated, whereas mechanistic target of rapamycin, p53, and PDK4 mRNA expression were downregulated after SR (P < 0.05). CONCLUSIONS: One week of reduced physical activity and increased sedentary time substantially lowers daily myofibrillar protein synthesis rates in healthy young men.


Subject(s)
Exercise/physiology , Muscle Proteins/biosynthesis , Myofibrils/metabolism , Sedentary Behavior , Body Weight , Down-Regulation , Energy Intake , Genes, p53/genetics , Glucose Tolerance Test , Humans , Male , Muscle Proteins/genetics , Myostatin/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , RNA, Messenger/genetics , SKP Cullin F-Box Protein Ligases/genetics , Sirolimus/metabolism , TOR Serine-Threonine Kinases/genetics , Up-Regulation , Young Adult
15.
J Appl Physiol (1985) ; 126(6): 1587-1597, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31046515

ABSTRACT

We examined the effects of graded muscle glycogen on exercise capacity and modulation of skeletal muscle signaling pathways associated with the regulation of mitochondrial biogenesis. In a repeated-measures design, eight men completed a sleep-low, train-low model comprising an evening glycogen-depleting cycling protocol followed by an exhaustive exercise capacity test [8 × 3 min at 80% peak power output (PPO), followed by 1-min efforts at 80% PPO until exhaustion] the subsequent morning. After glycogen-depleting exercise, subjects ingested a total of 0 g/kg (L-CHO), 3.6 g/kg (M-CHO), or 7.6 g/kg (H-CHO) of carbohydrate (CHO) during a 6-h period before sleeping, such that exercise was commenced the next morning with graded (P < 0.05) muscle glycogen concentrations (means ± SD: L-CHO: 88 ± 43, M-CHO: 185 ± 62, H-CHO: 278 ± 47 mmol/kg dry wt). Despite differences (P < 0.05) in exercise capacity at 80% PPO between trials (L-CHO: 18 ± 7, M-CHO: 36 ± 3, H-CHO: 44 ± 9 min), exercise induced comparable AMPKThr172 phosphorylation (~4-fold) and PGC-1α mRNA expression (~5-fold) after exercise and 3 h after exercise, respectively. In contrast, neither exercise nor CHO availability affected the phosphorylation of p38MAPKThr180/Tyr182 or CaMKIIThr268 or mRNA expression of p53, Tfam, CPT-1, CD36, or PDK4. Data demonstrate that when exercise is commenced with muscle glycogen < 300 mmol/kg dry wt, further graded reductions of 100 mmol/kg dry weight impair exercise capacity but do not augment skeletal muscle cell signaling. NEW & NOTEWORTHY We provide novel data demonstrating that when exercise is commenced with muscle glycogen below 300 mmol/kg dry wt (as achieved with the sleep-low, train-low model) further graded reductions in preexercise muscle glycogen of 100 mmol/kg dry wt reduce exercise capacity at 80% peak power output by 20-50% but do not augment skeletal muscle cell signaling.


Subject(s)
Exercise Tolerance/physiology , Exercise/physiology , Glycogen/metabolism , Muscle, Skeletal/metabolism , Physical Endurance/physiology , Signal Transduction/physiology , Adult , Dietary Carbohydrates/metabolism , Exercise Test/methods , Humans , Male , Organelle Biogenesis , Phosphorylation/physiology , Young Adult
16.
Front Physiol ; 8: 941, 2017.
Article in English | MEDLINE | ID: mdl-29255419

ABSTRACT

Tumour protein 53 (p53) has been implicated in the regulation of mitochondrial biogenesis in skeletal muscle, with whole-body p53 knockout mice displaying impairments in basal mitochondrial content, respiratory capacity, and enzyme activity. This study aimed to determine the effect of skeletal muscle-specific loss of p53 on mitochondrial content and enzyme activity. Mitochondrial protein content, enzyme activity and mRNA profiles were assessed in skeletal muscle of 8-week-old male muscle fibre-specific p53 knockout mice (p53 mKO) and floxed littermate controls (WT) under basal conditions. p53 mKO and WT mice displayed similar content of electron transport chain proteins I-V and citrate synthase enzyme activity in skeletal muscle. In addition, the content of proteins regulating mitochondrial morphology (MFN2, mitofillin, OPA1, DRP1, FIS1), fatty acid metabolism (ß-HAD, ACADM, ACADL, ACADVL), carbohydrate metabolism (HKII, PDH), energy sensing (AMPKα2, AMPKß2), and gene transcription (NRF1, PGC-1α, and TFAM) were comparable in p53 mKO and WT mice (p > 0.05). Furthermore, p53 mKO mice exhibited normal mRNA profiles of targeted mitochondrial, metabolic and transcriptional proteins (p > 0.05). Thus, it appears that p53 expression in skeletal muscle fibres is not required to develop or maintain mitochondrial protein content or enzyme function in skeletal muscle under basal conditions.

17.
Front Physiol ; 6: 296, 2015.
Article in English | MEDLINE | ID: mdl-26578969

ABSTRACT

Endurance exercise, when performed regularly as part of a training program, leads to increases in whole-body and skeletal muscle-specific oxidative capacity. At the cellular level, this adaptive response is manifested by an increased number of oxidative fibers (Type I and IIA myosin heavy chain), an increase in capillarity and an increase in mitochondrial biogenesis. The increase in mitochondrial biogenesis (increased volume and functional capacity) is fundamentally important as it leads to greater rates of oxidative phosphorylation and an improved capacity to utilize fatty acids during sub-maximal exercise. Given the importance of mitochondrial biogenesis for skeletal muscle performance, considerable attention has been given to understanding the molecular cues stimulated by endurance exercise that culminate in this adaptive response. In turn, this research has led to the identification of pharmaceutical compounds and small nutritional bioactive ingredients that appear able to amplify exercise-responsive signaling pathways in skeletal muscle. The aim of this review is to discuss these purported exercise mimetics and bioactive ingredients in the context of mitochondrial biogenesis in skeletal muscle. We will examine proposed modes of action, discuss evidence of application in skeletal muscle in vivo and finally comment on the feasibility of such approaches to support endurance-training applications in humans.

SELECTION OF CITATIONS
SEARCH DETAIL