Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Mol Genet Genomics ; 298(5): 1045-1058, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37269361

ABSTRACT

Transposable elements (TEs) are genetic elements that have evolved as crucial regulators of human development and cancer, functioning as both genes and regulatory elements. When TEs become dysregulated in cancer cells, they can serve as alternate promoters to activate oncogenes, a process known as onco-exaptation. This study aimed to explore the expression and epigenetic regulation of onco-exaptation events in early human developmental tissues. We discovered co-expression of some TEs and oncogenes in human embryonic stem cells and first trimester and term placental tissues. Previous studies identified onco-exaptation events in various cancer types, including an AluJb SINE element-LIN28B interaction in lung cancer cells, and showed that the TE-derived LIN28B transcript is associated with poor patient prognosis in hepatocellular carcinoma. This study further characterized the AluJb-LIN28B transcript and confirmed that its expression is restricted to the placenta. Targeted DNA methylation analysis revealed differential methylation of the two LIN28B promoters between placenta and healthy somatic tissues, indicating that some TE-oncogene interactions are not cancer-specific but arise from the epigenetic reactivation of developmental TE-derived regulatory events. In conclusion, our findings provide evidence that some TE-oncogene interactions are not limited to cancer and may originate from the epigenetic reactivation of TE-derived regulatory events that are involved in early development. These insights broaden our understanding of the role of TEs in gene regulation and suggest the potential importance of targeting TEs in cancer therapy beyond their conventional use as cancer-specific markers.


Subject(s)
DNA Transposable Elements , Neoplasms , Pregnancy , Humans , Female , Epigenesis, Genetic , Placenta , Regulatory Sequences, Nucleic Acid , Neoplasms/genetics , RNA-Binding Proteins/genetics
2.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36233152

ABSTRACT

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disease with variable severity. Patients experience frequent relapses where symptoms increase in severity, leaving them with a marked reduction in quality of life. Previous work has investigated molecular differences between ME/CFS patients and healthy controls, but not the dynamic changes specific to each individual patient. We applied precision medicine here to map genomic changes in two selected ME/CFS patients through a period that contained a relapse recovery cycle. DNA was isolated from two patients and a healthy age/gender matched control at regular intervals and captured the patient relapse in each case. Reduced representation DNA methylation sequencing profiles were obtained spanning the relapse recovery cycle. Both patients showed a significantly larger methylome variability (10-20-fold) through the period of sampling compared with the control. During the relapse, changes in the methylome profiles of the two patients were detected in regulatory-active regions of the genome that were associated, respectively, with 157 and 127 downstream genes, indicating disturbed metabolic, immune and inflammatory functions. Severe health relapses in the ME/CFS patients resulted in functionally important changes in their DNA methylomes that, while differing between the two patients, led to very similar compromised physiology. DNA methylation as a signature of disease variability in ongoing ME/CFS may have practical applications for strategies to decrease relapse frequency.


Subject(s)
Fatigue Syndrome, Chronic , Epigenesis, Genetic , Epigenomics , Fatigue Syndrome, Chronic/genetics , Fatigue Syndrome, Chronic/metabolism , Humans , Quality of Life , Recurrence
3.
Biomarkers ; 23(5): 453-461, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29460649

ABSTRACT

CONTEXT: Human health is complex and multifaceted; there is a need for biomarkers that reflect the multidimensional nature of health. OBJECTIVE: To identify potential epigenomic biomarkers of health in women aged 18-40 participating in a six-month lifestyle intervention, next level health. MATERIALS AND METHODS: Methylation data were obtained by reduced representation bisulphite sequencing of 21 female intervention participants as well as three non-participants. The Differential Methylation Analysis Package (DMAP) was used to investigate inter- and intra-individual variability and to identify potential targets of transient epigenetic control in the population studied. RESULTS: Eleven genes were identified as significantly differentially methylated post- intervention in all 21 participants. 1884 genomic locations were found to be differentially methylated amongst the total female population studied representing potential epigenomic biomarkers. CONCLUSIONS: The ability to demonstrate epigenetic changes arising from a lifestyle intervention can provide key information on the relationship between gene regulation, human behaviour and health.


Subject(s)
Epigenomics , Life Style , Adolescent , Adult , Behavior , Biomarkers , DNA Methylation , Female , Gene Expression Regulation/physiology , Health , Humans , Young Adult
4.
Bioinformatics ; 30(13): 1814-22, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24608764

ABSTRACT

MOTIVATION: The rapid development of high-throughput sequencing technologies has enabled epigeneticists to quantify DNA methylation on a massive scale. Progressive increase in sequencing capacity present challenges in terms of processing analysis and the interpretation of the large amount of data; investigating differential methylation between genome-scale data from multiple samples highlights this challenge. RESULTS: We have developed a differential methylation analysis package (DMAP) to generate coverage-filtered reference methylomes and to identify differentially methylated regions across multiple samples from reduced representation bisulphite sequencing and whole genome bisulphite sequencing experiments. We introduce a novel fragment-based approach for investigating DNA methylation patterns for reduced representation bisulphite sequencing data. Further, DMAP provides the identity of gene and CpG features and distances to the differentially methylated regions in a format that is easily analyzed with limited bioinformatics knowledge. AVAILABILITY AND IMPLEMENTATION: The software has been implemented in C and has been written to ensure portability between different platforms. The source code and documentation is freely available (DMAP: as compressed TAR archive folder) from http://biochem.otago.ac.nz/research/databases-software/. Two test datasets are also available for download from the Web site. Test dataset 1 contains reads from chromosome 1 of a patient and a control, which is used for comparative analysis in the current article. Test dataset 2 contains reads from a part of chromosome 21 of three disease and three control samples for testing the operation of DMAP, especially for the analysis of variance. Example commands for the analyses are included.


Subject(s)
DNA Methylation , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , CpG Islands , Genomics , Humans , Software
5.
Nucleic Acids Res ; 40(10): e79, 2012 May.
Article in English | MEDLINE | ID: mdl-22344695

ABSTRACT

Recent advances in next generation sequencing (NGS) technology now provide the opportunity to rapidly interrogate the methylation status of the genome. However, there are challenges in handling and interpretation of the methylation sequence data because of its large volume and the consequences of bisulphite modification. We sequenced reduced representation human genomes on the Illumina platform and efficiently mapped and visualized the data with different pipelines and software packages. We examined three pipelines for aligning bisulphite converted sequencing reads and compared their performance. We also comment on pre-processing and quality control of Illumina data. This comparison highlights differences in methods for NGS data processing and provides guidance to advance sequence-based methylation data analysis for molecular biologists.


Subject(s)
DNA Methylation , Sequence Alignment/methods , Sequence Analysis, DNA , Software , Sulfites , Genome, Human , Genomics/methods , Humans
6.
Plant Cell ; 22(11): 3764-77, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21075770

ABSTRACT

The RNA binding protein FCA regulates the floral transition and is required for silencing RNAs corresponding to specific noncoding sequences in the Arabidopsis thaliana genome. Through interaction with the canonical RNA 3' processing machinery, FCA affects alternative polyadenylation of many transcripts, including antisense RNAs at the locus encoding the floral repressor FLC. This potential for widespread alteration of gene regulation clearly needs to be tightly regulated, and we have previously shown that FCA expression is autoregulated through poly(A) site choice. Here, we show distinct layers of FCA regulation that involve sequences within the 5' region that regulate noncanonical translation initiation and alter the expression profile. FCA translation in vivo occurs exclusively at a noncanonical CUG codon upstream of the first in-frame AUG. We fully define the upstream flanking sequences essential for its selection, revealing features that distinguish this from other non-AUG start site mechanisms. Bioinformatic analysis identified 10 additional Arabidopsis genes that likely initiate translation at a CUG codon. Our findings reveal further unexpected complexity in the regulation of FCA expression with implications for its roles in regulating flowering time and gene expression and more generally show plant mRNA exceptions to AUG translation initiation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/anatomy & histology , Arabidopsis/physiology , Flowers/physiology , Gene Expression Regulation, Plant , Protein Biosynthesis , RNA-Binding Proteins/metabolism , 5' Untranslated Regions , Arabidopsis Proteins/genetics , Base Sequence , Codon, Initiator , Molecular Sequence Data , Open Reading Frames , Plants, Genetically Modified , Point Mutation , Polyadenylation , Promoter Regions, Genetic , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Transcription Initiation Site , Transgenes
7.
Methods Mol Biol ; 2588: 249-278, 2023.
Article in English | MEDLINE | ID: mdl-36418693

ABSTRACT

Ribonucleic acids (RNAs) are fundamental molecules that control regulation and expression of the genome and therefore the function of a cell. Robust analysis and quantification of RNA transcripts hold critical importance in understanding cell function, altered phenotypes in different biological context, for understanding and targeting diseases. The development of RNA-sequencing (RNA-Seq) now provides opportunities to analyze the expression and function of RNA molecules at an unprecedented scale. However, the strategy for RNA-Seq experimental design and data analysis can substantially differ depending on the biological application. The design choice could also have significant impact for downstream results and interpretation of data. Here we describe key critical considerations required for RNA-Seq experimental design and also describe a step-by-step bioinformatics workflow detailing the different steps required for RNA-Seq data analysis. We believe this article will be a valuable guide for designing and analyzing RNA-Seq data to address a wide range of different biological questions.


Subject(s)
Data Analysis , Research Design , RNA-Seq , Exome Sequencing , RNA/genetics
8.
STAR Protoc ; 4(4): 102714, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37950864

ABSTRACT

Aberrant DNA methylation is a universal feature of cancer. Here, we present a protocol for generating high-quality genome-scale DNA methylation sequencing data from a variety of human cancer biospecimens including immortalized cell lines, fresh-frozen surgical resections, and formalin-fixed paraffin-embedded tissues. We describe steps for DNA extraction considerations, reduced representation bisulfite sequencing, data processing and quality control, and downstream data analysis and integration. This protocol is also applicable for other human diseases and methylome profiling in other organisms. For complete details on the use and execution of this protocol, please refer to Rodger et al. (2023).1.


Subject(s)
DNA Methylation , Neoplasms , Humans , DNA Methylation/genetics , Sequence Analysis, DNA/methods , Neoplasms/genetics
9.
iScience ; 26(6): 106986, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37378317

ABSTRACT

Colorectal cancer (CRC) is a leading cause of morbidity and mortality worldwide. The majority of CRC deaths are caused by tumor metastasis, even following treatment. There is strong evidence for epigenetic changes, such as DNA methylation, accompanying CRC metastasis and poorer patient survival. Earlier detection and a better understanding of molecular drivers for CRC metastasis are of critical clinical importance. Here, we identify a signature of advanced CRC metastasis by performing whole genome-scale DNA methylation and full transcriptome analyses of paired primary cancers and liver metastases from CRC patients. We observed striking methylation differences between primary and metastatic pairs. A subset of loci showed coordinated methylation-expression changes, suggesting these are potentially epigenetic drivers that control the expression of critical genes in the metastatic cascade. The identification of CRC epigenomic markers of metastasis has the potential to enable better outcome prediction and lead to the discovery of new therapeutic targets.

10.
J Biomed Biotechnol ; 2012: 741542, 2012.
Article in English | MEDLINE | ID: mdl-23193365

ABSTRACT

Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation protocol and sequencing technology have vastly improved sequencing throughput capacity. Although the new Illumina technology is now widely used, the unique challenges associated with multiplexed RRBS libraries on this platform have not been previously described. We have made modifications to the RRBS library preparation protocol to sequence multiplexed libraries on a single flow cell lane of the Illumina HiSeq 2000. Furthermore, our analysis incorporates a bioinformatics pipeline specifically designed to process bisulfite-converted sequencing reads and evaluate the output and quality of the sequencing data generated from the multiplexed libraries. We obtained an average of 42 million paired-end reads per sample for each flow-cell lane, with a high unique mapping efficiency to the reference human genome. Here we provide a roadmap of modifications, strategies, and trouble shooting approaches we implemented to optimize sequencing of multiplexed libraries on an a RRBS background.


Subject(s)
Gene Library , Sequence Analysis, DNA/methods , Sulfites/chemistry , Base Pairing/genetics , Databases, Genetic , Genome, Human/genetics , Humans , Polymerase Chain Reaction , Sequence Analysis, DNA/standards
11.
Methods Mol Biol ; 2458: 3-21, 2022.
Article in English | MEDLINE | ID: mdl-35103959

ABSTRACT

Reduced representation bisulfite sequencing (RRBS) is a technique used for assessing genome-wide DNA methylation patterns in eukaryotes. RRBS was introduced to focus on CpG-rich regions that are likely to be of most interest for epigenetic regulation, such as gene promoters and enhancer sequence elements (Meissner et al., Nature 454:766-770, 2008). This "reduced representation" lowers the cost of sequencing and also gives increased depth of coverage, facilitating the resolution of more subtle changes in methylation levels. Here, we describe a modified RRBS sequencing (RRBS-seq) library preparation. Our protocol is optimized for generating single base-resolution libraries when low input DNA is a concern (10-100 ng). Our protocol includes steps to optimize library preparation, such as using deparaffinization solution (when formalin-fixed material is used), and a replacement of gel size-selection with sample purification beads. The described protocol can be accomplished in 3 days and has been successfully applied to tissues or cells from different organisms, including formalin-fixed tissues, to yield robust and reproducible results.


Subject(s)
DNA Methylation , Epigenesis, Genetic , CpG Islands , DNA/genetics , Sequence Analysis, DNA/methods , Sulfites
12.
Epigenetics ; 17(5): 473-497, 2022 05.
Article in English | MEDLINE | ID: mdl-33892617

ABSTRACT

Organisms exposed to endocrine disruptors in early life can show altered phenotype later in adulthood. Although the mechanisms underlying these long-term effects remain poorly understood, an increasing body of evidence points towards the potential role of epigenetic processes. In the present study, we exposed hatchlings of an isogenic lineage of the self-fertilizing fish mangrove rivulus for 28 days to 4 and 120 ng/L of 17-α-ethinylestradiol. After a recovery period of 140 days, reduced representation bisulphite sequencing (RRBS) was performed on the liver in order to assess the hepatic genome-wide methylation landscape. Across all treatment comparisons, a total of 146 differentially methylated fragments (DMFs) were reported, mostly for the group exposed to 4 ng/L, suggesting a non-monotonic effect of EE2 exposure. Gene ontology analysis revealed networks involved in lipid metabolism, cellular processes, connective tissue function, molecular transport and inflammation. The highest effect was reported for nipped-B-like protein B (NIPBL) promoter region after exposure to 4 ng/L EE2 (+ 21.9%), suggesting that NIPBL could be an important regulator for long-term effects of EE2. Our results also suggest a significant role of DNA methylation in intergenic regions and potentially in transposable elements. These results support the ability of early exposure to endocrine disruptors of inducing epigenetic alterations during adulthood, providing plausible mechanistic explanations for long-term phenotypic alteration. Additionally, this work demonstrates the usefulness of isogenic lineages of the self-fertilizing mangrove rivulus to better understand the biological significance of long-term alterations of DNA methylation by diminishing the confounding factor of genetic variability.


Subject(s)
Cyprinodontiformes , Endocrine Disruptors , Animals , Cyprinodontiformes/genetics , DNA Methylation , Ethinyl Estradiol/toxicity , Liver
13.
Front Immunol ; 13: 955063, 2022.
Article in English | MEDLINE | ID: mdl-36248850

ABSTRACT

Melanoma is a highly aggressive skin cancer, which, although highly immunogenic, frequently escapes the body's immune defences. Immune checkpoint inhibitors (ICI), such as anti-PD1, anti-PDL1, and anti-CTLA4 antibodies lead to reactivation of immune pathways, promoting rejection of melanoma. However, the benefits of ICI therapy remain limited to a relatively small proportion of patients who do not exhibit ICI resistance. Moreover, the precise mechanisms underlying innate and acquired ICI resistance remain unclear. Here, we have investigated differences in melanoma tissues in responder and non-responder patients to anti-PD1 therapy in terms of tumour and immune cell gene-associated signatures. We performed multi-omics investigations on melanoma tumour tissues, which were collected from patients before starting treatment with anti-PD1 immune checkpoint inhibitors. Patients were subsequently categorized into responders and non-responders to anti-PD1 therapy based on RECIST criteria. Multi-omics analyses included RNA-Seq and NanoString analysis. From RNA-Seq data we carried out HLA phenotyping as well as gene enrichment analysis, pathway enrichment analysis and immune cell deconvolution studies. Consistent with previous studies, our data showed that responders to anti-PD1 therapy had higher immune scores (median immune score for responders = 0.1335, median immune score for non-responders = 0.05426, p-value = 0.01, Mann-Whitney U two-tailed exact test) compared to the non-responders. Responder melanomas were more highly enriched with a combination of CD8+ T cells, dendritic cells (p-value = 0.03) and an M1 subtype of macrophages (p-value = 0.001). In addition, melanomas from responder patients exhibited a more differentiated gene expression pattern, with high proliferative- and low invasive-associated gene expression signatures, whereas tumours from non-responders exhibited high invasive- and frequently neural crest-like cell type gene expression signatures. Our findings suggest that non-responder melanomas to anti-PD1 therapy exhibit a de-differentiated gene expression signature, associated with poorer immune cell infiltration, which establishes a gene expression pattern characteristic of innate resistance to anti-PD1 therapy. Improved understanding of tumour-intrinsic gene expression patterns associated with response to anti-PD1 therapy will help to identify predictive biomarkers of ICI response and may help to identify new targets for anticancer treatment, especially with a capacity to function as adjuvants to improve ICI outcomes.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Programmed Cell Death 1 Receptor/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Transcriptome
14.
J Bacteriol ; 193(16): 4290-1, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21685297

ABSTRACT

The genes and molecular machines that allow for a thermoalkaliphilic lifestyle have not been defined. To address this goal, we report on the improved high-quality draft genome sequence of Caldalkalibacillus thermarum strain TA2.A1, an obligately aerobic bacterium that grows optimally at pH 9.5 and 65 to 70°C on a wide variety of carbon and energy sources.


Subject(s)
Bacillaceae/genetics , Genome, Bacterial , Molecular Sequence Data
15.
Nucleic Acids Res ; 37(Database issue): D72-6, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18984623

ABSTRACT

Messenger RNAs, in addition to coding for proteins, may contain regulatory elements that affect how the protein is translated. These include protein and microRNA-binding sites. Transterm (http://mRNA.otago.ac.nz/Transterm.html) is a database of regions and elements that affect translation with two major unique components. The first is integrated results of analysis of general features that affect translation (initiation, elongation, termination) for species or strains in Genbank, processed through a standard pipeline. The second is curated descriptions of experimentally determined regulatory elements that function as translational control elements in mRNAs. Transterm focuses on protein binding sites, particularly those in 3'-untranslated regions (3'-UTR). For this release the interface has been extensively updated based on user feedback. The data is now accessible by strain rather than species, for example there are 10 Escherichia coli strains (genomes) analysed separately. In addition to providing a repository of data, the database also provides tools for users to query their own mRNA sequences. Users can search sequences for Transterm or user defined regulatory elements, including protein or miRNA targets. Transterm also provides a central core of links to related resources for complementary analyses.


Subject(s)
Databases, Nucleic Acid , Protein Biosynthesis , RNA, Messenger/chemistry , Regulatory Sequences, Ribonucleic Acid , RNA, Bacterial/chemistry , Sequence Analysis, RNA
16.
Curr Protoc ; 1(8): e206, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34387946

ABSTRACT

Transposable elements (TEs) are key regulators of both development and disease; however, their repetitive nature presents substantial computational challenges to their analysis. Due to a lack of computational tools and suitable analysis frameworks, TE expression is often not quantified at the locus level. Therefore, we have developed RepExpress, a novel pipeline that enables locus-level TE quantification and characterization. RepExpress enables the characterization of TE expression in a genomic context, and is the first tool focusing on the identification of tissue-specific TE-derived and TE-regulated genes. RepExpress identifies expressed TEs overlapping with annotated genomic features and enables tissue-specific profiles of TE-derived genes. TEs that are expressed with no overlap with any known genomic features are characterized by the closest downstream genomic feature enabling identification of novel TE-gene regulatory relationships. RepExpress takes standard RNA-seq data as input and performs genomic alignment optimized for TEs. Our novel pipeline quantifies expression of both TEs and genes using featureCounts and Stringtie, respectively. RepExpress then filters expressed repeats and characterizes their genomic context, enabling the identification of TEs that overlap with genes, or that may be influencing gene expression. Here, we describe RepExpress, and provide a step-by-step protocol detailing its workflow. We also discuss other TE analysis tools and their applicability to addressing different biological questions. © 2021 Wiley Periodicals LLC. Basic Protocol: RepExpress workflow.


Subject(s)
DNA Transposable Elements , Genomics , DNA Transposable Elements/genetics , Gene Expression Profiling , Gene Expression Regulation , RNA-Seq
17.
Viruses ; 13(10)2021 10 11.
Article in English | MEDLINE | ID: mdl-34696474

ABSTRACT

Papillomaviruses (PVs) are double-stranded DNA tumour viruses that can infect cutaneous and mucosal epidermis. Human papillomavirus (HPV) types have been linked to the causality of cutaneous squamous cell carcinoma (cSCC); however, HPV DNA is not always detected in the resultant tumour. DNA methylation is an epigenetic change that can contribute to carcinogenesis. We hypothesise that the DNA methylation pattern in cells is altered following PV infection. We tested if DNA methylation was altered by PV infection in the mouse papillomavirus (MmuPV1) model. Immunosuppressed mice were infected with MmuPV1 on cutaneous tail skin. Immunosuppression was withdrawn for some mice, causing lesions to spontaneously regress. Reduced representation bisulphite sequencing was carried out on DNA from the actively infected lesions, visibly regressed lesions, and mock-infected control mice. DNA methylation libraries were generated and analysed for differentially methylated regions throughout the genome. The presence of MmuPV1 sequences was also assessed. We identified 834 predominantly differentially hypermethylated fragments in regressed lesions, and no methylation differences in actively infected lesions. The promoter regions of genes associated with tumorigenicity, including the tumour suppressor protein DAPK1 and mismatch repair proteins MSH6 and PAPD7, were hypermethylated. Viral DNA was detected in active lesions and in some lesions that had regressed. This is the first description of the genome-wide DNA methylation landscape for active and regressed MmuPV1 lesions. We propose that the DNA hypermethylation in the regressed lesions that we report here may increase the susceptibility of cells to ultraviolet-induced cSCC.


Subject(s)
Epigenesis, Genetic/genetics , Papillomaviridae/genetics , Papillomavirus Infections/genetics , Animals , Carcinoma, Squamous Cell/genetics , DNA Methylation/genetics , DNA, Viral/genetics , Epigenomics/methods , Female , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Viral/genetics , Mice , Mice, Inbred BALB C , Papillomavirus Infections/virology , Promoter Regions, Genetic/genetics , Skin Neoplasms/genetics
18.
Cancers (Basel) ; 13(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34503064

ABSTRACT

Melanoma is the most aggressive type of skin cancer, with increasing incidence worldwide. Advances in targeted therapy and immunotherapy have improved the survival of melanoma patients experiencing recurrent disease, but unfortunately treatment resistance frequently reduces patient survival. Resistance to targeted therapy is associated with transcriptomic changes and has also been shown to be accompanied by increased expression of programmed death ligand 1 (PD-L1), a potent inhibitor of immune response. Intrinsic upregulation of PD-L1 is associated with genome-wide DNA hypomethylation and widespread alterations in gene expression in melanoma cell lines. However, an in-depth analysis of the transcriptomic landscape of melanoma cells with intrinsically upregulated PD-L1 expression is lacking. To determine the transcriptomic landscape of intrinsically upregulated PD-L1 expression in melanoma, we investigated transcriptomes in melanomas with constitutive versus inducible PD-L1 expression (referred to as PD-L1CON and PD-L1IND). RNA-Seq analysis was performed on seven PD-L1CON melanoma cell lines and ten melanoma cell lines with low inducible PD-L1IND expression. We observed that PD-L1CON melanoma cells had a reprogrammed transcriptome with a characteristic pattern of dedifferentiated gene expression, together with active interferon (IFN) and tumour necrosis factor (TNF) signalling pathways. Furthermore, we identified key transcription factors that were also differentially expressed in PD-L1CON versus PD-L1IND melanoma cell lines. Overall, our studies describe transcriptomic reprogramming of melanomas with PD-L1CON expression.

19.
Cancers (Basel) ; 13(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924927

ABSTRACT

DNA methylation is a heritable epigenetic mark that is fundamental to mammalian development. Aberrant DNA methylation is an epigenetic hallmark of cancer cells. Cell lines are a critical in vitro model and very widely used to unravel mechanisms of cancer cell biology. However, limited data are available to assess whether DNA methylation patterns in tissues are retained when cell lines are established. Here, we provide the first genome-scale sequencing-based methylation map of metastatic melanoma tumour tissues and their derivative cell lines. We show that DNA methylation profiles are globally conserved in vitro compared to the tumour tissue of origin. However, we identify sites that are consistently hypermethylated in cell lines compared to their tumour tissue of origin. The genes associated with these common differentially methylated regions are involved in cell metabolism, cell cycle and apoptosis and are also strongly enriched for the H3K27me3 histone mark and PRC2 complex-related genes. Our data indicate that although global methylation patterns are similar between tissues and cell lines, there are site-specific epigenomic differences that could potentially impact gene expression. Our work provides a valuable resource for identifying false positives due to cell culture and for better interpretation of cancer epigenetics studies in the future.

20.
Epigenomics ; 13(8): 577-598, 2021 04.
Article in English | MEDLINE | ID: mdl-33781093

ABSTRACT

Aims & objectives: The aim of this study was to investigate the role of DNA methylation in invasiveness in melanoma cells. Materials & methods: The authors carried out genome-wide transcriptome (RNA sequencing) and reduced representation bisulfite sequencing methylome profiling between noninvasive (n = 4) and invasive melanoma cell lines (n = 5). Results: The integration of differentially expressed genes and differentially methylated fragments (DMFs) identified 12 DMFs (two in AVPI1, one in HMG20B, two in BCL3, one in NTSR1, one in SYNJ2, one in ROBO2 and four in HORMAD2) that overlapped with either differentially expressed genes (eight DMFs and six genes) or cis-targets of lncRNAs (five DMFs associated with cis-targets and four differentially expressed lncRNAs). Conclusions: DNA methylation changes are associated with a number of transcriptional differences observed in noninvasive and invasive phenotypes in melanoma.


Subject(s)
DNA Methylation , Genome, Human , Melanoma/pathology , Neoplasm Invasiveness/genetics , RNA/genetics , Skin Neoplasms/pathology , Cell Line, Tumor , Humans , Phenotype , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL