ABSTRACT
The East Antarctic Ice Sheet contains the vast majority of Earth's glacier ice (about 52 metres sea-level equivalent), but is often viewed as less vulnerable to global warming than the West Antarctic or Greenland ice sheets. However, some regions of the East Antarctic Ice Sheet have lost mass over recent decades, prompting the need to re-evaluate its sensitivity to climate change. Here we review the response of the East Antarctic Ice Sheet to past warm periods, synthesize current observations of change and evaluate future projections. Some marine-based catchments that underwent notable mass loss during past warm periods are losing mass at present but most projections indicate increased accumulation across the East Antarctic Ice Sheet over the twenty-first century, keeping the ice sheet broadly in balance. Beyond 2100, high-emissions scenarios generate increased ice discharge and potentially several metres of sea-level rise within just a few centuries, but substantial mass loss could be averted if the Paris Agreement to limit warming below 2 degrees Celsius is satisfied.
Subject(s)
Climate Models , Global Warming , Ice Cover , Temperature , Antarctic Regions , Forecasting , Global Warming/history , Global Warming/prevention & control , Global Warming/statistics & numerical data , History, 21st Century , Sea Level Rise/history , Sea Level Rise/statistics & numerical dataABSTRACT
Advances in open data, big data and data linkage allow us to analyse more data and on a larger scale than ever before. However, this brings with it the challenge of ensuring that Indigenous data sets are used in a way that protects Indigenous rights to that data and maximises benefits for Indigenous peoples. The CARE principles for Indigenous data governance-Collective Benefit, Authority to Control, Responsibility and Ethics-were developed to protect Indigenous data sovereignty, but there are few examples of how to translate these principles into practice. In this paper, we show how these CARE principles can be applied to data collection, integration, analysis and translation practices. Our case study is a project that used data reported by Indigenous ranger groups to capture the multiple benefits of Indigenous land and water management activities. Through this case study, we offer a framework for the design and use of CARE-informed data practices, which can be embedded into project design to enable the ethical and responsible use of Indigenous data to improve Indigenous policies and services. Such practices are critical in the context of ongoing demand for Indigenous data for bureaucratic purposes, and Indigenous interest in using that data to influence management and policy decisions affecting their estates and resources.
Subject(s)
Population Groups , Data Collection , HumansABSTRACT
We probe the molecular dynamics and states of an avidin protein as it is captured and trapped in a voltage-biased cytolysin A nanopore using time-resolved single-molecule electrical conductance signals. The data for very large numbers of single-molecule events are analyzed and presented by a new method that provides clear visual insight into the molecular scale processes. Avidin in cytolysin A has surprisingly rich conductance spectra that reveal transient and more permanently trapped protein configurations in the pore and how they evolve into one another. We identify a long-lasting, stable, and low-noise configuration of avidin in the nanopore into which avidin can be reliably trapped and released. This may prove useful for single-molecule studies of other proteins that can be biotinylated and then transported by avidin to the pore via their coupling to avidin with biotin-avidin linking. We demonstrate the sensitivity of this system with detection of biotin attached to avidin captured by the pore.
Subject(s)
Avidin/chemistry , Avidin/metabolism , Movement , Nanopores , Perforin/chemistry , Perforin/metabolism , Biotin/metabolism , Models, Molecular , Protein Multimerization , Protein Structure, QuaternaryABSTRACT
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.
Subject(s)
Erythrocytes/metabolism , Oxygen/blood , Single-Cell Analysis/methods , Flow Cytometry , Hemoglobins/metabolism , Humans , Kinetics , Single-Cell Analysis/instrumentation , Spectrum AnalysisABSTRACT
Fifty-one genotypes of sugarcane (Saccharum spp.) or closely related germplasm were evaluated in a pot experiment to examine genetic variation in transpiration efficiency. Significant variation in whole plant transpiration efficiency was observed, with the difference between lowest and highest genotypes being about 40% of the mean. Leaf gas exchange measurements were made across a wide range of conditions. There was significant genetic variation in intrinsic transpiration efficiency at a leaf level as measured by leaf internal CO2 (Ci) levels. Significant genetic variation in Ci was also observed within subsets of data representing narrow ranges of stomatal conductance. Ci had a low broad sense heritability (Hb = 0.11) on the basis of single measurements made at particular dates, because of high error variation and genotype × date interaction, but broad sense heritability for mean Ci across all dates was high (Hb = 0.81) because of the large number of measurements taken at different dates. Ci levels among genotypes at mid-range levels of conductance had a strong genetic correlation (-0.92 ± 0.30) with whole plant transpiration efficiency but genetic correlations between Ci and whole plant transpiration efficiency were weaker or not significant at higher and lower levels of conductance. Reduced Ci levels at any given level of conductance may result in improved yields in water-limited environments without trade-offs in rates of water use and growth. Targeted selection and improvement of lowered Ci per unit conductance via breeding may provide longer-term benefits for water-limited environments but the challenge will be to identify a low-cost screening methodology.
Subject(s)
Gases/metabolism , Genetic Variation , Plant Leaves/genetics , Plant Leaves/parasitology , Plant Transpiration/genetics , Saccharum/genetics , Saccharum/physiology , Biomass , Carbon Dioxide/metabolism , Humidity , Phenotype , Photosynthesis/genetics , Quantitative Trait, Heritable , Seeds/genetics , TemperatureABSTRACT
Drosophila typically move toward light (phototax positively) when startled. The various species of Drosophila exhibit some variation in their respective mean phototactic behaviors; however, it is not clear to what extent genetically identical individuals within each species behave idiosyncratically. Such behavioral individuality has indeed been observed in laboratory arthropods; however, the neurobiological factors underlying individual-to-individual behavioral differences are unknown. We developed "FlyVac," a high-throughput device for automatically assessing phototaxis in single animals in parallel. We observed surprising variability within every species and strain tested, including identically reared, isogenic strains. In an extreme example, a domesticated strain of Drosophila simulans harbored both strongly photopositive and strongly photonegative individuals. The particular behavior of an individual fly is not heritable and, because it persists for its lifetime, constitutes a model system for elucidating the molecular mechanisms of personality. Although all strains assayed had greater than expected variation (assuming binomial sampling), some had more than others, implying a genetic basis. Using genetics and pharmacology, we identified the metabolite transporter White and white-dependent serotonin as suppressors of phototactic personality. Because we observed behavioral idiosyncrasy in all experimental groups, we suspect it is present in most behaviors of most animals.
Subject(s)
Drosophila/physiology , Light , Serotonin/physiology , ATP-Binding Cassette Transporters/genetics , Animals , Behavior, Animal , Drosophila/genetics , Drosophila Proteins/genetics , Eye Proteins/geneticsABSTRACT
Antarctica's contribution to global mean sea level rise has been driven by an increase in ice discharge into the oceans. The rate of change and the mechanisms that drive variability in ice discharge are therefore important to consider in the context of projected future warming. Here, we report observations of both decadal trends and inter-annual variability in ice discharge across the Antarctic Ice Sheet at a variety of spatial scales that range from large drainage basins to individual outlet glacier catchments. Overall, we find a 37 ± 11 Gt year-1 increase in discharge between 1999 and 2010, but a much smaller increase of 4 ± 8 Gt year-1 between 2010 and 2018. Furthermore, comparisons reveal that neighbouring outlet glaciers can behave synchronously, but others show opposing trends, despite their close proximity. We link this spatial and temporal variability to changes in ice shelf buttressing and the modulating effect of local glacier geometry.
ABSTRACT
Antarctic supraglacial lakes (SGLs) have been linked to ice shelf collapse and the subsequent acceleration of inland ice flow, but observations of SGLs remain relatively scarce and their interannual variability is largely unknown. This makes it difficult to assess whether some ice shelves are close to thresholds of stability under climate warming. Here, we present the first observations of SGLs across the entire East Antarctic Ice Sheet over multiple melt seasons (2014-2020). Interannual variability in SGL volume is >200% on some ice shelves, but patterns are highly asynchronous. More extensive, deeper SGLs correlate with higher summer (December-January-February) air temperatures, but comparisons with modelled melt and runoff are complex. However, we find that modelled January melt and the ratio of November firn air content to summer melt are important predictors of SGL volume on some potentially vulnerable ice shelves, suggesting large increases in SGLs should be expected under future atmospheric warming.
Subject(s)
Ice Cover , Lakes , Antarctic Regions , Climate , TemperatureABSTRACT
BACKGROUND: Recently introduced total knee arthroplasty (TKA) implants have been linked with the early development of periprosthetic radiolucency (PPRL). The aim of this study was to carry out a retrospective clinical and radiographical analysis of a consecutive series of a new TKA, and to assess the incidence and distribution of PPRL. METHODS: A retrospective review of all new TKA implants performed by a single surgeon at a single hospital between March 2013 and October 2017 was performed. The minimum follow-up period was 3 months, with ongoing patient review at 6, 12 and 36 months. Sequential post-operative radiographs were performed to determine the presence of PPRL. RESULTS: A total of 122 TKAs were identified in 112 patients over the 4.5-year study period. The average follow-up time was 21 months (range 3-51 months). PPRL was noted in 29 TKAs (23.8%). When comparing the PPRL group to those without PPRL, there was a difference in body mass index, with body mass index associated with an increased likelihood of PPRL (P = 0.003). There was no difference in constraint of implant (P = 0.818), cement type (P = 0.340), patella resurfacing (P = 0.286), age (P = 0.984) gender (P = 0.376) or initial mechanical axis deviation (P = 0.054) between groups. PPRL were most commonly seen in tibial anterior-posterior (AP) zone 1 and zone 2 (96.6%), followed by femoral lateral zone 5 (58.6%), tibia lateral zone 1 (55.2%) and tibial lateral zone 2 (53.2%). No patients have required revision surgery. CONCLUSION: A high incidence of early PPRL is seen in patients undergoing primary TKA using a new implant system, mainly involving the tibial component. Ongoing clinical and radiological assessment for patients seems warranted based on these findings.
Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Arthroplasty, Replacement, Knee/adverse effects , Humans , Incidence , Knee Joint/diagnostic imaging , Knee Joint/surgery , Knee Prosthesis/adverse effects , Retrospective Studies , Treatment OutcomeABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
Supraglacial lakes are important to ice sheet mass balance because their development and drainage has been linked to changes in ice flow velocity and ice shelf disintegration. However, little is known about their distribution on the world's largest ice sheet in East Antarctica. Here, we use ~5 million km2 of high-resolution satellite imagery to identify >65,000 lakes (>1,300 km2) that formed around the peak of the melt season in January 2017. Lakes occur in most marginal areas where they typically develop at low elevations (<100 m) and on low surface slopes (<1°), but they can exist 500 km inland and at elevations >1500 m. We find that lakes often cluster a few kilometres down-ice from grounding lines and ~60% (>80% by area) develop on ice shelves, including some potentially vulnerable to collapse driven by lake-induced hydro-fracturing. This suggests that parts of the ice sheet may be highly sensitive to climate warming.
ABSTRACT
The Canadian Arctic Archipelago contains >300 glaciers that terminate in the ocean, but little is known about changes in their frontal positions in response to recent changes in the ocean-climate system. Here, we examine changes in glacier frontal positions since the 1950s and investigate the relative influence of oceanic temperature versus atmospheric temperature. Over 94% of glaciers retreated between 1958 and 2015, with a region-wide trend of gradual retreat before ~2000, followed by a fivefold increase in retreat rates up to 2015. Retreat patterns show no correlation with changes in subsurface ocean temperatures, in clear contrast to the dominance of ocean forcing in western Greenland and elsewhere. Rather, significant correlations with surface melt indicate that increased atmospheric temperature has been the primary driver of the acceleration in marine-terminating glacier frontal retreat in this region.
ABSTRACT
Our understanding of how global climatic changes are translated into ice-sheet fluctuations and sea-level change is currently limited by a lack of knowledge of the configuration of ice sheets prior to the Last Glacial Maximum (LGM). Here, we compile a synthesis of empirical data and numerical modelling results related to pre-LGM ice sheets to produce new hypotheses regarding their extent in the Northern Hemisphere (NH) at 17 time-slices that span the Quaternary. Our reconstructions illustrate pronounced ice-sheet asymmetry within the last glacial cycle and significant variations in ice-marginal positions between older glacial cycles. We find support for a significant reduction in the extent of the Laurentide Ice Sheet (LIS) during MIS 3, implying that global sea levels may have been 30-40 m higher than most previous estimates. Our ice-sheet reconstructions illustrate the current state-of-the-art knowledge of pre-LGM ice sheets and provide a conceptual framework to interpret NH landscape evolution.
ABSTRACT
We report a custom-geometry linear ion trap designed for fluorescence spectroscopy of gas-phase ions at ambient to cryogenic temperatures. Laser-induced fluorescence from trapped ions is collected from between the trapping rods, orthogonal to the excitation laser that runs along the axis of the linear ion trap. To increase optical access to the ion cloud, the diameter of the round trapping rods is 80% of the inscribed diameter, rather than the roughly 110% used to approximate purely quadrupolar electric fields. To encompass as much of the ion cloud as possible, the first collection optic has a 25.4 mm diameter and a numerical aperture of 0.6. The choice of geometry and collection optics yields 107 detected photons/s from trapped rhodamine 6G ions. The trap is coupled to a closed-cycle helium refrigerator, which in combination with two 50 Ohm heaters enables temperature control to below 25 K on the rod electrodes. The purpose of the instrument is to broaden the applicability of fluorescence spectroscopy of gas-phase ions to cases where photon emission is a minority relaxation pathway. Such studies are important to understand how the microenvironment of a chromophore influences excited state charge transfer processes. Graphical Abstract á .
ABSTRACT
The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974-1990, before switching to advance in every drainage basin during the two most recent periods, 1990-2000 and 2000-2012. The only exception to this trend was in Wilkes Land, where the majority of glaciers (74%) retreated between 2000 and 2012. We hypothesize that this anomalous retreat is linked to a reduction in sea ice and associated impacts on ocean stratification, which increases the incursion of warm deep water toward glacier termini. Because Wilkes Land overlies a large marine basin, it raises the possibility of a future sea level contribution from this sector of East Antarctica.
Subject(s)
Ice Cover , Ice , Seawater , Antarctic Regions , Climate , Geography , Oceans and Seas , SeasonsABSTRACT
Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A 'stochastic instability' (SI) model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models.
Subject(s)
Geologic Sediments , Ice Cover , Models, Statistical , AlgorithmsABSTRACT
Ice streams drain large portions of ice sheets and play a fundamental role in governing their response to atmospheric and oceanic forcing, with implications for sea-level change. The mechanisms that generate ice stream flow remain elusive. Basal sliding and/or bed deformation have been hypothesized, but ice stream beds are largely inaccessible. Here we present a comprehensive, multi-scale study of the internal structure of mega-scale glacial lineations (MSGLs) formed at the bed of a palaeo ice stream. Analyses were undertaken at macro- and microscales, using multiple techniques including X-ray tomography, thin sections and ground penetrating radar (GPR) acquisitions. Results reveal homogeneity in stratigraphy, kinematics, granulometry and petrography. The consistency of the physical and geological properties demonstrates a continuously accreting, shallow-deforming, bed and invariant basal conditions. This implies that ice stream basal motion on soft sediment beds during MSGL formation is accommodated by plastic deformation, facilitated by continuous sediment supply and an inefficient drainage system.
ABSTRACT
OBJECTIVE: To develop a large animal model for studies of laryngeal abductor reinnervation. MATERIAL AND METHODS: Six minipigs underwent unilateral anastomosis of the phrenic nerve-abductor branch of the recurrent laryngeal nerve (RLN). Polyhydroxybutyrate (PHB) conduits were used for repair. At each of 30, 60 and 120 days, 2 animals underwent video laryngeal endoscopy (VLE) and were then killed. VLE was also performed in the 120-day pair at 60 days. Nerve-conduit-nerve-muscle samples were fixed for light and immunofluorescence (pan-neurofilaments, S-100) microscopy. Laryngeal muscles were harvested (myosin heavy chain analysis). RESULTS: VLE showed recovery of abductor function in 1 animal at 60 days and in 1 at 120 days. Haematoxylin-eosin staining demonstrated a complex inflammatory response. Eosinophil recruitment was observed. Stepwise regeneration and reorganization of the distal nerve between 30 and 120 days was observed with pan-NF staining. The mean minimum diameter in the reinnervated posterior crico-arytenoids tended to increase for up to 120 days. CONCLUSIONS: Anastomosis of the phrenic nerve-abductor branch of the RLN with a PHB conduit in a pig can result in functional and histological recovery within 2-4 months and appears to at least sustain abductor muscle fibre morphology. Recovery occurs despite a complex inflammatory response, which may be an essential part of healing rather than inhibitory.
Subject(s)
Laryngeal Muscles/innervation , Recurrent Laryngeal Nerve/surgery , Anastomosis, Surgical , Animals , Endoscopy , Female , Laryngeal Muscles/anatomy & histology , Laryngeal Muscles/cytology , Nerve Fibers, Myelinated/physiology , Phrenic Nerve/surgery , Pilot Projects , Recovery of Function , Recurrent Laryngeal Nerve/anatomy & histology , Recurrent Laryngeal Nerve/cytology , Regeneration/physiology , Respiratory Function Tests , Swine , Time Factors , Videotape RecordingABSTRACT
Much remains unknown about how the nervous system of an animal generates behaviour, and even less is known about the evolution of behaviour. How does evolution alter existing behaviours or invent novel ones? Progress in computational techniques and equipment will allow these broad, complex questions to be explored in great detail. Here we present a method for tracking each leg of a fruit fly behaving spontaneously upon a trackball, in real time. Legs were tracked with infrared-fluorescent dyes invisible to the fly, and compatible with two-photon microscopy and controlled visual stimuli. We developed machine-learning classifiers to identify instances of numerous behavioural features (for example, walking, turning and grooming), thus producing the highest-resolution ethological profiles for individual flies.
Subject(s)
Behavior, Animal/physiology , Drosophila melanogaster/physiology , Ethology/methods , Extremities/physiology , Algorithms , Animals , Automation , Coloring Agents/metabolismABSTRACT
Absence of lymph nodes in nonmammalian species, expression of MHCII by APCs in the periphery, and the recent findings that T cells can change their polarization status after presentation in the lymph nodes imply a role for MHCII-mediated presentation outside the organized lymphoid tissue. This study shows that MHCII(+) ECs and DCs from the intestinal mucosa of the pig can present antigen to T cells in vitro. In vivo, APCs colocalize with T cells in pig and mouse intestinal mucosa. In the pig, endothelium is involved in these interactions in neonates but not in adults, indicating different roles for stromal and professional APCs in the neonate compared with the adult. The ratio of expression of DQ and DR MHCII locus products was lower on ECs than on other mucosal APCs, indicating that the two types of cells present different peptide sets. Adult nonendothelial APCs expressed a higher ratio of DQ/DR than in neonates. These results suggest that mucosal DCs can present antigen locally to primed T cells and that stromal APCs are recruited to these interactions in some cases. This raises the possibility that local presentation may influence T cell responses at the effector stage after initial presentation in the lymph node.