Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Acta Neuropathol ; 136(2): 239-253, 2018 08.
Article in English | MEDLINE | ID: mdl-29766299

ABSTRACT

Diffuse leptomeningeal glioneuronal tumors (DLGNT) represent rare CNS neoplasms which have been included in the 2016 update of the WHO classification. The wide spectrum of histopathological and radiological features can make this enigmatic tumor entity difficult to diagnose. In recent years, large-scale genomic and epigenomic analyses have afforded insight into key genetic alterations occurring in multiple types of brain tumors and provide unbiased, complementary tools to improve diagnostic accuracy. Through genome-wide DNA methylation screening of > 25,000 tumors, we discovered a molecularly distinct class comprising 30 tumors, mostly diagnosed histologically as DLGNTs. Copy-number profiles derived from the methylation arrays revealed unifying characteristics, including loss of chromosomal arm 1p in all cases. Furthermore, this molecular DLGNT class can be subdivided into two subgroups [DLGNT methylation class (MC)-1 and DLGNT methylation class (MC)-2], with all DLGNT-MC-2 additionally displaying a gain of chromosomal arm 1q. Co-deletion of 1p/19q, commonly seen in IDH-mutant oligodendroglioma, was frequently observed in DLGNT, especially in DLGNT-MC-1 cases. Both subgroups also had recurrent genetic alterations leading to an aberrant MAPK/ERK pathway, with KIAA1549:BRAF fusion being the most frequent event. Other alterations included fusions of NTRK1/2/3 and TRIM33:RAF1, adding up to an MAPK/ERK pathway activation identified in 80% of cases. In the DLGNT-MC-1 group, age at diagnosis was significantly lower (median 5 vs 14 years, p < 0.01) and clinical course less aggressive (5-year OS 100, vs 43% in DLGNT-MC-2). Our study proposes an additional molecular layer to the current histopathological classification of DLGNT, of particular use for cases without typical morphological or radiological characteristics, such as diffuse growth and radiologic leptomeningeal dissemination. Recurrent 1p deletion and MAPK/ERK pathway activation represent diagnostic biomarkers and therapeutic targets, respectively-laying the foundation for future clinical trials with, e.g., MEK inhibitors that may improve the clinical outcome of patients with DLGNT.


Subject(s)
Meningeal Neoplasms/classification , Meningeal Neoplasms/genetics , Oligodendroglioma/classification , Oligodendroglioma/genetics , Adolescent , Adult , Central Nervous System Neoplasms/diagnostic imaging , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Child , Child, Preschool , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Female , Genetic Testing , Humans , Kaplan-Meier Estimate , Magnetic Resonance Imaging , Male , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Middle Aged , Mitogen-Activated Protein Kinase Kinases/metabolism , Oligodendroglioma/diagnostic imaging , Oligodendroglioma/pathology , Signal Transduction/genetics , Transcriptome , Young Adult
2.
Front Immunol ; 11: 716, 2020.
Article in English | MEDLINE | ID: mdl-32655537

ABSTRACT

Familial Mediterranean fever (FMF) is caused by mutations within the Mediterranean fever (MEFV) gene. Disease severity depends on genotype and gene dose with most serious clinical courses observed in patients with M694V homozygosity. Neutrophils are thought to play an important role in the initiation and perpetuation of inflammatory processes in FMF, but little is known about the specific characteristics of these cells in FMF patients. To further characterize neutrophilic inflammatory responses in FMF and to delineate gene-dose effects on a cellular level, we analyzed cytokine production and activation levels of isolated neutrophils derived from patients and subjects with distinct MEFV genotypes, as well as healthy and disease controls. Serum levels of interleukin-18 (IL-18) (median 11,485 pg/ml), S100A12 (median 9,726 ng/ml), and caspase-1 (median 394 pg/ml) were significantly increased in patients with homozygous M694V mutations. Spontaneous release of S100A12, caspase-1, proteinase 3, and myeloperoxidase (MPO) was restricted to ex vivo cultured neutrophils derived from patients with two pathogenic MEFV mutations. IL-18 secretion was highest in patients with two mutations but also increased in neutrophils from healthy heterozygous MEFV mutation carriers, exhibiting an ex vivo gene-dose effect, which was formerly described by us in patients' serum. CD62L (l-selectin) was spontaneously shed from the surface of ex vivo cultured neutrophils [median of geometric mean fluorescence intensity (gMFI) after 5 h: 28.8% of the initial level]. While neutrophils derived from healthy heterozygous mutation carriers again showed a gene-dose effect (median gMFI: 67.1%), healthy and disease controls had significant lower shedding rates (median gMFI: 83.6 and 82.9%, respectively). Co-culture with colchicine and/or stimulation with adenosine triphosphate (ATP) and lipopolysaccharide (LPS) led to a significant increase in receptor shedding. Neutrophils were not prevented from spontaneous shedding by blocking IL-1 or the NLRP3 inflammasome. In summary, the data demonstrate that ex vivo cultured neutrophils derived from FMF patients display a unique phenotype with spontaneous release of high amounts of IL-18, S100A12, MPO, caspase-1, and proteinase 3 and spontaneous activation as demonstrated by the loss of CD62L. Neutrophilic activation seems to be independent from IL-1 activation and displays a gene-dose effect that may be responsible for genotype-dependent phenotypes.


Subject(s)
Familial Mediterranean Fever/genetics , Familial Mediterranean Fever/immunology , Gain of Function Mutation , Gene Dosage , Neutrophil Activation , Neutrophils/immunology , Pyrin/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Caspase 1/blood , Cells, Cultured , Child , Cohort Studies , Familial Mediterranean Fever/blood , Female , Heterozygote , Humans , Interleukin-18/blood , Male , Middle Aged , Phenotype , S100A12 Protein/blood , Young Adult
3.
Cancer Discov ; 10(7): 942-963, 2020 07.
Article in English | MEDLINE | ID: mdl-32238360

ABSTRACT

Infant high-grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histologic review, methylation profiling, and custom panel, genome, or exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an "intrinsic" spectrum of disease specific to the infant population. These included those with targetable MAPK alterations, and a large proportion of remaining cases harboring gene fusions targeting ALK (n = 31), NTRK1/2/3 (n = 21), ROS1 (n = 9), and MET (n = 4) as their driving alterations, with evidence of efficacy of targeted agents in the clinic. These data strongly support the concept that infant gliomas require a change in diagnostic practice and management. SIGNIFICANCE: Infant high-grade gliomas in the cerebral hemispheres comprise novel subgroups, with a prevalence of ALK, NTRK1/2/3, ROS1, or MET gene fusions. Kinase fusion-positive tumors have better outcome and respond to targeted therapy clinically. Other subgroups have poor outcome, with fusion-negative cases possibly representing an epigenetically driven pluripotent stem cell phenotype.See related commentary by Szulzewsky and Cimino, p. 904.This article is highlighted in the In This Issue feature, p. 890.


Subject(s)
Gene Fusion/genetics , Glioma/genetics , Humans , Infant , Neoplasm Grading , Prognosis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL