Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Exerc Sport Sci Rev ; 51(2): 65-72, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36722860

ABSTRACT

Exaggerated cardiovascular responses to exercise increase the risk of myocardial infarction and stroke in individuals with type 1 diabetes (T1D); however, the underlying mechanisms remain largely elusive. This review provides an overview of the altered exercise pressor reflex in T1D, with an emphasis on the mechanical component of the reflex.


Subject(s)
Cardiovascular System , Diabetes Mellitus, Type 1 , Humans , Sympathetic Nervous System , Muscle, Skeletal/physiology , Exercise/physiology , Reflex/physiology , Blood Pressure/physiology , Muscle Contraction
2.
Am J Physiol Heart Circ Physiol ; 320(4): H1738-H1748, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33635166

ABSTRACT

Emerging evidence suggests the exercise pressor reflex is exaggerated in early stage type 1 diabetes mellitus (T1DM). Piezo channels may play a role in this exaggeration, as blocking these channels attenuates the exaggerated pressor response to tendon stretch in T1DM rats. However, tendon stretch constitutes a different mechanical and physiological stimuli than that occurring during muscle contraction. Therefore, the purpose of this study was to determine the contribution of Piezo channels in evoking the pressor reflex during an intermittent muscle contraction in T1DM. In unanesthetized decerebrate rats, we compared the pressor and cardioaccelerator responses to intermittent muscle contraction before and after locally injecting grammostola spatulata mechanotoxin 4 (GsMTx-4, 0.25 µM) into the hindlimb vasculature. Although GsMTx-4 has a high potency for Piezo channels, it has also been suggested to block transient receptor potential cation (TRPC) channels. We, therefore, performed additional experiments to control for this possibility by also injecting SKF 96365 (10 µM), a TRPC channel blocker. We found that local injection of GsMTx-4, but not SKF 96365, attenuated the exaggerated peak pressor (ΔMAP before: 33 ± 3 mmHg, after: 22 ± 3 mmHg, P = 0.007) and pressor index (ΔBPi before: 668 ± 91 mmHg·s, after: 418 ± 81 mmHg·s, P = 0.021) response in streptozotocin (STZ) rats (n = 8). GsMTx-4 attenuated the exaggerated early onset pressor and the pressor response over time, which eliminated peak differences as well as those over time between T1DM and healthy controls. These data suggest that Piezo channels are an effective target to normalize the exercise pressor reflex in T1DM.NEW & NOTEWORTHY This is the first study to demonstrate that blocking Piezo channels is effective in ameliorating the exaggerated exercise pressor reflex evoked by intermittent muscle contraction, commonly occurring during physical activity, in T1DM. Thus, these findings suggest Piezo channels may serve as an effective therapeutic target to reduce the acute and prolonged cardiovascular strain that may occur during dynamic exercise in T1DM.


Subject(s)
Autonomic Nervous System/drug effects , Blood Pressure/drug effects , Cardiovascular System/innervation , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Intercellular Signaling Peptides and Proteins/pharmacology , Membrane Transport Modulators/pharmacology , Muscle Contraction , Muscle, Skeletal/innervation , Reflex, Abnormal/drug effects , Spider Venoms/pharmacology , Animals , Autonomic Nervous System/metabolism , Autonomic Nervous System/physiopathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/physiopathology , Female , Heart Rate/drug effects , Ion Channels/antagonists & inhibitors , Ion Channels/metabolism , Male , Physical Conditioning, Animal , Rats, Sprague-Dawley , Time Factors
3.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R358-R365, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32726156

ABSTRACT

Studies have shown that early-stage type 1 diabetes mellitus (T1DM) leads to an exaggerated reflex pressor response to both static muscle contraction and tendon stretch. However, whether similar responses are present during dynamic exercise (i.e., intermittent contraction) is not known. Therefore, the purpose of this study was to determine whether T1DM leads to an exaggerated reflex pressor response to intermittent muscle contraction. We measured the exercise pressor reflex in unanesthetized, decerebrated T1DM (50 mg/kg streptozotocin; STZ) and healthy control (CTL) Sprague-Dawley rats by intermittently contracting the hindlimb muscles for 30 s while measuring mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and heart rate (HR). Intermittently contracting the hindlimb muscles evoked exaggerated mean RSNA (STZ: Δ109 ± 21%, n = 4 rats; CTL: Δ61 ± 8%, n = 5 rats, P < 0.05), peak MAP (STZ: Δ32 ± 2 mmHg, n = 9 rats; CTL: Δ12 ± 2 mmHg, n = 6 rats, P < 0.05), blood pressure index (STZ: Δ625 ± 60 mmHg/s, n = 9 rats; CTL: Δ241 ± 46 mmHg/s, n = 6 rats, P < 0.05), and HR (STZ: Δ24 ± 3 beats/min, n = 9 rats; CTL: Δ9 ± 3 beats/min, n = 6 rats, P < 0.05) responses to similar developed tensions (P > 0.05) in T1DM compared with CTL rats. T1DM rats also exhibited exaggerated early-onset sympathetic (onset: 1 s) and pressor (onset: 5 s) responses. These data show that early-stage T1DM leads to an exaggerated pressor reflex evoked by intermittent muscle contraction. The early onset and greater blood pressure index suggest that cardiovascular strain during dynamic exercise may be significantly higher in individuals with T1DM.NEW & NOTEWORTHY This is the first study to provide evidence that early-stage type 1 diabetes mellitus (T1DM) leads to an exaggerated exercise pressor reflex evoked by intermittent muscle contraction, resulting in substantially higher cardiovascular strain. These findings are significant as they indicate that interventions targeting the exercise pressor reflex may work to alleviate the increased cardiovascular strain and overall burden during exercise in T1DM.


Subject(s)
Cardiovascular Physiological Phenomena , Diabetes Mellitus, Type 1/physiopathology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology , Animals , Cardiovascular System , Rats, Sprague-Dawley , Reflex/physiology , Sympathetic Nervous System/physiopathology
4.
J Stroke Cerebrovasc Dis ; 29(1): 104498, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31732460

ABSTRACT

BACKGROUND: Cardiorespiratory fitness, measured as peak oxygen consumption, is a potent predictor of stroke risk. Muscle weakness is the most prominent impairment after stroke and is directly associated with reduced walking capacity. There is a lack of recommendations for optimal combined aerobic training and resistance training for those patients. The purpose of this study was to systematically review and quantify the effects of exercise training on cardiorespiratory fitness, muscle strength, and walking capacity after stroke. METHODS: Five electronic databases were searched (until May 2019) for studies that met the following criteria: (1) adult humans with a history of stroke who ambulate independently; (2) structured exercise intervention based on combined aerobic training and resistance training; and (3) measured cardiorespiratory fitness, muscle strength, and/or walking capacity. RESULTS: Eighteen studies (602 participants, average age 62 years) met the inclusion criteria. Exercise training significantly improved all 3 outcomes. In subgroup analyses for cardiorespiratory fitness, longer training duration was significantly associated with larger effect size. Likewise, for muscle strength, moderate weekly frequency and lower training volume were significantly associated with larger effect size. Furthermore, in walking capacity, moderate weekly frequency and longer training duration were significantly associated with larger effect size. CONCLUSIONS: These results suggest that an exercise program consisting of moderate-intensity, 3 days per week, for 20 weeks should be considered for greater effect on cardiorespiratory fitness, muscle strength, and walking capacity in stroke patients.


Subject(s)
Cardiorespiratory Fitness , Exercise Tolerance , Exercise , Muscle Strength , Muscle, Skeletal/physiopathology , Resistance Training , Stroke Rehabilitation/methods , Stroke/therapy , Walking , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Recovery of Function , Stroke/diagnosis , Stroke/physiopathology , Time Factors , Treatment Outcome
6.
Am J Physiol Heart Circ Physiol ; 317(2): H479-H486, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31274351

ABSTRACT

Patients with type-2 diabetes mellitus (T2DM) have exaggerated sympathetic activity and blood pressure responses to exercise. However, the underlying mechanisms for these responses, as well as how these responses change throughout disease progression, are not completely understood. For this study, we examined the effect of the progression of T2DM on the exercise pressor reflex, a critical neurocardiovascular mechanism that functions to increase sympathetic activity and blood pressure during exercise. We also aimed to examine the effect of T2DM on reflexive cardiovascular responses to static contraction, as well as those responses to tendon stretch when an exaggerated exercise pressor reflex was present. We evoked the exercise pressor reflex and mechanoreflex by statically contracting the hindlimb muscles and stretching the Achilles tendon, respectively, for 30 s. We then compared pressor and cardioaccelerator responses in unanesthetized, decerebrated University of California Davis (UCD)-T2DM rats at 21 and 31 wk following the onset of T2DM to responses in healthy nondiabetic rats. We found that the pressor response to static contraction was greater in the 31-wk T2DM [change in mean arterial pressure (∆MAP) = 39 ± 5 mmHg] but not in the 21-wk T2DM (∆MAP = 24 ± 5 mmHg) rats compared with nondiabetic rats (∆MAP = 18 ± 2 mmHg; P < 0.05). Similarly, the pressor and the cardioaccelerator responses to tendon stretch were significantly greater in the 31-wk T2DM rats [∆MAP = 69 ± 6 mmHg; change in heart rate (∆HR) = 28 ± 4 beats/min] compared with nondiabetic rats (∆MAP = 14 ± 2 mmHg; ∆HR = 5 ± 3 beats/min; P < 0.05). These findings suggest that the exercise pressor reflex changes as T2DM progresses and that a sensitized mechanoreflex may play a role in exaggerating these cardiovascular responses.NEW & NOTEWORTHY This is the first study to provide evidence that as type-2 diabetes mellitus (T2DM) progresses, the exercise pressor reflex becomes exaggerated, an effect that may be due to a sensitized mechanoreflex. Moreover, these findings provide compelling evidence suggesting that impairments in the reflexive control of circulation contribute to exaggerated blood pressure responses to exercise in T2DM.


Subject(s)
Achilles Tendon/innervation , Arterial Pressure , Cardiovascular System/innervation , Diabetes Mellitus, Type 2/physiopathology , Mechanoreceptors/metabolism , Muscle Contraction , Muscle, Skeletal/innervation , Reflex , Sympathetic Nervous System/physiopathology , Achilles Tendon/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Disease Progression , Male , Muscle, Skeletal/metabolism , Rats, Inbred Strains
8.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R417-R426, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30840487

ABSTRACT

Recent findings have shown that muscle contraction evokes an exaggerated pressor response in type 1 diabetes mellitus (T1DM) rats; however, it is not known whether the mechanoreflex, which is commonly stimulated by stretching the Achilles tendon, contributes to this abnormal response. Furthermore, the role of mechano-gated Piezo channels, found on thin-fiber afferent endings, in evoking the mechanoreflex in T1DM is also unknown. Therefore, in male and female streptozotocin (STZ, 50 mg/kg)-induced T1DM and healthy control (CTL) rats, we examined the pressor and cardioaccelerator responses to tendon stretch during the early stage of the disease. To determine the role of Piezo channels, GsMTx-4, a selective Piezo channel inhibitor, was injected into the arterial supply of the hindlimb. At 1 wk after STZ injection in anesthetized, decerebrate rats, we stretched the Achilles tendon for 30 s and measured pressor and cardioaccelerator responses. We then compared pressor and cardioaccelerator responses to tendon stretch before and after GsMTx-4 injection (10 µg/100 ml). We found that the pressor (change in mean arterial pressure) response [41 ± 5 mmHg (n = 15) for STZ and 18 ± 3 mmHg (n = 11) for CTL (P < 0.01)] and cardioaccelerator (change in heart rate) response [18 ± 4 beats/min for STZ (n = 15) and 8 ± 2 beats/min (n = 11) for CTL (P < 0.05)] to tendon stretch were exaggerated in STZ rats. Local injection of GsMTx-4 attenuated the pressor [55 ± 7 mmHg (n = 6) before and 27 ± 9 mmHg (n = 6) after GsMTx-4 (P < 0.01)], but not the cardioaccelerator, response to tendon stretch in STZ rats and had no effect on either response in CTL rats. These data suggest that T1DM exaggerates the mechanoreflex response to tendon stretch and that Piezo channels play a role in this exaggeration.


Subject(s)
Blood Pressure/physiology , Diabetes Mellitus, Experimental/physiopathology , Intercellular Signaling Peptides and Proteins/pharmacology , Muscle Contraction/drug effects , Spider Venoms/pharmacology , Animals , Decerebrate State/physiopathology , Female , Hindlimb/drug effects , Hindlimb/physiopathology , Male , Muscle Contraction/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology , Rats, Sprague-Dawley , Reflex/physiology
9.
J Physiol ; 601(20): 4471-4472, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37728309
10.
J Neurophysiol ; 119(6): 2052-2058, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29465323

ABSTRACT

Patients with peripheral artery disease show an exaggerated pressor response to mild exercise, an effect attributable to the exercise pressor reflex, whose afferent arm comprises the thinly myelinated group III and unmyelinated group IV afferents. Previously, we found that DAMGO, a µ-opioid agonist injected into the femoral artery, attenuated the exaggerated exercise pressor reflex in rats with ligated femoral arteries, a preparation that simulates the blood flow patterns to muscle that is seen in patients with peripheral artery disease. Continuing this line of investigation, we recorded the responses of group III and IV afferents to static contraction before and after injecting DAMGO (1 µg) into the superficial epigastric artery in rats with patent femoral arteries and in rats with ligated femoral arteries. In rats with patent arteries, DAMGO did not change the responses to contraction of either group III ( n = 9; P = 0.83) or group IV ( n = 8; P = 0.34) afferents. In contrast, in rats with ligated femoral arteries, DAMGO injection (1 µg) significantly decreased the responses to contraction of both group III afferents ( n = 9, P < 0.01) and group IV afferents ( n = 9; P < 0.01). DAMGO did not significantly attenuate the responses of either group III or IV afferents to capsaicin in rats with either patent or ligated femoral arteries. These findings are in agreement with our previous studies that showed that peripheral DAMGO injection attenuated the exercise pressor reflex in rats with ligated femoral arteries but had only a modest effect on the exercise pressor reflex in rats with patent femoral arteries. NEW & NOTEWORTHY In an animal model of peripheral artery disease, we show that the µ-opioid agonist, DAMGO reduces the afferent response rate resulting from stimulated static contraction. These results suggest that peripherally active opioid agonists that do not cross the blood-brain barrier may be therapeutic for treatment of peripheral artery disease without the negative and addictive side effects associated with opioids in the central nervous system.


Subject(s)
Neurons, Afferent/metabolism , Peripheral Arterial Disease/metabolism , Receptors, Opioid, mu/agonists , Animals , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Male , Muscle Contraction , Neurons, Afferent/drug effects , Neurons, Afferent/physiology , Peripheral Arterial Disease/physiopathology , Rats , Rats, Sprague-Dawley , Reflex , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology
11.
Am J Physiol Heart Circ Physiol ; 313(4): H708-H714, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28778915

ABSTRACT

Previous studies have shown that diabetic peripheral neuropathy affects both unmyelinated and myelinated afferents, similar to those evoking the exercise pressor reflex. However, the effect of type 1 diabetes (T1DM) on this reflex is not known. We examined, in decerebrate male and female T1DM [streptozotocin (STZ)] and healthy control (CTL) rats, pressor and cardioaccelerator responses to isometric contraction of the hindlimb muscles during the early and late stages of the disease. STZ (50 mg/kg) was injected to induce diabetes, and experiments were conducted at 1, 3, and 6 wk after injection. On the day of the experiment, we statically contracted the hindlimb muscles by stimulating the sciatic nerve and measured changes in mean arterial pressure and heart rate. We found that the pressor but not cardioaccelerator response was exaggerated in STZ rats at 1 wk (STZ: 21 ± 3 mmHg, n = 10, and CTL: 14 ± 2 mmHg, n = 10, P < 0.05) and at 3 wk (STZ: 26 ± 5 mmHg, n = 10, and CTL: 17 ± 3 mmHg, n = 11, P < 0.05) after injection. However, at 6 wk, and only in male rats, both the pressor (STZ: 13 ± 3 mmHg, n = 12, and CTL: 17 ± 3 mmHg, n = 13, P < 0.05) and cardioaccelerator responses (STZ: 7 ± 3 beats/min, n = 12, and CTL: 10 ± 3 beats/min, n = 13, P < 0.05) to contraction were significantly attenuated in STZ rats compared with CTL rats. These data indicate that T1DM exaggerates the exercise pressor reflex during the early stages of the disease in both male and female rats. Conversely, T1DM attenuates this reflex in the late stage of the disease in male but not female rats.NEW & NOTEWORTHY This is the first study to provide evidence that the pressor and cardioaccelerator responses to skeletal muscle contraction vary depending on the duration of type 1 diabetes.


Subject(s)
Arterial Pressure/physiology , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 1/physiopathology , Heart Rate/physiology , Physical Conditioning, Animal , Reflex, Abnormal/physiology , Vasoconstriction/physiology , Animals , Case-Control Studies , Decerebrate State , Electric Stimulation , Female , Hindlimb , Male , Muscle Contraction/physiology , Muscle, Skeletal , Rats , Rats, Sprague-Dawley , Reflex , Sciatic Nerve , Sex Factors
13.
J Neurophysiol ; 113(10): 3961-6, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25855694

ABSTRACT

Previous evidence has shown that ligating the femoral artery for 72 h resulted in an exaggerated exercise pressor reflex. To provide electrophysiological evidence for this finding, we examined in decerebrated rats whose femoral arteries were either freely perfused or ligated for 72 h the responses of thin-fiber (i.e., groups III and IV) afferents to static contraction of the hindlimb muscles. We found that contraction increased the combined activity of group III and IV afferents in both freely perfused (n = 29; baseline: 0.3 ± 0.1 imp/s, contraction: 0.8 ± 0.2 imp/s; P < 0.05) and ligated rats (n = 28; baseline: 0.4 ± 0.1 imp/s, contraction: 1.4 ± 0.1 imp/s; P < 0.05). Most importantly, the contraction-induced increase in afferent activity was greater in ligated rats than it was in freely perfused rats (P = 0.005). In addition, the responses of group III afferents to contraction in ligated rats (n = 15; baseline 0.3 ± 0.1 imp/s, contraction 1.5 ± 0.2 imp/s) were greater (P = 0.024) than the responses to contraction in freely perfused rats (n = 18; baseline 0.3 ± 0.1 imp/s, contraction 0.9 ± 0.2 imp/s). Likewise, the responses of group IV afferents to contraction in ligated rats (n = 13; baseline 0.5 ± 0.1 imp/s, contraction 1.3 ± 0.2 imp/s) were greater (P = 0.048) than the responses of group IV afferents in freely perfused rats (n = 11; baseline 0.3 ± 0.1 imp/s, contraction 0.6 ± 0.2 imp/s). We conclude that both group III and IV afferents contribute to the exaggeration of the exercise pressor reflex induced by femoral artery ligation.


Subject(s)
Action Potentials/physiology , Femoral Artery/physiology , Ligation/methods , Muscle Fibers, Skeletal/physiology , Analysis of Variance , Animals , Male , Muscle Contraction , Rats , Rats, Sprague-Dawley , Time Factors
14.
Am J Physiol Heart Circ Physiol ; 309(1): H166-73, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25910806

ABSTRACT

IL-6 signaling via the soluble IL-6 receptor (sIL-6r) has been shown to increase primary afferent responsiveness to noxious stimuli. This finding prompted us to test the hypothesis that IL-6 and sIL-6r would increase the exercise pressor reflex in decerebrate rats with freely perfused femoral arteries. We also tested the hypothesis that soluble glycoprotein (sgp)130, an inhibitor of IL-6/sIL-6r signaling, would decrease the exaggerated exercise pressor reflex that is found in decerebrate rats with ligated femoral arteries. In rats with freely perfused femoral arteries, coinjection of 50 ng of IL-6 and sIL-6r into the arterial supply of the hindlimb significantly increased the peak pressor response to static (control: 14 ± 3 mmHg and IL-6/sIL-6r: 17 ± 2 mmHg, P = 0.03) and intermittent isometric (control: 10 ± 2 mmHg and IL-6/sIL-6r: 15 ± 4 mmHg, P = 0.03) hindlimb muscle contraction. In rats with ligated femoral arteries, injection of 50 ng of sgp130 into the arterial supply of the hindlimb reduced the peak pressor response to static (control: 24 ± 2 mmHg and sgp130: 16 ± 3 mmHg, P = 0.01) and intermittent isometric (control: 16 ± 2 mmHg and sgp130: 13 ± 2 mmHg, P = 0.04) hindlimb muscle contraction, whereas there was no effect of sgp130 on the exercise pressor reflex in rats with freely perfused femoral arteries. We conclude that coinjection of exogenous IL-6 and sIL-6r increased the exercise pressor reflex in rats with freely perfused femoral arteries. More importantly, we also conclude that IL-6 and sIL-6r play an endogenous role in evoking the exercise pressor reflex in rats with ligated femoral arteries but not in rats with freely perfused femoral arteries.


Subject(s)
Blood Pressure/drug effects , Decerebrate State/physiopathology , Hindlimb/drug effects , Interleukin-6/pharmacology , Muscle Contraction/physiology , Physical Exertion/drug effects , Reflex, Abnormal/drug effects , Reflex/drug effects , Animals , Blood Pressure/physiology , Cytokine Receptor gp130/pharmacology , Femoral Artery/surgery , Hindlimb/blood supply , Interleukin-6/metabolism , Ligation , Male , Physical Exertion/physiology , Rats , Rats, Sprague-Dawley , Receptors, Interleukin-6/metabolism , Reflex/physiology , Signal Transduction/drug effects
15.
Am J Physiol Regul Integr Comp Physiol ; 309(10): R1301-8, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26310938

ABSTRACT

Voltage-gated sodium channels (NaV) 1.7 are highly expressed on the axons of somatic afferent neurons and are thought to play an important role in the signaling of inflammatory pain. NaV 1.7 channels are classified as tetrodotoxin (TTX)-sensitive, meaning that they are blocked by TTX concentrations of less than 300 nM. These findings prompted us to determine in decerebrated, unanesthetized rats, the role played by NaV 1.7 channels in the transmission of muscle afferent input evoking the exercise pressor reflex. We first showed that the exercise pressor reflex, which was evoked by static contraction of the triceps surae muscles, was reversibly attenuated by application of 50 nM TTX, but not 5 nM TTX, to the L4-L5 dorsal roots (control: 21 ± 1 mmHg, TTX: 8 ± 2 mmHg, recovery: 21 ± 3 mmHg; n = 6; P < 0.01). We next found that the peak pressor responses to contraction were significantly attenuated by dorsal root application of 100 nM Ssm6a, a compound that is a selective NaV 1.7 channel inhibitor. Removal of Ssm6a restored the reflex to its control level (control: 19 ± 3 mmHg, Ssm6a: 10 ± 1 mmHg, recovery: 19 ± 4 mmHg; n = 6; P < 0.05). Compound action potentials recorded from the L4 and L5 dorsal roots and evoked by single-pulse stimulation of the sciatic nerve showed that both TTX and Ssm6a attenuated input from group III, as well as group IV afferents. We conclude that NaV 1.7 channels play a role in the thin-fiber muscle afferent pathway evoking the exercise pressor reflex.


Subject(s)
Baroreflex/physiology , Muscle Fibers, Skeletal/physiology , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neurons/metabolism , Physical Conditioning, Animal/physiology , Action Potentials/physiology , Animals , Male , Muscle Contraction/physiology , NAV1.7 Voltage-Gated Sodium Channel/genetics , Rats , Rats, Sprague-Dawley , Sciatic Nerve/physiology
16.
Am J Physiol Heart Circ Physiol ; 306(3): H396-404, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24285113

ABSTRACT

Purinergic 2X (P2X) receptors on the endings of thin fiber afferents have been shown to play a role in evoking the exercise pressor reflex in cats. In this study, we attempted to extend this finding to decerebrated, unanesthetized rats whose femoral arteries were either freely perfused or were ligated 72 h before the start of the experiment. We first established that our dose of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 10 mg/kg), a P2X receptor antagonist, attenuated the pressor response to α,ß-methylene ATP (10 µg/kg), a P2X receptor agonist. We then compared the exercise pressor reflex before and after infusing PPADS into the arterial supply of the hindlimb muscles that were statically contracted. In rats with freely perfused femoral arteries, the peak pressor responses to contraction were not significantly attenuated by PPADS (before PPADS: 19 ± 2 mmHg, 13 min after PPADS: 17 ± 2 mmHg, and 25 min after PPADS: 17 ± 3 mmHg). Likewise, the cardioaccelerator and renal sympathetic nerve responses were not significantly attenuated. In contrast, we found that in rats whose femoral arteries were ligated PPADS significantly attenuated the peak pressor responses to contraction (before PPADS: 37 ± 5 mmHg, 13 min after PPADS: 27 ± 6 mmHg, and 25 min after PPADS: 25 ± 5 mmHg; P < 0.05). Heart rate was not significantly attenuated, but renal SNA was at certain time points over the 30-s contraction period. We conclude that P2X receptors play a substantial role in evoking the exercise pressor reflex in rats whose femoral arteries were ligated but play only a minimal role in evoking the reflex in rats whose femoral arteries were freely perfused.


Subject(s)
Femoral Artery/physiology , Muscle, Skeletal/metabolism , Physical Exertion , Receptors, Purinergic P2X/metabolism , Reflex , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Blood Pressure , Hindlimb , Male , Muscle Contraction/drug effects , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Purinergic P2X Receptor Agonists/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , Pyridoxal Phosphate/analogs & derivatives , Pyridoxal Phosphate/pharmacology , Rats , Rats, Sprague-Dawley
17.
Am J Physiol Heart Circ Physiol ; 306(3): H450-4, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24271488

ABSTRACT

Increased dietary salt in rats has been shown to sensitize central sympathetic circuits and enhance sympathetic responses to several stressors, including hyperinsulinemia, intracerebroventricular injection of angiotensin, and electrical stimulation of sciatic nerve afferents. These findings prompted us to test the hypothesis that increased dietary salt enhanced the exercise pressor reflex. Male Sprague-Dawley rats were fed 0.1% (low) or 4.0% (high) NaCl chow for 2 to 3 wk. On the day of the experiment, the rats were decerebrated, and the hind limb muscles were statically contracted for 30 s by electrically stimulating the cut peripheral ends of the L4 and L5 ventral roots. We found that contraction produced a significantly greater increase in mean arterial pressure of rats fed 4.0% (n = 26) vs. 0.1% (n = 22) NaCl (24 ± 2 vs. 15 ± 2 mmHg, respectively; P < 0.05). Baseline mean arterial pressure was not different between groups (0.1%, 77 ± 4 vs. 4.0% NaCl, 80 ± 3 mmHg). Likewise, the tension time indexes were not different between the two groups (P = 0.42). Section of the L4 and L5 dorsal roots greatly attenuated both the pressor and cardioaccelerator responses to contraction in both groups of rats, an effect showing that the responses were reflex in origin. Finally, electrical stimulation of the lumbar sympathetic chain produced similar increases in mean arterial pressure and decreases in femoral arterial blood flow and conductance between rats fed 0.1% vs. 4.0% NaCl diets. We conclude that increased dietary salt enhances the exercise pressor reflex.


Subject(s)
Blood Pressure , Muscle, Skeletal/physiology , Physical Exertion , Reflex , Sodium Chloride, Dietary/pharmacology , Animals , Hindlimb , Male , Muscle Contraction , Muscle, Skeletal/drug effects , Muscle, Skeletal/innervation , Rats , Rats, Sprague-Dawley , Spinal Nerve Roots/drug effects , Spinal Nerve Roots/physiology , Vasomotor System/drug effects , Vasomotor System/physiology
18.
Am J Physiol Regul Integr Comp Physiol ; 307(3): R281-9, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24920732

ABSTRACT

The exercise pressor reflex is greater in rats with ligated femoral arteries than it is in rats with freely perfused femoral arteries. The exaggerated reflex in rats with ligated arteries is attenuated by stimulation of µ-opioid and δ-opioid receptors on the peripheral endings of thin-fiber muscle afferents. The effect of stimulation of κ-opioid receptors on the exercise pressor reflex is unknown. We tested the hypothesis that stimulation of κ-opioid receptors attenuates the exercise pressor reflex in rats with ligated, but not freely perfused, femoral arteries. The pressor responses to static contraction were compared before and after femoral arterial or intrathecal injection of the κ-opioid receptor agonist U62066 (1, 10, and 100 µg). Femoral arterial injection of U62066 did not attenuate the pressor responses to contraction in either group of rats. Likewise, intrathecal injection of U62066 did not attenuate the pressor response to contraction in rats with freely perfused femoral arteries. In contrast, intrathecal injection of 10 and 100 µg of U62066 attenuated the pressor response to contraction in rats with ligated femoral arteries, an effect that was blocked by prior intrathecal injection of the κ-opioid receptor antagonist nor-binaltorphimine. In rats with ligated femoral arteries, the pressor response to stimulation of peripheral chemoreceptors by sodium cyanide was not changed by intrathecal U62066 injections, indicating that these injections had no direct effect on the sympathetic outflow. We conclude that stimulation of spinal, but not peripheral, κ-opioid receptors attenuates the exaggerated exercise pressor reflex in rats with ligated femoral arteries.


Subject(s)
Decerebrate State/physiopathology , Peripheral Nerves/physiology , Physical Conditioning, Animal/physiology , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/antagonists & inhibitors , Spinal Nerves/physiology , Animals , Femoral Artery/physiology , Injections, Intra-Arterial , Injections, Spinal , Ligation , Male , Models, Animal , Naltrexone/administration & dosage , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Pressoreceptors/drug effects , Pressoreceptors/physiology , Pyrrolidines/administration & dosage , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Opioid, kappa/drug effects
19.
J Appl Physiol (1985) ; 136(5): 1226-1237, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38545661

ABSTRACT

Cyclooxygenase (COX) products of arachidonic acid metabolism, specifically prostaglandins, play a role in evoking and transmitting the exercise pressor reflex in health and disease. Individuals with type 2 diabetes mellitus (T2DM) have an exaggerated exercise pressor reflex; however, the mechanisms for this exaggerated reflex are not fully understood. We aimed to determine the role played by COX products in the exaggerated exercise pressor reflex in T2DM rats. The exercise pressor reflex was evoked by static muscle contraction in unanesthetized, decerebrate, male, adult University of California Davis (UCD)-T2DM (n = 8) and healthy Sprague-Dawley (n = 8) rats. Changes (Δ) in peak mean arterial pressure (MAP) and heart rate (HR) during muscle contraction were compared before and after intra-arterial injection of indomethacin (1 mg/kg) into the contracting hindlimb. Data are presented as means ± SD. Inhibition of COX activity attenuated the exaggerated peak MAP (Before: Δ32 ± 13 mmHg and After: Δ18 ± 8 mmHg; P = 0.004) and blood pressor index (BPi) (Before: Δ683 ± 324 mmHg·s and After: Δ361 ± 222 mmHg·s; P = 0.006), but not HR (Before: Δ23 ± 8 beats/min and After Δ19 ± 10 beats/min; P = 0.452) responses to muscle contraction in T2DM rats. In healthy rats, COX activity inhibition did not affect MAP, HR, or BPi responses to muscle contraction. Inhibition of COX activity significantly reduced local production of prostaglandin E2 in T2DM and healthy rats. We conclude that peripheral inhibition of COX activity attenuates the pressor response to muscle contraction in T2DM rats, suggesting that COX products partially contribute to the exaggerated exercise pressor reflex in those with T2DM.NEW & NOTEWORTHY We compared the pressor and cardioaccelerator responses to static muscle contraction before and after inhibition of cyclooxygenase (COX) activity within the contracting hindlimb in decerebrate, unanesthetized type 2 diabetic mellitus (T2DM) and healthy rats. The pressor responses to muscle contraction were attenuated after peripheral inhibition of COX activity in T2DM but not in healthy rats. We concluded that COX products partially contribute to the exaggerated pressor reflex in those with T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Muscle Contraction , Muscle, Skeletal , Reflex , Animals , Male , Rats , Arterial Pressure/physiology , Blood Pressure/physiology , Blood Pressure/drug effects , Cyclooxygenase Inhibitors/pharmacology , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/metabolism , Heart Rate/physiology , Heart Rate/drug effects , Indomethacin/pharmacology , Muscle Contraction/physiology , Muscle, Skeletal/physiopathology , Physical Conditioning, Animal/physiology , Prostaglandin-Endoperoxide Synthases/metabolism , Rats, Sprague-Dawley , Reflex/physiology
20.
J Physiol ; 591(11): 2949-62, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23568893

ABSTRACT

Ligating the femoral artery for 72 h in decerebrated rats exaggerates the exercise pressor reflex. The sensory arm of this reflex is comprised of group III and IV afferents, which can be either sensitized or stimulated by PGE2. In vitro studies showed that endoperoxide (EP) 3 and 4 receptors were responsible for the PGE2-induced sensitization of rat dorsal root ganglion cells. This in vitro finding prompted us to test the hypothesis that blockade of EP3 and/or EP4 receptors attenuated the exaggerated exercise pressor reflex in rats with ligated femoral arteries. We measured the cardiovascular responses to static hindlimb contraction or tendon stretch before and after femoral arterial injection of L798106 (an EP3 antagonist) or L161982 (an EP4 antagonist). The pressor and cardioaccelerator responses to either contraction or tendon stretch were not attenuated by L798106 in either the ligated or freely perfused rats. Likewise in five rats whose hindlimb muscles were freely perfused, the pressor and cardioaccelerator responses to either contraction or tendon stretch were not attenuated by L161982. In the six ligated rats, however, the pressor response to contraction was attenuated by L161982, averaging 37 ± 3 mmHg before, 18 ± 2 mmHg afterward (P < 0.05). Western blotting analysis revealed that ligation of the femoral artery for 72 h increased the EP4 receptor protein in the L4 and L5 dorsal root ganglia over their freely perfused counterparts by 24% (P < 0.05). We conclude that EP4 receptors, but not EP3 receptors, play an important role in the exaggerated exercise pressor reflex found in rats with ligated femoral arteries.


Subject(s)
Femoral Artery , Peripheral Arterial Disease/physiopathology , Physical Exertion , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Reflex , Animals , Dinoprostone/pharmacology , Disease Models, Animal , Ganglia, Spinal/metabolism , Ganglia, Spinal/physiopathology , Hindlimb/blood supply , Male , Muscle, Skeletal/innervation , Muscle, Skeletal/physiopathology , Peripheral Arterial Disease/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors , Receptors, Prostaglandin E, EP4 Subtype/genetics
SELECTION OF CITATIONS
SEARCH DETAIL