Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Publication year range
1.
J Chem Inf Model ; 64(3): 892-904, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38051605

ABSTRACT

Many homodimeric enzymes tune their functions by exploiting either negative or positive cooperativity between subunits. In the SARS-CoV-2 Main protease (Mpro) homodimer, the latter has been suggested by symmetry in most of the 500 reported protease/ligand complex structures solved by macromolecular crystallography (MX). Here we apply the latter to both covalent and noncovalent ligands in complex with Mpro. Strikingly, our experiments show that the occupation of both active sites of the dimer originates from an excess of ligands. Indeed, cocrystals obtained using a 1:1 ligand/protomer stoichiometry lead to single occupation only. The empty binding site exhibits a catalytically inactive geometry in solution, as suggested by molecular dynamics simulations. Thus, Mpro operates through negative cooperativity with the asymmetric activity of the catalytic sites. This allows it to function with a wide range of substrate concentrations, making it resistant to saturation and potentially difficult to shut down, all properties advantageous for the virus' adaptability and resistance.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Ligands , Coronavirus 3C Proteases/metabolism , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Molecular Docking Simulation
2.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35409221

ABSTRACT

Glycogen synthase kinase 3 beta (GSK-3ß) is an evolutionarily conserved serine-threonine kinase dysregulated in numerous pathologies, such as Alzheimer's disease and cancer. Even though GSK-3ß is a validated pharmacological target most of its inhibitors have two main limitations: the lack of selectivity due to the high homology that characterizes the ATP binding site of most kinases, and the toxicity that emerges from GSK-3ß complete inhibition which translates into the impairment of the plethora of pathways GSK-3ß is involved in. Starting from a 1D 19F NMR fragment screening, we set up several biophysical assays for the identification of GSK-3ß inhibitors capable of binding protein hotspots other than the ATP binding pocket or to the ATP binding pocket, but with an affinity able of competing with a reference binder. A phosphorylation activity assay on a panel of several kinases provided selectivity data that were further rationalized and corroborated by structural information on GSK-3ß in complex with the hit compounds. In this study, we identified promising fragments, inhibitors of GSK-3ß, while proposing an alternative screening workflow that allows facing the flaws that characterize the most common GSK-3ß inhibitors through the identification of selective inhibitors and/or inhibitors able to modulate GSK-3ß activity without leading to its complete inhibition.


Subject(s)
Alzheimer Disease , Adenosine Triphosphate/metabolism , Alzheimer Disease/metabolism , Binding Sites , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Phosphorylation
3.
Int J Mol Sci ; 22(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34769210

ABSTRACT

After almost two years from its first evidence, the COVID-19 pandemic continues to afflict people worldwide, highlighting the need for multiple antiviral strategies. SARS-CoV-2 main protease (Mpro/3CLpro) is a recognized promising target for the development of effective drugs. Because single target inhibition might not be sufficient to block SARS-CoV-2 infection and replication, multi enzymatic-based therapies may provide a better strategy. Here we present a structural and biochemical characterization of the binding mode of MG-132 to both the main protease of SARS-CoV-2, and to the human Cathepsin-L, suggesting thus an interesting scaffold for the development of double-inhibitors. X-ray diffraction data show that MG-132 well fits into the Mpro active site, forming a covalent bond with Cys145 independently from reducing agents and crystallization conditions. Docking of MG-132 into Cathepsin-L well-matches with a covalent binding to the catalytic cysteine. Accordingly, MG-132 inhibits Cathepsin-L with nanomolar potency and reversibly inhibits Mpro with micromolar potency, but with a prolonged residency time. We compared the apo and MG-132-inhibited structures of Mpro solved in different space groups and we identified a new apo structure that features several similarities with the inhibited ones, offering interesting perspectives for future drug design and in silico efforts.


Subject(s)
COVID-19 Drug Treatment , Cathepsin L/drug effects , Coronavirus 3C Proteases/drug effects , Leupeptins/chemistry , Leupeptins/pharmacology , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Catalytic Domain/drug effects , Cathepsin L/chemistry , Coronavirus 3C Proteases/chemistry , Drug Design , Drug Discovery , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptidomimetics , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Virus Replication/drug effects , X-Ray Diffraction
4.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525510

ABSTRACT

Huntington disease (HD) is a devastating and presently untreatable neurodegenerative disease characterized by progressively disabling motor and mental manifestations. The sigma-1 receptor (σ1R) is a protein expressed in the central nervous system, whose 3D structure has been recently determined by X-ray crystallography and whose agonists have been shown to have neuroprotective activity in neurodegenerative diseases. To identify therapeutic agents against HD, we have implemented a drug repositioning strategy consisting of: (i) Prediction of the ability of the FDA-approved drugs publicly available through the ZINC database to interact with σ1R by virtual screening, followed by computational docking and visual examination of the 20 highest scoring drugs; and (ii) Assessment of the ability of the six drugs selected by computational analyses to directly bind purified σ1R in vitro by Surface Plasmon Resonance and improve the growth of fibroblasts obtained from HD patients, which is significantly impaired with respect to control cells. All six of the selected drugs proved able to directly bind purified σ1R in vitro and improve the growth of HD cells from both or one HD patient. These results support the validity of the drug repositioning procedure implemented herein for the identification of new therapeutic tools against HD.


Subject(s)
Fibroblasts/cytology , Huntington Disease/metabolism , Pharmaceutical Preparations/chemistry , Receptors, sigma/metabolism , Adult , Cell Proliferation , Cells, Cultured , Computer Simulation , Databases, Pharmaceutical , Drug Evaluation, Preclinical , Drug Repositioning , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Huntington Disease/drug therapy , Male , Middle Aged , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Receptors, sigma/chemistry , Structure-Activity Relationship , Surface Plasmon Resonance , Sigma-1 Receptor
5.
J Transl Med ; 18(1): 179, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321524

ABSTRACT

BACKGROUND: SARS-CoV-2 is a RNA coronavirus responsible for the pandemic of the Severe Acute Respiratory Syndrome (COVID-19). RNA viruses are characterized by a high mutation rate, up to a million times higher than that of their hosts. Virus mutagenic capability depends upon several factors, including the fidelity of viral enzymes that replicate nucleic acids, as SARS-CoV-2 RNA dependent RNA polymerase (RdRp). Mutation rate drives viral evolution and genome variability, thereby enabling viruses to escape host immunity and to develop drug resistance. METHODS: We analyzed 220 genomic sequences from the GISAID database derived from patients infected by SARS-CoV-2 worldwide from December 2019 to mid-March 2020. SARS-CoV-2 reference genome was obtained from the GenBank database. Genomes alignment was performed using Clustal Omega. Mann-Whitney and Fisher-Exact tests were used to assess statistical significance. RESULTS: We characterized 8 novel recurrent mutations of SARS-CoV-2, located at positions 1397, 2891, 14408, 17746, 17857, 18060, 23403 and 28881. Mutations in 2891, 3036, 14408, 23403 and 28881 positions are predominantly observed in Europe, whereas those located at positions 17746, 17857 and 18060 are exclusively present in North America. We noticed for the first time a silent mutation in RdRp gene in England (UK) on February 9th, 2020 while a different mutation in RdRp changing its amino acid composition emerged on February 20th, 2020 in Italy (Lombardy). Viruses with RdRp mutation have a median of 3 point mutations [range: 2-5], otherwise they have a median of 1 mutation [range: 0-3] (p value < 0.001). CONCLUSIONS: These findings suggest that the virus is evolving and European, North American and Asian strains might coexist, each of them characterized by a different mutation pattern. The contribution of the mutated RdRp to this phenomenon needs to be investigated. To date, several drugs targeting RdRp enzymes are being employed for SARS-CoV-2 infection treatment. Some of them have a predicted binding moiety in a SARS-CoV-2 RdRp hydrophobic cleft, which is adjacent to the 14408 mutation we identified. Consequently, it is important to study and characterize SARS-CoV-2 RdRp mutation in order to assess possible drug-resistance viral phenotypes. It is also important to recognize whether the presence of some mutations might correlate with different SARS-CoV-2 mortality rates.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Evolution, Molecular , Genome, Viral/genetics , Mutation , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , RNA-Dependent RNA Polymerase/genetics , Adult , Asia/epidemiology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Drug Resistance, Viral/genetics , Europe/epidemiology , Female , Humans , Male , Middle Aged , Mutation Rate , North America/epidemiology , Oceania/epidemiology , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/mortality , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2
6.
Protein Expr Purif ; 166: 105505, 2020 02.
Article in English | MEDLINE | ID: mdl-31563543

ABSTRACT

Recombinant antibodies can be expressed as fusion constructs in combination with tags which simplify their engineering into reliable and homogeneous immunoreagents by allowing site-specific, 1:1 functionalization. Several tags and corresponding reagents for recombinant protein derivatization have been proposed but benchmarking surveys for the evaluation of their effect on the characteristics of recombinant antibodies have not been reported. In this work we evaluated the impact on expression yields, shelf-stability, thermostability and binding affinity of a set of C-terminal tags fused to the same anti-Her2 nanobody. Furthermore, we assessed the efficiency of the derivatization process. The constructs always bore a 6xHis tag plus either the controls (EGFP and C-tag) or CLIP, HALO, AviTag, the LEPTG sequence recognized by Sortase A (Sortase tag), or a free cysteine. The advantages and drawbacks of the different systems were analyzed and discussed.


Subject(s)
Recombinant Fusion Proteins/genetics , Single-Domain Antibodies/genetics , Binding, Competitive , Cysteine/metabolism , Escherichia coli , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Genetic Vectors/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Oxidoreductases/chemistry , Oxidoreductases/genetics , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/genetics , Protein Stability , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/genetics , Recombinant Fusion Proteins/chemistry , Single-Domain Antibodies/chemistry
7.
Molecules ; 25(4)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32093112

ABSTRACT

Alzheimer's disease is the most common type of dementia, affecting millions of people worldwide. One of its main consequences is memory loss, which is related to downstream effectors of cyclic adenosine monophosphate (cAMP). A well-established strategy to avoid cAMP degradation is the inhibition of phosphodiesterase (PDE). In recent years, GEBR-32a has been shown to possess selective inhibitory properties against PDE type 4 family members, resulting in an improvement in spatial memory processes without the typical side effects that are usually correlated with this mechanism of action. In this work, we performed the HPLC chiral resolution and absolute configuration assignment of GEBR-32a. We developed an efficient analytical and semipreparative chromatographic method exploiting an amylose-based stationary phase, we studied the chiroptical properties of both enantiomers and we assigned their absolute configuration by 1H-NMR (nuclear magnetic resonance). Lastly, we measured the IC50 values of both enantiomers against both the PDE4D catalytic domain and the long PDE4D3 isoform. Results strongly support the notion that GEBR-32a inhibits the PDE4D enzyme by interacting with both the catalytic pocket and the regulatory domains.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Phosphodiesterase 4 Inhibitors/chemistry , Humans , Nuclear Magnetic Resonance, Biomolecular
8.
Int J Mol Sci ; 20(20)2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31640223

ABSTRACT

The formation of multienzymatic complexes allows for the fine tuning of many aspects of enzymatic functions, such as efficiency, localization, stability, and moonlighting. Here, we investigated, in solution, the structure of bacterial cysteine synthase (CS) complex. CS is formed by serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase isozyme A (CysK), the enzymes that catalyze the last two steps of cysteine biosynthesis in bacteria. CysK and CysE have been proposed as potential targets for antibiotics, since cysteine and related metabolites are intimately linked to protection of bacterial cells against redox damage and to antibiotic resistance. We applied a combined approach of small-angle X-ray scattering (SAXS) spectroscopy and protein painting to obtain a model for the solution structure of CS. Protein painting allowed the identification of protein-protein interaction hotspots that were then used as constrains to model the CS quaternary assembly inside the SAXS envelope. We demonstrate that the active site entrance of CysK is involved in complex formation, as suggested by site-directed mutagenesis and functional studies. Furthermore, complex formation involves a conformational change in one CysK subunit that is likely transmitted through the dimer interface to the other subunit, with a regulatory effect. Finally, SAXS data indicate that only one active site of CysK is involved in direct interaction with CysE and unambiguously unveil the quaternary arrangement of CS.


Subject(s)
Bacteria/enzymology , Cysteine Synthase/chemistry , Cysteine Synthase/metabolism , Serine O-Acetyltransferase/chemistry , Serine O-Acetyltransferase/metabolism , Bacteria/chemistry , Bacteria/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cysteine Synthase/genetics , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Models, Molecular , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Mutagenesis, Site-Directed , Protein Interaction Maps , Scattering, Small Angle , Serine O-Acetyltransferase/genetics , X-Ray Diffraction
9.
Biochemistry ; 57(19): 2876-2888, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29652483

ABSTRACT

Selected members of the large rolipram-related GEBR family of type 4 phosphodiesterase (PDE4) inhibitors have been shown to facilitate long-term potentiation and to improve memory functions without causing emetic-like behavior in rodents. Despite their micromolar-range binding affinities and their promising pharmacological and toxicological profiles, few if any structure-activity relationship studies have been performed to elucidate the molecular bases of their action. Here, we report the crystal structure of a number of GEBR library compounds in complex with the catalytic domain of PDE4D as well as their inhibitory profiles for both the long PDE4D3 isoform and the catalytic domain alone. Furthermore, we assessed the stability of the observed ligand conformations in the context of the intact enzyme using molecular dynamics simulations. The longer and more flexible ligands appear to be capable of forming contacts with the regulatory portion of the enzyme, thus possibly allowing some degree of selectivity between the different PDE4 isoforms.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Memory/drug effects , Phosphodiesterase 4 Inhibitors/chemistry , Structure-Activity Relationship , Animals , Catalytic Domain , Crystallography, X-Ray , Humans , Ligands , Memory/physiology , Molecular Dynamics Simulation , Phosphodiesterase 4 Inhibitors/therapeutic use , Rolipram/chemistry , Rolipram/therapeutic use
10.
J Struct Biol ; 203(2): 71-80, 2018 08.
Article in English | MEDLINE | ID: mdl-29545204

ABSTRACT

Baculovirus-insect cell expression system has become one of the most widely used eukaryotic expression systems for heterologous protein production in many laboratories. The availability of robust insect cell lines, serum-free media, a range of vectors and commercially-packaged kits have supported the demand for maximizing the exploitation of the baculovirus-insect cell expression system. Naturally, this resulted in varied strategies adopted by different laboratories to optimize protein production. Most laboratories have preference in using either the E. coli transposition-based recombination bacmid technology (e.g. Bac-to-Bac®) or homologous recombination transfection within insect cells (e.g. flashBAC™). Limited data is presented in the literature to benchmark the protocols used for these baculovirus vectors to facilitate the selection of a system for optimal production of target proteins. Taking advantage of the Protein Production and Purification Partnership in Europe (P4EU) scientific network, a benchmarking initiative was designed to compare the diverse protocols established in thirteen individual laboratories. This benchmarking initiative compared the expression of four selected intracellular proteins (mouse Dicer-2, 204 kDa; human ABL1 wildtype, 126 kDa; human FMRP, 68 kDa; viral vNS1-H1, 76 kDa). Here, we present the expression and purification results on these proteins and highlight the significant differences in expression yields obtained using different commercially-packaged baculovirus vectors. The highest expression level for difficult-to-express intracellular protein candidates were observed with the EmBacY baculovirus vector system.


Subject(s)
Baculoviridae/genetics , Genetic Vectors/genetics , Recombinant Proteins/metabolism , Animals , Cell Line , Escherichia coli/genetics , Escherichia coli/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Humans , Mice , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/metabolism , Recombinant Proteins/genetics , Ribonuclease III/genetics , Ribonuclease III/metabolism , Sf9 Cells
11.
Cancer Cell Int ; 16: 58, 2016.
Article in English | MEDLINE | ID: mdl-27462186

ABSTRACT

BACKGROUND: Glioblastoma stem cells (GSC) have been extensively recognized as a plausible cause of glioblastoma resistance to therapy and recurrence resulting in high glioblastoma mortality. Abnormalities in the DNA repair pathways might be responsible for the inability of the currently used chemotherapeutics to eliminate the (GSC) subpopulation. METHODS: In this work, we compared the expression of sixty DNA repair related genes between primary glioblastoma cell cultures and the glioblastoma enriched stem cell primary cultures. MTT test was used to analyze the effect of selected drugs and immunofluorescence to evaluate the load of DNA damage. RESULTS: We found several differentially expressed genes and we identified topoisomerase IIß (Top2ß) as the gene with highest up-regulation in GSC. Also among the tested cell lines the expression of Top2ß was the highest in NCH421k cells, a well-characterized glioblastoma cell line with all the stemness characteristics. On the other hand, Top2ß expression markedly decreased upon the induction of differentiation by all trans-retinoic acid. Depletion of Top2ß increased the sensitivity of NCH421k cells to replication stress inducing drugs, such as cisplatin, methyl-methanesulfonate, hydrogen peroxide, and temozolomide. Consistently, we found an increased load of DNA damage and increased Chk1 activation upon Top2ß depletion in NCH421k cells. CONCLUSION: We suggest that Top2ß may represent a new target for gene therapy in glioblastoma. In addition, the other genes that we found to be up-regulated in GSC versus glioblastoma primary cells should be further investigated as glioblastoma theranostics.

12.
Protein Sci ; 32(4): e4609, 2023 04.
Article in English | MEDLINE | ID: mdl-36851825

ABSTRACT

Organisms from all kingdoms of life synthesize L-serine (L-Ser) from 3-phosphoglycerate through the phosphorylated pathway, a three-step diversion of glycolysis. Phosphoserine aminotransferase (PSAT) catalyzes the intermediate step, the pyridoxal 5'-phosphate-dependent transamination of 3-phosphohydroxypyruvate and L-glutamate to O-phosphoserine (OPS) and α-ketoglutarate. PSAT is particularly relevant in the central nervous system of mammals because L-Ser is the metabolic precursor of D-serine, cysteine, phospholipids, and nucleotides. Several mutations in the human psat gene have been linked to serine deficiency disorders, characterized by severe neurological symptoms. Furthermore, PSAT is overexpressed in many tumors and this overexpression has been associated with poor clinical outcomes. Here, we report the detailed functional and structural characterization of the recombinant human PSAT. The reaction catalyzed by PSAT is reversible, with an equilibrium constant of about 10, and the enzyme is very efficient, with a kcat /Km of 5.9 × 106  M-1  s-1 , thus contributing in driving the pathway towards the products despite the extremely unfavorable first step catalyzed by 3-phosphoglycerate dehydrogenase. The 3D X-ray crystal structure of PSAT was solved in the substrate-free as well as in the OPS-bound forms. Both structures contain eight protein molecules in the asymmetric unit, arranged in four dimers, with a bound cofactor in each subunit. In the substrate-free form, the active site of PSAT contains a sulfate ion that, in the substrate-bound form, is replaced by the phosphate group of OPS. Interestingly, fast crystal soaking used to produce the substrate-bound form allowed the trapping of different intermediates along the catalytic cycle.


Subject(s)
Serine , Transaminases , Animals , Humans , Central Nervous System/metabolism , Mammals , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Serine/metabolism , Transaminases/chemistry
13.
J Biomol Struct Dyn ; : 1-10, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37787617

ABSTRACT

Multidrug efflux is a well-established mechanism of drug resistance in bacterial pathogens like Salmonella Typhi. styMdtM (locus name; STY4874) is a multidrug efflux transporter of the major facilitator superfamily expressed in S. Typhi. Functional assays identified several residues important for its transport activity. Here, we used an AlphaFold model to identify additional residues for analysis by mutagenesis. Mutation of peripheral residue Cys185 had no effect on the structure or function of the transporter. However, substitution of channel-lining residues Tyr29 and Tyr231 completely abolished transport function. Finally, mutation of Gln294, which faces peripheral helices of the transporter, resulted in the loss of transport of some substrates. Crystallization studies yielded diffraction data for the wild-type protein at 4.5 Å resolution and allowed the unit cell parameters to be established as a = b = 64.3 Å, c = 245.4 Å, α = ß = γ = 90°, in space group P4. Our studies represent a further stepping stone towards a mechanistic understanding of the clinically important multidrug transporter styMdtM.Communicated by Ramaswamy H. Sarma.

14.
Eur J Med Chem ; 253: 115311, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37043904

ABSTRACT

Despite the approval of vaccines, monoclonal antibodies and restrictions during the pandemic, the demand for new efficacious and safe antivirals is compelling to boost the therapeutic arsenal against the COVID-19. The viral 3-chymotrypsin-like protease (3CLpro) is an essential enzyme for replication with high homology in the active site across CoVs and variants showing an almost unique specificity for Leu-Gln as P2-P1 residues, allowing the development of broad-spectrum inhibitors. The design, synthesis, biological activity, and cocrystal structural information of newly conceived peptidomimetic covalent reversible inhibitors are herein described. The inhibitors display an aldehyde warhead, a Gln mimetic at P1 and modified P2-P3 residues. Particularly, functionalized proline residues were inserted at P2 to stabilize the ß-turn like bioactive conformation, modulating the affinity. The most potent compounds displayed low/sub-nM potency against the 3CLpro of SARS-CoV-2 and MERS-CoV and inhibited viral replication of three human CoVs, i.e. SARS-CoV-2, MERS-CoV, and HCoV 229 in different cell lines. Particularly, derivative 12 exhibited nM-low µM antiviral activity depending on the virus, and the highest selectivity index. Some compounds were co-crystallized with SARS-CoV-2 3CLpro validating our design. Altogether, these results foster future work toward broad-spectrum 3CLpro inhibitors to challenge CoVs related pandemics.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Peptidomimetics , Humans , SARS-CoV-2 , Protease Inhibitors/chemistry , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , X-Rays , Peptide Hydrolases , Antiviral Agents/chemistry
15.
Nat Commun ; 13(1): 6199, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261419

ABSTRACT

The delicate alternation between glycogen synthesis and degradation is governed by the interplay between key regulatory enzymes altering the activity of glycogen synthase and phosphorylase. Among these, the PP1 phosphatase promotes glycogenesis while inhibiting glycogenolysis. PP1 is, however, a master regulator of a variety of cellular processes, being conveniently directed to each of them by scaffolding subunits. PTG, Protein Targeting to Glycogen, addresses PP1 action to glycogen granules. In Lafora disease, the most aggressive pediatric epilepsy, genetic alterations leading to PTG accumulation cause the deposition of insoluble polyglucosans in neurons. Here, we report the crystallographic structure of the ternary complex PP1/PTG/carbohydrate. We further refine the mechanism of the PTG-mediated PP1 recruitment to glycogen by identifying i) an unusual combination of recruitment sites, ii) their contributions to the overall binding affinity, and iii) the conformational heterogeneity of this complex by in solution SAXS analyses.


Subject(s)
Glycogen Synthase , Glycogen , Humans , Child , Glycogen/metabolism , Glycogen Synthase/metabolism , Protein Phosphatase 1/metabolism , Scattering, Small Angle , Intracellular Signaling Peptides and Proteins , X-Ray Diffraction , Holoenzymes , Phosphorylases
16.
Eur J Med Chem ; 229: 114054, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34959172

ABSTRACT

The human kinome plays a crucial role in several pathways. Its dysregulation has been linked to diverse central nervous system (CNS)-related disorders with a drastic impact on the aging population. Among them, tauopathies, such as Alzheimer's Disease (AD) and Frontotemporal Lobar degeneration (FTLD-tau), are neurodegenerative disorders pathologically defined by the presence of hyperphosphorylated tau-positive intracellular inclusions known as neurofibrillary tangles (NFTs). Compelling evidence has reported the great potential of the simultaneous modulation of multiple protein kinases (PKs) involved in abnormal tau phosphorylation through a concerted pharmacological approach to achieve a superior therapeutic effect relative to classic "one target, one drug" approaches. Here, we report on the identification and characterization of ARN25068 (4), a low nanomolar and well-balanced dual GSK-3ß and FYN inhibitor, which also shows inhibitory activity against DYRK1A, an emerging target in AD and tauopathies. Computational and X-Ray studies highlight compound 4's typical H-bonding pattern of ATP-competitive inhibitors at the binding sites of all three PKs. In a tau phosphorylation assay on Tau0N4R-TM-tGFP U2OS cell line, 4 reduces the extent of tau phosphorylation, promoting tau-stabilized microtubule bundles. In conclusion, this compound emerges as a promising prototype for further SAR explorations to develop potent and well-balanced triple GSK-3ß/FYN/DYRK1A inhibitors to tackle tau hyperphosphorylation.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , Neuroprotective Agents/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-fyn/antagonists & inhibitors , Tauopathies/drug therapy , Binding Sites , Drug Evaluation, Preclinical , Humans , Microtubules/metabolism , Models, Molecular , Neurofibrillary Tangles/metabolism , Neuroprotective Agents/pharmacology , Phosphorylation , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , tau Proteins/metabolism , Dyrk Kinases
17.
Eur J Med Chem ; 244: 114853, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36332546

ABSTRACT

SARS-CoV-2 caused worldwide the current outbreak called COVID-19. Despite multiple countermeasures implemented, there is an urgent global need for new potent and efficient antiviral drugs against this pathogen. In this context, the main protease (Mpro) of SARS-CoV-2 is an essential viral enzyme and plays a pivotal role in viral replication and transcription. Its specific cleavage of polypeptides after a glutamine residue has been considered as a key element to design novel antiviral drugs. Herein, we reported the design, synthesis and structure-activity relationships of novel α-ketoamides as covalent reversible inhibitors of Mpro, exploiting the PADAM oxidation route. The reported compounds showed µM to nM activities in enzymatic and in the antiviral cell-based assays against SARS-CoV-2 Mpro. In order to assess inhibitors' binding mode, two co-crystal structures of SARS-CoV-2 Mpro in complex with our inhibitors were solved, which confirmed the covalent binding of the keto amide moiety to the catalytic Cys145 residue of Mpro. Finally, in order to interrogate potential broad-spectrum properties, we assessed a selection of compounds against MERS Mpro where they showed nM inhibitory potency, thus highlighting their potential as broad-spectrum coronavirus inhibitors.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Coronavirus 3C Proteases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins , Cysteine Endopeptidases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation
18.
Nanoscale ; 13(16): 7667-7677, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33928964

ABSTRACT

Surface-Enhanced Infrared Absorption (SEIRA) has been proposed as a valuable tool for protein binding studies, but its performances have been often proven on model proteins undergoing severe secondary structure rearrangements, while ligand binding only marginally involves the protein backbone in the vast majority of the biologically relevant cases. In this study we demonstrate the potential of SEIRA microscopy for highlighting the very subtle secondary structure modifications associated with the binding of Lapatinib, a tyrosine kinase inhibitor (TKI), to epidermal growth factor receptor (EGFR), a well-known driver of tumorigenesis in pathological settings such as lung, breast and brain cancers. By boosting the performances of Mid-IR plasmonic devices based on nanoantennas cross-geometry, accustoming the protein purification protocols, carefully tuning the protein anchoring methodology and optimizing the data analysis, we were able to detect EGFR secondary structure modification associated with few amino acids. A nano-patterned platform with this kind of sensitivity bridges biophysical and structural characterization methods, thus opening new possibilities in studying of proteins of biomedical interest, particularly for drug-screening purposes.


Subject(s)
Lung Neoplasms , Microscopy , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/pharmacology
19.
Eur J Med Chem ; 223: 113638, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34171658

ABSTRACT

Memory and cognitive functions depend on the cerebral levels of cyclic adenosine monophosphate (cAMP), which are regulated by the phosphodiesterase 4 (PDE4) family of enzymes. Selected rolipram-related PDE4 inhibitors, members of the GEBR library, have been shown to increase hippocampal cAMP levels, providing pro-cognitive benefits with a safe pharmacological profile. In a recent SAR investigation involving a subset of GEBR library compounds, we have demonstrated that, depending on length and flexibility, ligands can either adopt a twisted, an extended or a protruding conformation, the latter allowing the ligand to form stabilizing contacts with the regulatory domain of the enzyme. Here, based on those findings, we describe further chemical modifications of the protruding subset of GEBR library inhibitors and their effects on ligand conformation and potency. In particular, we demonstrate that the insertion of a methyl group in the flexible linker region connecting the catechol portion and the basic end of the molecules enhances the ability of the ligand to interact with both the catalytic and the regulatory domains of the enzyme.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Drug Design , Phosphodiesterase 4 Inhibitors/chemical synthesis , Small Molecule Libraries/chemistry , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Humans , Molecular Docking Simulation , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/metabolism , Structure-Activity Relationship
20.
Int J Biol Macromol ; 182: 502-511, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33848543

ABSTRACT

High-resolution structural data of complexes between antibodies and membrane receptors still represent a demanding task. In this study, we used complementary sets of experimental data to obtain a structural model of the complex formed by the human epidermal growth factor receptor 2 (HER2) and its specific nanobody A10. First we identified by NMR the residues that bind or rearrange as a consequence of the complex formation. In parallel, the complex was cross-linked, digested and the resulting peptides were characterized by mass-spectrometry to define maximal distance restraints between HER2 and A10 amino acids in their complex. These independent datasets guided a docking process, refined by molecular dynamics simulations, to develop a model of the complex and estimate per-residue free-energy contributions. Such a model explains the experimental data and identifies a second, non-canonical paratope, located in the region opposite to the conventional nanobody paratope, formed by the hypervariable loop regions LH1 and LH3. Both paratopes contributed substantially to the overall affinity by binding to independent HER2 epitopes. Nanobody mutants with substitution of key interaction residues, as indicated by the model, possess significantly lower affinity for HER2. This is the first described case of a "natural" biparatopic nanobody, directly selected by in-vitro panning.


Subject(s)
Binding Sites, Antibody , Receptor, ErbB-2/chemistry , Single-Chain Antibodies/chemistry , Humans , Molecular Docking Simulation , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/immunology , Protein Binding , Receptor, ErbB-2/immunology , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
SELECTION OF CITATIONS
SEARCH DETAIL