Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Annu Rev Physiol ; 82: 433-459, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31730381

ABSTRACT

People worldwide are living longer, and it is estimated that by 2050, the proportion of the world's population over 60 years of age will nearly double. Natural lung aging is associated with molecular and physiological changes that cause alterations in lung function, diminished pulmonary remodeling and regenerative capacity, and increased susceptibility to acute and chronic lung diseases. As the aging population rapidly grows, it is essential to examine how alterations in cellular function and cell-to-cell interactions of pulmonary resident cells and systemic immune cells contribute to a higher risk of increased susceptibility to infection and development of chronic diseases, such as chronic obstructive pulmonary disease and interstitial pulmonary fibrosis. This review provides an overview of physiological, structural, and cellular changes in the aging lung and immune system that facilitate the development and progression of disease.


Subject(s)
Aging/pathology , Lung Diseases/pathology , Aged , Aging/immunology , Cellular Senescence , Humans , Lung/growth & development , Lung/immunology , Lung/pathology , Lung Diseases/immunology , Middle Aged
2.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37108795

ABSTRACT

Cellular senescence plays a key role in mediating tissue remodeling and modulation of host responses to pathogenic stimuli. Our current study was designed to gain a better understanding of the impact of short-term senolytic treatment or inflammatory stimulation on lung senescence. The results of our study demonstrate that short term treatment of aged adult mice (20 months of age) with senolytics, quercetin, and dasatinib decreases p16 and p21 expression in lung tissue. Short-term treatment with senolytics also significantly improved the expression of genes associated with genomic instability, telomere attrition, mitochondrial dysfunction, DNA binding, and the inflammatory response. In contrast, in response to low-dose LPS administration, there was increased expression of genes associated with genomic instability, mitochondrial dysfunction, and heightened inflammatory responses in young adult murine lung (3 months of age). Taken together, the results of our current study illustrate the efficacy of senolytic treatment on modulating responses in aged lung and the potential role of chronic low dose inflammation on senescence induction in the lung.


Subject(s)
Cellular Senescence , Senotherapeutics , Mice , Animals , Cellular Senescence/genetics , Dasatinib/pharmacology , Dasatinib/therapeutic use , Inflammation/drug therapy , Lung , Gene Expression , Quercetin/pharmacology , Quercetin/therapeutic use
3.
Am J Respir Cell Mol Biol ; 67(4): 438-445, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35767671

ABSTRACT

Influenza infection induces lung epithelial cell injury via programmed cell death. Glutathione, a potent antioxidant, has been reported to be associated with influenza infection. We hypothesized that lung epithelial cell death during influenza infection is regulated by glutathione metabolism. Eight-week-old male and female BALB/c mice were infected with influenza (PR8: A/PR/8/34 [H1N1]) via intranasal instillation. Metabolomic analyses were performed on whole lung lysate after influenza infection. For in vitro analysis, Beas-2B cells were infected with influenza. RNA was extracted, and QuantiTect Primer Assay was used to assess gene expression. Glutathione concentrations were assessed by colorimetric assay. Influenza infection resulted in increased inflammation and epithelial cell injury in our murine model, leading to increased morbidity and mortality. In both our in vivo and in vitro models, influenza infection was found to induce apoptosis and necroptosis. Influenza infection led to decreased glutathione metabolism and reduced glutathione reductase activity in lung epithelial cells. Genetic inhibition of glutathione reductase suppressed apoptosis and necroptosis of lung epithelial cells. Pharmacologic inhibition of glutathione reductase reduced airway inflammation, lung injury, and cell death in our murine influenza model. Our results demonstrate that glutathione reductase activity is suppressed during influenza. Glutathione reductase inhibition prevents epithelial cell death and morbidity in our murine influenza model. Our results suggest that glutathione reductase-dependent glutathione metabolism may play an important role in the host response to viral infection by regulating lung epithelial cell death.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Lung Injury , Orthomyxoviridae Infections , Animals , Antioxidants/metabolism , Female , Glutathione/metabolism , Glutathione Reductase/metabolism , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/metabolism , Lung/metabolism , Lung Injury/metabolism , Male , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/metabolism , RNA/metabolism
4.
Thorax ; 77(2): 186-190, 2022 02.
Article in English | MEDLINE | ID: mdl-34521729

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with unclear aetiology and poorly understood pathophysiology. Although plasma levels of circulating cell-free DNA (ccf-DNA) and metabolomic changes have been reported in IPF, the associations between ccf-DNA levels and metabolic derangements in lung fibrosis are unclear. Here, we demonstrate that ccf-double-stranded DNA (dsDNA) is increased in patients with IPF with rapid progression of disease compared with slow progressors and healthy controls and that ccf-dsDNA associates with amino acid metabolism, energy metabolism and lipid metabolism pathways in patients with IPF.


Subject(s)
Cell-Free Nucleic Acids , Idiopathic Pulmonary Fibrosis , DNA , Disease Progression , Humans , Metabolomics
5.
J Immunol ; 205(9): 2489-2498, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32958690

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease associated with cigarette smoking. Alterations in local lung and systemic iron regulation are associated with disease progression and pathogenesis. Hepcidin, an iron regulatory peptide hormone, is altered in subjects with COPD; however, the molecular role of hepcidin in COPD pathogenesis remains to be determined. In this study, using a murine model of smoke-induced COPD, we demonstrate that lung and circulating hepcidin levels are inhibited by cigarette smoke. We show that cigarette smoke exposure increases erythropoietin and bone marrow-derived erythroferrone and leads to expanded but inefficient erythropoiesis in murine bone marrow and an increase in ferroportin on alveolar macrophages (AMs). AMs from smokers and subjects with COPD display increased expression of ferroportin as well as hepcidin. Notably, murine AMs exposed to smoke fail to increase hepcidin in response to Gram-negative or Gram-positive infection. Loss of hepcidin in vivo results in blunted functional responses of AMs and exaggerated responses to Streptococcus pneumoniae infection.


Subject(s)
Hepcidins/metabolism , Macrophages, Alveolar/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Smoking/metabolism , Animals , Bone Marrow/metabolism , Cation Transport Proteins/metabolism , Cigarette Smoking/metabolism , Disease Models, Animal , Disease Progression , Erythropoietin/metabolism , Humans , Iron/metabolism , Lung/metabolism , Mice , Mice, Inbred C57BL , Peptides/metabolism , Smoke
6.
Am J Respir Cell Mol Biol ; 64(5): 579-591, 2021 05.
Article in English | MEDLINE | ID: mdl-33625952

ABSTRACT

Community-acquired pneumonia is the most common type of pneumonia and remains a leading cause of morbidity and mortality worldwide. Although many different pathogens can contribute to pneumonia, Streptococcus pneumoniae is one of the common bacterial pathogens that underlie community-acquired pneumonia. RIPK3 (receptor-interacting protein kinase 3) is widely recognized as a key modulator of inflammation and cell death. To elucidate a potential role of RIPK3 in pneumonia, we examined plasma from healthy control subjects and patients positive for streptococcal pneumonia. In human studies, RIPK3 protein concentrations were significantly elevated and were identified as a potential plasma marker of pneumococcal pneumonia. To expand these findings, we used an in vivo murine model of pneumococcal pneumonia to demonstrate that RIPK3 deficiency leads to reduced bacterial clearance, severe pathological damage, and high mortality. Our results illustrated that RIPK3 forms a complex with RIPK1, MLKL (mixed-lineage kinase domain-like protein), and MCU (mitochondrial calcium uniporter) to induce mitochondrial calcium uptake and mitochondrial reactive oxygen species(mROS) production during S. pneumoniae infection. In macrophages, RIPK3 initiated necroptosis via the mROS-mediated mitochondrial permeability transition pore opening and NLRP3 inflammasome activation via the mROS-AKT pathway to protect against S. pneumoniae. In conclusion, our study demonstrated a mechanism by which RIPK3-initiated necroptosis is essential for host defense against S. pneumoniae.


Subject(s)
Macrophages, Alveolar/immunology , Mitochondria/immunology , Pneumonia, Pneumococcal/immunology , Protein Kinases/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Streptococcus pneumoniae/pathogenicity , Aged , Animals , Calcium Channels/genetics , Calcium Channels/immunology , Case-Control Studies , Disease Models, Animal , Female , Gene Expression Regulation , Humans , Inflammasomes/genetics , Inflammasomes/immunology , Macrophages, Alveolar/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Mitochondria/pathology , Mitochondrial Permeability Transition Pore/immunology , Mitochondrial Permeability Transition Pore/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Necroptosis/genetics , Necroptosis/immunology , Pneumonia, Pneumococcal/complications , Pneumonia, Pneumococcal/microbiology , Protein Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction , Streptococcus pneumoniae/immunology
7.
Eur Respir J ; 57(5)2021 05.
Article in English | MEDLINE | ID: mdl-33243840

ABSTRACT

Influenza epidemics remain a leading cause of morbidity and mortality worldwide. In the current study, we investigated the impact of chronological ageing on tryptophan metabolism in response to influenza infection.Examination of metabolites present in plasma collected from critically ill patients identified tryptophan metabolism as an important metabolic pathway utilised specifically in response to influenza. Using a murine model of influenza infection to further these findings illustrated that there was decreased production of kynurenine in aged lung in an indoleamine-pyrrole 2,3-dioxygenase-dependent manner that was associated with increased inflammatory and diminished regulatory responses. Specifically, within the first 7 days of influenza, there was a decrease in kynurenine pathway mediated metabolism of tryptophan, which resulted in a subsequent increase in ketone body catabolism in aged alveolar macrophages. Treatment of aged mice with mitoquinol, a mitochondrial targeted antioxidant, improved mitochondrial function and restored tryptophan metabolism.Taken together, our data provide additional evidence as to why older persons are more susceptible to influenza and suggest a possible therapeutic to improve immunometabolic responses in this population.


Subject(s)
Influenza, Human , Tryptophan , Aged , Aged, 80 and over , Animals , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase , Kynurenine , Lung , Mice
8.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34829979

ABSTRACT

Influenza is a respiratory virus that alone or in combination with secondary bacterial pathogens can contribute to the development of acute pneumonia in persons >65 years of age. Host innate immune antiviral signaling early in response to influenza is essential to inhibit early viral replication and guide the initiation of adaptive immune responses. Using young adult (3 months) and aged adult mice infected with mouse adapted H1N1 or H3N2, the results of our study illustrate dysregulated and/or diminished activation of key signaling pathways in aged lung contribute to increased lung inflammation and morbidity. Specifically, within the first seven days of infection, there were significant changes in genes associated with TLR and RIG-I signaling detected in aged murine lung in response to H1N1 or H3N2. Taken together, the results of our study expand our current understanding of age-associated changes in antiviral signaling in the lung.


Subject(s)
Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/genetics , Pneumonia/genetics , A549 Cells , Animals , DEAD Box Protein 58/genetics , Disease Models, Animal , Gene Expression Regulation, Viral/genetics , Humans , Immunity, Innate/genetics , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza, Human/microbiology , Influenza, Human/virology , Lung/metabolism , Lung/microbiology , Lung/pathology , Mice , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/microbiology , Orthomyxoviridae Infections/virology , Pneumonia/microbiology , Pneumonia/virology , Toll-Like Receptors/genetics , Virus Replication/genetics
9.
Thorax ; 75(3): 227-236, 2020 03.
Article in English | MEDLINE | ID: mdl-31822523

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a rapidly progressive, fatal lung disease that affects older adults. One of the detrimental natural histories of IPF is acute exacerbation of IPF (AE-IPF), of which bacterial infection is reported to play an important role. However, the mechanism by which bacterial infection modulates the fibrotic response remains unclear. OBJECTIVES: Altered glucose metabolism has been implicated in the pathogenesis of fibrotic lung diseases. We have previously demonstrated that glucose transporter 1 (GLUT1)-dependent glycolysis regulates fibrogenesis in a murine fibrosis model. To expand on these findings, we hypothesised that GLUT1-dependent glycolysis regulates acute exacerbation of lung fibrogenesis during bacterial infection via AIM2 inflammasome activation. RESULTS: In our current study, using a murine model of Streptococcus pneumoniae (S. pneumoniae) infection, we investigated the potential role of GLUT1 on mediating fibrotic responses to an acute exacerbation during bleomycin-induced fibrosis. The results of our current study illustrate that GLUT1 deficiency ameliorates S. pneumoniae-mediated exacerbation of lung fibrosis (wild type (WT)/phosphate buffered saline (PBS), n=3; WT/S. pneumoniae, n=3; WT/Bleomycin, n=5 ; WT/Bleomycin+S. pneumoniae, n=7; LysM-Cre-Glut1fl/f /PBS, n=3; LysM-Cre-Glut1fl/fl /S. pneumoniae, n=3; LysM-Cre-Glut1fl/fl /Bleomycin, n=6; LysM-Cre-Glut1fl/fl /Bleomycin+S. pneumoniae, n=9, p=0.041). Further, the AIM2 inflammasome, a multiprotein complex essential for sensing cytosolic bacterial DNA as a danger signal, is an important regulator of this GLUT1-mediated fibrosis and genetic deficiency of AIM2 reduced bleomycin-induced fibrosis after S. pneumoniae infection (WT/PBS, n=6; WT/Bleomycin+S. pneumoniae, n=15; Aim2-/-/PBS, n=6, Aim2-/-/Bleomycin+S. pneumoniae, n=11, p=0.034). GLUT1 deficiency reduced expression and function of the AIM2 inflammasome, and AIM2-deficient mice showed substantial reduction of lung fibrosis after S. pneumoniae infection. CONCLUSION: Our results demonstrate that GLUT1-dependent glycolysis promotes exacerbation of lung fibrogenesis during S. pneumoniae infection via AIM2 inflammasome activation.


Subject(s)
Glucose Transporter Type 1/metabolism , Glycolysis , Idiopathic Pulmonary Fibrosis/metabolism , Inflammasomes/metabolism , Lung/pathology , Pneumococcal Infections/metabolism , Animals , Bleomycin , Disease Models, Animal , Disease Progression , Fibrosis , Gene Knockout Techniques , Glucose Transporter Type 1/genetics , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Inflammasomes/genetics , Mice , Pneumococcal Infections/complications
10.
Int J Mol Sci ; 21(5)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121297

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease. Chronic lung inflammation is linked to the pathogenesis of IPF. DROSHA, a class 2 ribonuclease III enzyme, has an important role in the biogenesis of microRNA (miRNA). The function of miRNAs has been identified in the regulation of the target gene or protein related to inflammatory responses via degradation of mRNA or inhibition of translation. The absent-in-melanoma-2 (AIM2) inflammasome is critical for inflammatory responses against cytosolic double stranded DNA (dsDNA) from pathogen-associated molecular patterns (PAMPs) and self-DNA from danger-associated molecular patterns (DAMPs). The AIM2 inflammasome senses double strand DNA (dsDNA) and interacts with the adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which recruits pro-caspase-1 and regulates the maturation and secretion of interleukin (IL)-1ß and IL-18. A recent study showed that inflammasome activation contributes to lung inflammation and fibrogenesis during IPF. In the current review, we discuss recent advances in our understanding of the DROSHA-miRNA-AIM2 inflammasome axis in the pathogenesis of IPF.


Subject(s)
DNA-Binding Proteins/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Inflammasomes/metabolism , MicroRNAs/metabolism , Ribonuclease III/metabolism , Animals , Humans , MicroRNAs/genetics , Models, Biological
11.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L372-L387, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29097427

ABSTRACT

Pneumococcal infections are the eigth leading cause of death in the United States, and it is estimated that older patients (≥65 yr of age) account for the most serious cases. The goal of our current study is to understand the impact of biological aging on innate immune responses to Streptococcus pneumoniae, a causative agent of bacterial pneumonia. With the use of in vitro and in vivo aged murine models, our findings demonstrate that age-enhanced unfolded protein responses (UPRs) contribute to diminished inflammasome assembly and activation during S. pneumoniae infection. Pretreatment of aged mice with endoplasmic reticulum chaperone and the stress-reducing agent tauroursodeoxycholic acid (TUDCA) decreased mortality in aged hosts that was associated with increased NLRP3 inflammasome activation, improved pathogen clearance, and decreased pneumonitis during infection. Taken together, our data provide new evidence as to why older persons are more susceptible to S. pneumoniae and provide a possible therapeutic target to decrease morbidity and mortality in this population.


Subject(s)
Immunity, Innate/immunology , Inflammasomes/immunology , Macrophages/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumococcal Infections/immunology , Streptococcus pneumoniae/immunology , Aged , Animals , Cells, Cultured , Female , Host-Pathogen Interactions , Humans , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pneumococcal Infections/metabolism , Pneumococcal Infections/microbiology , Signal Transduction
12.
Am J Respir Cell Mol Biol ; 56(4): 521-531, 2017 04.
Article in English | MEDLINE | ID: mdl-27997810

ABSTRACT

Aging is associated with metabolic diseases such as type 2 diabetes mellitus, cardiovascular disease, cancer, and neurodegeneration. Aging contributes to common processes including metabolic dysfunction, DNA damage, and reactive oxygen species generation. Although glycolysis has been linked to cell growth and proliferation, the mechanisms by which the activation of glycolysis by aging regulates fibrogenesis in the lung remain unclear. The objective of this study was to determine if glucose transporter 1 (GLUT1)-induced glycolysis regulates age-dependent fibrogenesis of the lung. Mouse and human lung tissues were analyzed for GLUT1 and glycolytic markers using immunoblotting. Glycolytic function was measured using a Seahorse apparatus. To study the effect of GLUT1, genetic inhibition of GLUT1 was performed by short hairpin RNA transduction, and phloretin was used for pharmacologic inhibition of GLUT1. GLUT1-dependent glycolysis is activated in aged lung. Genetic and pharmacologic inhibition of GLUT1 suppressed the protein expression of α-smooth muscle actin, a key cytoskeletal component of activated fibroblasts, in mouse primary lung fibroblast cells. Moreover, we demonstrated that the activation of AMP-activated protein kinase, which is regulated by GLUT1-dependent glycolysis, represents a critical metabolic pathway for fibroblast activation. Furthermore, we demonstrated that phloretin, a potent inhibitor of GLUT1, significantly inhibited bleomycin-induced lung fibrosis in vivo. These results suggest that GLUT1-dependent glycolysis regulates fibrogenesis in aged lung and that inhibition of GLUT1 provides a potential target of therapy of age-related lung fibrosis.


Subject(s)
Aging/metabolism , Cellular Senescence , Glucose Transporter Type 1/metabolism , Glycolysis , Phloretin/therapeutic use , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Bleomycin , Enzyme Activation/drug effects , Glycolysis/drug effects , Male , Mice, Inbred C57BL , Phosphorylation/drug effects
13.
Am J Respir Cell Mol Biol ; 55(2): 252-63, 2016 08.
Article in English | MEDLINE | ID: mdl-26933834

ABSTRACT

Aging has been implicated in the development of pulmonary fibrosis, which has seen a sharp increase in incidence in those older than 50 years. Recent studies demonstrate a role for the nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome and its regulated cytokines in experimental lung fibrosis. In this study, we tested the hypothesis that age-related NLRP3 inflammasome activation is an important predisposing factor in the development of pulmonary fibrosis. Briefly, young and aged wild-type and NLRP3(-/-) mice were subjected to bleomycin-induced lung injury. Pulmonary fibrosis was determined by histology and hydroxyproline accumulation. Bone marrow and alveolar macrophages were isolated from these mice. NLRP3 inflammasome activation was assessed by co-immunoprecipitation experiments. IL-1ß and IL-18 production was measured by ELISA. The current study demonstrated that aged wild-type mice developed more lung fibrosis and exhibited increased morbidity and mortality after bleomycin-induced lung injury, when compared with young mice. Bleomycin-exposed aged NLRP3(-/-) mice had reduced fibrosis compared with their wild-type age-matched counterparts. Bone marrow-derived and alveolar macrophages from aged mice displayed higher levels of NLRP3 inflammasome activation and caspase-1-dependent IL-1ß and IL-18 production, which was associated with altered mitochondrial function and increased production of reactive oxygen species. Our study demonstrated that age-dependent increases in alveolar macrophage mitochondrial reactive oxygen species production and NLRP3 inflammasome activation contribute to the development of experimental fibrosis.


Subject(s)
Aging/pathology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pulmonary Fibrosis/pathology , Animals , Bleomycin , Disease Susceptibility , Instillation, Drug , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Lung/metabolism , Lung/pathology , Lung Injury/complications , Lung Injury/pathology , Lung Injury/prevention & control , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/prevention & control , Transforming Growth Factor beta/pharmacology
14.
J Immunol ; 192(9): 4273-83, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24670807

ABSTRACT

Pneumococcal infections remain a leading cause of death in persons ≥ 65 y of age. Recent reports have illustrated detrimental changes in the endoplasmic reticulum stress response or unfolded protein response in aging and age-related diseases; however, the relationship between aging, the unfolded protein response, and innate immune responses to Streptococcus pneumoniae has not been fully elucidated. Our results illustrate that stimulator of IFN genes-mediated production of IFN-ß during S. pneumoniae infection is decreased in aged hosts. Enhanced endoplasmic reticulum stress in response to S. pneumoniae augmented inositol-requiring protein 1/X-box binding protein 1-mediated production of autophagy-related gene 9 (Atg9a). Knockdown of Atg9a or treatment with gemcitabine HCl resulted in enhanced stimulator of IFN genes-mediated production of IFN-ß by aged macrophages. Consecutive treatments with gemcitabine during in vivo S. pneumoniae infection decreased morbidity and mortality in aged hosts, which was associated with decreased Atg9a expression, increased IFN-ß production, and improved bacterial clearance from lung tissue. Taken together, data presented in this study provide new evidence as to why older persons are more susceptible to S. pneumoniae, and provide a possible mechanism to enhance these responses, thereby decreasing morbidity and mortality in this population.


Subject(s)
Aging/immunology , Endoplasmic Reticulum Stress/immunology , Interferon-beta/biosynthesis , Membrane Proteins/immunology , Pneumococcal Infections/immunology , Animals , Autophagy-Related Proteins , Blotting, Western , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Immunoprecipitation , Interferon-beta/immunology , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Pneumococcal Infections/metabolism , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Transfection , Vesicular Transport Proteins
16.
J Gen Virol ; 95(Pt 1): 26-37, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24114793

ABSTRACT

The host cytokine IL-6 plays an important role in host defence and prevention of lung injury from various pathogens, making IL-6 an important mediator in the host's susceptibility to respiratory infections. The cellular response to IL-6 is mediated through a Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signal transduction pathway. Human metapneumovirus (hMPV) is an important causative agent of viral respiratory infections known to inhibit the IFN-mediated activation of STAT1. However, little is known about the interactions between this virus and other STAT signalling cascades. Herein, we showed that hMPV can attenuate the IL-6-mediated JAK/STAT3 signalling cascade in lung epithelial cells. HMPV inhibited a key event in this pathway by impeding the phosphorylation and nuclear translocation of STAT3 in A549 cells and in primary normal human bronchial epithelial cells. Further studies established that hMPV interrupted the IL-6-induced JAK/STAT pathway early in the signal transduction pathway by blocking the phosphorylation of JAK2. By antagonizing the IL-6-mediated JAK/STAT3 pathway, hMPV perturbed the expression of IL-6-inducible genes important for apoptosis, cell differentiation and growth. Infection with hMPV also differentially regulated the effects of IL-6 on apoptosis. Thus, hMPV regulation of these genes could usurp the protective roles of IL-6, and these data provide insight into an important element of viral pathogenesis.


Subject(s)
Epithelial Cells/virology , Interleukin-6/metabolism , Janus Kinase 2/metabolism , Lung/metabolism , Metapneumovirus/physiology , Paramyxoviridae Infections/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Cell Line , Cell Nucleus/genetics , Cell Nucleus/metabolism , Down-Regulation , Epithelial Cells/metabolism , Host-Pathogen Interactions , Humans , Interleukin-6/genetics , Janus Kinase 2/genetics , Lung/cytology , Lung/virology , Paramyxoviridae Infections/genetics , Paramyxoviridae Infections/virology , STAT3 Transcription Factor/genetics
17.
J Immunol ; 188(6): 2815-24, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22327078

ABSTRACT

The NLRP3 inflammasome is activated in the lung during influenza viral infection; however, the impact of aging on inflammasome function during influenza infection has not been examined. In this study, we show that elderly mice infected with a mouse-adapted strain of influenza produced lower levels of IL-1ß during in vitro and in vivo infection. Dendritic cells from elderly mice exhibited decreased expression of ASC, NLRP3, and capase-1 but increased expression of pro-IL-1ß, pro-IL-18, and pro-IL-33 compared with dendritic cells from young infected mice. Treatment with nigericin during influenza infection augmented IL-1ß production, increased caspase-1 activity, and decreased morbidity and mortality in elderly mice. Our study demonstrates for the first time, to our knowledge, that during influenza viral infection, elderly mice have impaired NLRP3 inflammasome activity and that treatment with nigericin rescues NLRP3 activation in elderly hosts.


Subject(s)
Aging/immunology , Antiviral Agents/pharmacology , Carrier Proteins/immunology , Inflammasomes/immunology , Nigericin/pharmacology , Orthomyxoviridae Infections/immunology , Adoptive Transfer , Aging/metabolism , Animals , Blotting, Western , Carrier Proteins/metabolism , Caspase 1/immunology , Caspase 1/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Inflammasomes/drug effects , Inflammasomes/metabolism , Male , Mice , Mice, Inbred BALB C , NLR Family, Pyrin Domain-Containing 3 Protein , Orthomyxoviridae Infections/metabolism , Real-Time Polymerase Chain Reaction
18.
Redox Biol ; 76: 103329, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39197317

ABSTRACT

Alveolar macrophages (AM) are key effectors of the immune response and are essential for host responses to S. pneumoniae. Mitochondria are highly dynamic organelles whose function aids in regulating the cell cycle, innate immunity, autophagy, redox signaling, calcium homeostasis, and mitochondrial quality control in AM. In response to cellular stress, mitochondria can engage in stress-induced mitochondrial hyperfusion (SIMH). The current study aimed to investigate the role of Mfn1 on mitochondrial control of reactive oxygen species (ROS) in AMs and the role of Mfn1 deficiency on immune responses to S. pneumoniae. Compared to Mfn1FloxCre- controls, there were distinct histological differences in lung tissue collected from Mfn1Floxed; CreLysM mice, with less injury and inflammation observed in mice with Mfn1 deficient myeloid cells. There was a significant decrease in lipid peroxidation and ROS production in Mfn1 deficient AM that was associated with increased superoxide dismutase (SOD) and antioxidant activity. Our findings demonstrate that Mfn1 deficiency in myeloid cells decreased inflammation and lung tissue injury during S. pneumoniae infection.


Subject(s)
GTP Phosphohydrolases , Macrophages, Alveolar , Mitochondria , Reactive Oxygen Species , Animals , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/microbiology , Macrophages, Alveolar/immunology , Reactive Oxygen Species/metabolism , Mice , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Mitochondria/metabolism , Streptococcus pneumoniae/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Mice, Knockout , Lung/metabolism , Lung/microbiology , Lung/pathology
19.
Cells ; 12(4)2023 02 10.
Article in English | MEDLINE | ID: mdl-36831236

ABSTRACT

Alveolar macrophages (AM) are long-lived tissue-resident innate immune cells of the airways. AM are key effectors of recognition, initiation, and resolution of the host defense against microbes and play an essential role in mediating host responses to Streptococcus pneumoniae infection. Lipid metabolism in AM can significantly impact cellular function and biology. Dysregulated metabolism contributes to an accumulation of lipids, unfolded protein response induction, and inflammatory cytokine production. Our study was designed to investigate the impact of Ch25h on mediating innate immune responses by macrophages during S. pneumoniae infection. Using wild-type and Ch25-/- mice, we examined the role of cholesterol metabolism on inflammatory cytokine production and bacterial clearance. Our results demonstrate that Ch25h plays an important role in the initiation and intensity of cytokine and chemokine production in the lung during S. pneumoniae infection. In the absence of Ch25h, there was enhanced phagocytosis and bacterial clearance. Taken together, our findings demonstrate the important role of Ch25h in modulating host responsiveness to S. pneumoniae infection.


Subject(s)
Lung , Pneumococcal Infections , Steroid Hydroxylases , Animals , Mice , Cytokines/metabolism , Immunity, Innate , Lung/metabolism , Streptococcus pneumoniae/metabolism
20.
Sci Rep ; 11(1): 12606, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131192

ABSTRACT

Increasing evidence has shown that Coronavirus disease 19 (COVID-19) severity is driven by a dysregulated immunologic response. We aimed to assess the differences in inflammatory cytokines in COVID-19 patients compared to contemporaneously hospitalized controls and then analyze the relationship between these cytokines and the development of Acute Respiratory Distress Syndrome (ARDS), Acute Kidney Injury (AKI) and mortality. In this cohort study of hospitalized patients, done between March third, 2020 and April first, 2020 at a quaternary referral center in New York City we included adult hospitalized patients with COVID-19 and negative controls. Serum specimens were obtained on the first, second, and third hospital day and cytokines were measured by Luminex. Autopsies of nine cohort patients were examined. We identified 90 COVID-19 patients and 51 controls. Analysis of 48 inflammatory cytokines revealed upregulation of macrophage induced chemokines, T-cell related interleukines and stromal cell producing cytokines in COVID-19 patients compared to the controls. Moreover, distinctive cytokine signatures predicted the development of ARDS, AKI and mortality in COVID-19 patients. Specifically, macrophage-associated cytokines predicted ARDS, T cell immunity related cytokines predicted AKI and mortality was associated with cytokines of activated immune pathways, of which IL-13 was universally correlated with ARDS, AKI and mortality. Histopathological examination of the autopsies showed diffuse alveolar damage with significant mononuclear inflammatory cell infiltration. Additionally, the kidneys demonstrated glomerular sclerosis, tubulointerstitial lymphocyte infiltration and cortical and medullary atrophy. These patterns of cytokine expression offer insight into the pathogenesis of COVID-19 disease, its severity, and subsequent lung and kidney injury suggesting more targeted treatment strategies.


Subject(s)
COVID-19/mortality , COVID-19/physiopathology , Cytokines/blood , Acute Kidney Injury/blood , Acute Kidney Injury/pathology , Acute Kidney Injury/virology , Aged , COVID-19/blood , COVID-19/therapy , Case-Control Studies , Cytokine Release Syndrome/virology , Female , Hospitals , Humans , Lung/pathology , Lung/virology , Male , Middle Aged , New York City , Respiration, Artificial , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/virology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL