Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Virol ; 98(3): e0187423, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38329336

ABSTRACT

Subacute sclerosing panencephalitis (SSPE) is a rare but fatal late neurological complication of measles, caused by persistent measles virus (MeV) infection of the central nervous system. There are no drugs approved for the treatment of SSPE. Here, we followed the clinical progression of a 5-year-old SSPE patient after treatment with the nucleoside analog remdesivir, conducted a post-mortem evaluation of the patient's brain, and characterized the MeV detected in the brain. The quality of life of the patient transiently improved after the first two courses of remdesivir, but a third course had no further clinical effect, and the patient eventually succumbed to his condition. Post-mortem evaluation of the brain displayed histopathological changes including loss of neurons and demyelination paired with abundant presence of MeV RNA-positive cells throughout the brain. Next-generation sequencing of RNA isolated from the brain revealed a complete MeV genome with mutations that are typically detected in SSPE, characterized by a hypermutated M gene. Additional mutations were detected in the polymerase (L) gene, which were not associated with resistance to remdesivir. Functional characterization showed that mutations in the F gene led to a hyperfusogenic phenotype predominantly mediated by N465I. Additionally, recombinant wild-type-based MeV with the SSPE-F gene or the F gene with the N465I mutation was no longer lymphotropic but instead efficiently disseminated in neural cultures. Altogether, this case encourages further investigation of remdesivir as a potential treatment of SSPE and highlights the necessity to functionally understand SSPE-causing MeV.IMPORTANCEMeasles virus (MeV) causes acute, systemic disease and remains an important cause of morbidity and mortality in humans. Despite the lack of known entry receptors in the brain, MeV can persistently infect the brain causing the rare but fatal neurological disorder subacute sclerosing panencephalitis (SSPE). SSPE-causing MeVs are characterized by a hypermutated genome and a hyperfusogenic F protein that facilitates the rapid spread of MeV throughout the brain. No treatment against SSPE is available, but the nucleoside analog remdesivir was recently demonstrated to be effective against MeV in vitro. We show that treatment of an SSPE patient with remdesivir led to transient clinical improvement and did not induce viral escape mutants, encouraging the future use of remdesivir in SSPE patients. Functional characterization of the viral proteins sheds light on the shared properties of SSPE-causing MeVs and further contributes to understanding how those viruses cause disease.


Subject(s)
Adenosine Monophosphate , Alanine , Measles virus , Measles , Subacute Sclerosing Panencephalitis , Viral Proteins , Child, Preschool , Humans , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/therapeutic use , Autopsy , Brain/metabolism , Brain/pathology , Brain/virology , Disease Progression , Fatal Outcome , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Measles/complications , Measles/drug therapy , Measles/virology , Measles virus/drug effects , Measles virus/genetics , Measles virus/metabolism , Mutant Proteins/analysis , Mutant Proteins/genetics , Mutant Proteins/metabolism , Quality of Life , RNA, Viral/analysis , RNA, Viral/genetics , Subacute Sclerosing Panencephalitis/drug therapy , Subacute Sclerosing Panencephalitis/etiology , Subacute Sclerosing Panencephalitis/virology , Viral Proteins/analysis , Viral Proteins/genetics , Viral Proteins/metabolism
2.
Am J Hum Genet ; 105(2): 384-394, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31256876

ABSTRACT

Proteins anchored to the cell surface via glycosylphosphatidylinositol (GPI) play various key roles in the human body, particularly in development and neurogenesis. As such, many developmental disorders are caused by mutations in genes involved in the GPI biosynthesis and remodeling pathway. We describe ten unrelated families with bi-allelic mutations in PIGB, a gene that encodes phosphatidylinositol glycan class B, which transfers the third mannose to the GPI. Ten different PIGB variants were found in these individuals. Flow cytometric analysis of blood cells and fibroblasts from the affected individuals showed decreased cell surface presence of GPI-anchored proteins. Most of the affected individuals have global developmental and/or intellectual delay, all had seizures, two had polymicrogyria, and four had a peripheral neuropathy. Eight children passed away before four years old. Two of them had a clinical diagnosis of DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures), a condition that includes sensorineural deafness, shortened terminal phalanges with small finger and toenails, intellectual disability, and seizures; this condition overlaps with the severe phenotypes associated with inherited GPI deficiency. Most individuals tested showed elevated alkaline phosphatase, which is a characteristic of the inherited GPI deficiency but not DOORS syndrome. It is notable that two severely affected individuals showed 2-oxoglutaric aciduria, which can be seen in DOORS syndrome, suggesting that severe cases of inherited GPI deficiency and DOORS syndrome might share some molecular pathway disruptions.


Subject(s)
Craniofacial Abnormalities/etiology , Glycosylphosphatidylinositols/biosynthesis , Glycosylphosphatidylinositols/deficiency , Hand Deformities, Congenital/etiology , Hearing Loss, Sensorineural/etiology , Intellectual Disability/etiology , Mannosyltransferases/genetics , Metabolic Diseases/etiology , Mutation , Nails, Malformed/etiology , Peripheral Nervous System Diseases/etiology , Seizures/pathology , Adult , Child , Child, Preschool , Craniofacial Abnormalities/pathology , Female , Glycosylphosphatidylinositols/genetics , Hand Deformities, Congenital/pathology , Hearing Loss, Sensorineural/pathology , Humans , Infant , Infant, Newborn , Intellectual Disability/pathology , Male , Metabolic Diseases/pathology , Nails, Malformed/pathology , Pedigree , Peripheral Nervous System Diseases/pathology , Seizures/genetics , Severity of Illness Index , Young Adult
3.
Am J Med Genet A ; 188(4): 1263-1279, 2022 04.
Article in English | MEDLINE | ID: mdl-34939736

ABSTRACT

Kohlschütter-Tönz syndrome (KTS) is a rare, autosomal recessive syndrome characterized by a triad of epilepsy, amelogenesis imperfecta and severe global developmental delay. It was first described in a Swiss family in 1974 by Alfried Kohlschütter and Otmar Tönz. It is caused by pathogenic variants in the ROGDI gene. To the best of our knowledge, there are currently 43 patients with a confirmed ROGDI gene pathogenic variant reported. Here, we review in detail the clinical manifestations of KTS, provide an overview of all reported genetically confirmed patients, and document an additional case of KTS-a 6-year-old Latvian girl-with a confirmed ROGDI gene pathogenic variant. In contrast to previous reports, we detected idiopathic bilateral nephrocalcinosis in this newly identified KTS patient. Perampanel proved an effective treatment for our patient with prolonged super-refractory status epilepticus. In order to better characterize this rare syndrome and its clinical course, it is important to report any additional symptoms and also the effectiveness of used therapies. Future research should focus on elucidating the mechanisms by which the absence/insufficiency of ROGDI-encoded protein causes the clinical manifestations of KTS. This knowledge could shape possible ways of influencing the disease's natural history with more effective therapies.


Subject(s)
Amelogenesis Imperfecta , Epilepsy , Amelogenesis Imperfecta/diagnosis , Amelogenesis Imperfecta/genetics , Child , Dementia , Epilepsy/genetics , Female , Humans , Membrane Proteins/genetics , Mutation , Nuclear Proteins/genetics
4.
J Neuroinflammation ; 17(1): 262, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32883358

ABSTRACT

BACKGROUND: New-generation, cell-based assays have demonstrated a robust association of serum autoantibodies to full-length human myelin oligodendrocyte glycoprotein (MOG-IgG) with (mostly recurrent) optic neuritis, myelitis, and brainstem encephalitis, as well as with neuromyelitis optica (NMO)-like or acute-disseminated encephalomyelitis (ADEM)-like presentations. However, only limited data are yet available on cerebrospinal fluid (CSF) findings in MOG-IgG-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disease, MOGAD). OBJECTIVE: To describe systematically the CSF profile in children with MOG-EM. MATERIAL AND METHODS: Cytological and biochemical findings (including white cell counts [WCC] and differentiation; frequency and patterns of oligoclonal bands; IgG/IgM/IgA and albumin concentrations and CSF/serum ratios; intrathecal IgG/IgM/IgA fractions; locally produced IgG/IgM/IgA concentrations; immunoglobulin class patterns; IgG/IgA/IgM reibergrams; Link index; measles/rubella/zoster [MRZ] reaction; other anti-viral and anti-bacterial antibody indices; CSF total protein; CSF L-lactate) from 108 lumbar punctures in 80 pediatric patients of mainly Caucasian descent with MOG-EM were analyzed retrospectively. RESULTS: Most strikingly, CSF-restricted oligoclonal IgG bands, a hallmark of multiple sclerosis (MS), were absent in 89% of samples (N = 96), and the MRZ reaction, the most specific laboratory marker of MS known so far, in 100% (N = 29). If present at all, intrathecal IgG synthesis was low, often transient and mostly restricted to acute attacks. Intrathecal IgM synthesis was present in 21% and exclusively detectable during acute attacks. CSF WCC were elevated in 54% of samples (median 40 cells/µl; range 6-256; mostly lymphocytes and monocytes; > 100/µl in 11%). Neutrophils were present in 71% of samples; eosinophils, activated lymphocytes, and plasma cells were seen only rarely (all < 7%). Blood-CSF barrier dysfunction (as indicated by an elevated albumin CSF/serum ratio) was present in 46% of all samples (N = 79) and at least once in 48% of all patients (N = 67) tested. CSF alterations were significantly more frequent and/or more pronounced in patients with acute spinal cord or brain disease than in patients with acute ON and varied strongly depending on attack severity. CSF L-lactate levels correlated significantly with the spinal cord lesions load (measured in vertebral segments) in patients with acute myelitis (p = 0.0099). An analysis of pooled data from the pediatric and the adult cohort showed a significant relationship of QAlb (p < 0.0005), CST TP (p < 0.0001), and CSF L-lactate (p < 0.0003) during acute attacks with age. CONCLUSION: MOG-IgG-associated EM in children is characterized by CSF features that are distinct from those in MS. With regard to most parameters, no marked differences between the pediatric cohort and the adult cohort analyzed in Part 1 were noted. Our findings are important for the differential diagnosis of pediatric MS and MOG-EM and add to the understanding of the immunopathogenesis of this newly described autoimmune disease.


Subject(s)
Autoantibodies/cerebrospinal fluid , Encephalomyelitis/immunology , Immunoglobulins/cerebrospinal fluid , Myelin-Oligodendrocyte Glycoprotein/immunology , Oligoclonal Bands/cerebrospinal fluid , Adolescent , Autoantibodies/blood , Child , Child, Preschool , Encephalomyelitis/blood , Encephalomyelitis/cerebrospinal fluid , Female , Humans , Immunoglobulins/blood , Infant , Male , Retrospective Studies , Spinal Puncture
5.
Neurol Neurochir Pol ; 54(5): 466-470, 2020.
Article in English | MEDLINE | ID: mdl-32939748

ABSTRACT

Peripheral neuropathy is a disorder of the peripheral nerves and results from a disturbance of structure and/or function of the peripheral sensory, motor and/or autonomic neurons. The possible aetiology of peripheral neuropathies is diverse, but inflammatory and hereditary diseases of the peripheral nerves predominate in childhood. The aim of this study was to determine the clinical and electrophysiological profile of large nerve fibre neuropathy detected by nerve conduction studies (NCS) in children over a 10-year period at the Children's Clinical University Hospital in Latvia. Based on NCS findings, 165 children between 2008 and 2018 were diagnosed with polyneuropathy. In our study, the majority of children had peripheral neuropathy due to acquired causes, mostly due to diabetes mellitus; roughly one in five of the patients had hereditary neuropathy. Almost half of the patients had motor deficits, which were more prevalent in toxic and inflammatory neuropathies. A little less than a third of patients complained of pain as well as presenting with autonomic dysfunction symptoms. The NCS demonstrated a demyelinating neuropathy in 52 cases (31%), an axonal neuropathy in 34 cases (21%), and mixed polyneuropathy in 79 cases (48%). Our study investigated the clinical and electrophysiological characteristics of polyneuropathies diagnosed with NCS in children. Most of the polyneuropathies in our study were hereditary and diabetic neuropathies with combined (myelin and axon) damage to nerve fibres. Almost all clinical symptoms of polyneuropathy were present in all aetiological groups.


Subject(s)
Polyneuropathies , Child , Humans , Neural Conduction , Neurologic Examination , Neurophysiology , Peripheral Nerves , Polyneuropathies/epidemiology , Polyneuropathies/genetics
6.
Mult Scler ; 22(14): 1821-1829, 2016 12.
Article in English | MEDLINE | ID: mdl-26869530

ABSTRACT

BACKGROUND: Myelin oligodendrocyte glycoprotein (MOG) antibodies have been described in children with acute disseminated encephalomyelitis (ADEM), recurrent optic neuritis, neuromyelitis optica spectrum disorders and more recently in children with multiphasic disseminated encephalomyelitis (MDEM). OBJECTIVE: To delineate the clinical, cerebrospinal fluid (CSF) and radiological features of paediatric MDEM with MOG antibodies. METHODS: Clinical course, serum antibodies, CSF, magnetic resonance imaging (MRI) studies and outcome of paediatric MDEM patients were reviewed. RESULTS: A total of 8 children with two or more episodes of ADEM were identified from a cohort of 295 children with acute demyelinating events. All children had persisting MOG antibodies (median titre: 1:1280). All ADEM episodes included encephalopathy, polyfocal neurological signs and a typical MRI. Apart from ADEM episodes, three children had further clinical attacks without encephalopathy. Median age at initial presentation was 3 years (range: 1-7 years) and median follow-up 4 years (range: 1-8 years). New ADEM episodes were associated with new neurological signs and new MRI lesions. Clinical outcome did range from normal (four of the eight) to mild or moderate impairment (four of the eight). A total of four children received monthly immunoglobulin treatment during the disease course. CONCLUSION: Children with MDEM and persisting MOG antibodies constitute a distinct entity of relapsing demyelinating events and extend the spectrum of MOG antibody-associated diseases.


Subject(s)
Autoantibodies/cerebrospinal fluid , Demyelinating Autoimmune Diseases, CNS , Encephalomyelitis , Myelin-Oligodendrocyte Glycoprotein/immunology , Child , Child, Preschool , Demyelinating Autoimmune Diseases, CNS/blood , Demyelinating Autoimmune Diseases, CNS/cerebrospinal fluid , Demyelinating Autoimmune Diseases, CNS/diagnostic imaging , Demyelinating Autoimmune Diseases, CNS/physiopathology , Encephalomyelitis/blood , Encephalomyelitis/cerebrospinal fluid , Encephalomyelitis/diagnostic imaging , Encephalomyelitis/physiopathology , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male
7.
BMC Musculoskelet Disord ; 17: 200, 2016 May 04.
Article in English | MEDLINE | ID: mdl-27142102

ABSTRACT

BACKGROUND: Limb-girdle muscular dystrophies are characterized by predominant involvement of the shoulder and pelvic girdle and trunk muscle groups. Currently, there are 31 genes implicated in the different forms of limb-girdle muscular dystrophies, which exhibit similar phenotypes and clinical overlap; therefore, advanced molecular techniques are required to achieve differential diagnosis. METHODS: We investigated 26 patients from Latvia and 34 patients from Lithuania with clinical symptoms of limb-girdle muscular dystrophies, along with 565 healthy unrelated controls from general and ethnic populations using our developed test kit based on the Illumina VeraCode GoldenGate genotyping platform, Ion AmpliSeq Inherited Disease Panel and direct sequencing of mutations in calpain 3 (CAPN3), anoctamin 5 (ANO5) and fukutin related protein (FKRP) genes. RESULTS: Analysis revealed a homozygous CAPN3 c.550delA mutation in eight patients and three heterozygous variants in controls: dysferlin (DYSF) c.5028delG, CAPN3 c.2288A > G, and FKRP c.135C > T. Additionally, three mutations within FKRP gene were found: homozygous c.826C > A, and two compound - c.826C > A/c.404_405insT and c.826C > A/c.204_206delCTC mutations, and one mutation within CLCN1 gene - c.2680C > T p.Arg894Ter. ANO5 c.191dupA was not present. CONCLUSIONS: Genetic diagnosis was possible in 12 of 60 patients (20%). The allele frequency of CAPN3 gene mutation c.550delA in Latvia is 0.0016 and in Lithuania - 0.0029. The allele frequencies of CAPN3 gene mutation c.2288A > G and DYSF gene mutation c.4872delG are 0.003.


Subject(s)
Calpain/genetics , Genotype , Muscle Proteins/genetics , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/genetics , Mutation/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Latvia/epidemiology , Lithuania/epidemiology , Male , Middle Aged , Muscular Dystrophies, Limb-Girdle/epidemiology , Young Adult
8.
Neurol Int ; 15(4): 1489-1496, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38132976

ABSTRACT

This case report presents the clinical course of an eight-year-old boy diagnosed with febrile infection-related epilepsy syndrome (FIRES) at the age of four. Following a febrile infection, the patient experienced his initial episode of serial generalized clonic seizures. The severity of his condition led to 11 hospital admissions, totaling 157 days of hospitalization. Anakinra was initially administered during the acute phase in 2019 but was discontinued after 29 days. In 2022, the patient experienced a chronic-phase exacerbation and underwent a second course of anakinra treatment, which demonstrated a positive effect on seizure activity. With a year of anakinra therapy, the patient exhibited significant improvement in both seizure frequency and severity. This report adds to the existing evidence supporting the potential use of anakinra in the treatment of FIRES, highlighting its effectiveness during the chronic phase and suggesting the potential benefits of subsequent administration.

9.
Neuropediatrics ; 43(4): 209-16, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22911482

ABSTRACT

Febrile infection-related epilepsy syndrome (FIRES) is a severe postinfectious epileptic encephalopathy in previously healthy children and has three phases: the initial phase with a simple febrile infection, a few days later the acute phase characterized by a peracute onset of highly recurrent seizures or refractory status epilepticus often with no more fever and generally without additional neurological features (the classical pure seizure phenotype), and last, the chronic phase with a drug-resistant epilepsy and neuropsychological impairments. FIRES seems to be sporadic and very rare: we estimated the annual incidence in children and adolescents by a prospective hospital-based German-wide surveillance as 1 in 1,000,000. Because of the preceding infection and lacking evidence of infectious encephalitis, an immune-mediated pathomechanism and, therefore, a response to immunotherapies may be involved. To test the hypothesis that antibodies against neuronal structures cause FIRES, we analyzed sera of 12 patients aged 2 to 12 years (median 6 years) and cerebral spinal fluids (CSFs) of 3 of these 12 patients with acute or chronic FIRES. We studied six patients (two including CSF) 1 to 14 weeks (median 3 weeks) and six patients 1 to 6 years (median 3.5 years) after seizure onset. All samples were analyzed for antibodies against glutamate receptors of type N-methyl-D-aspartate (NMDA) and type α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA), gamma-aminobutyric acid (GABA)B-receptors, voltage-gated potassium channel (VGKC)-associated proteins leucin-rich glioma inactivated 1 (LGI1) and contactin-associated protein like 2 (CASPR2), and glutamic acid decarboxylase (GAD) by a multiparametric recombinant immunofluorescence assay employing human embryonic kidney (HEK) cells transfected with cDNAs for the antigens. In addition, indirect immunohistochemistry using rat whole-brain sections was done in three patients. Finally, sera of 10 patients were tested for VGKC complex antibodies by radioimmunoprecipitation assay (RIA). None of the antibody tests were positive in any of the patients. Moreover, steroids, immunoglobulins, and plasmapheresis had no clear effect in the seven patients receiving immunotherapy. The failure of antibody-detection against the known neuronal antigens as well as the ineffectiveness of immunotherapy questions a role for autoantibodies in the epileptogenesis of classical FIRES. As we discuss, other underlying causes need to be considered including the possibility of a mitochondrial encephalopathy.


Subject(s)
Encephalitis/complications , Encephalitis/therapy , Epilepsy/etiology , Epilepsy/immunology , Immunotherapy/adverse effects , Autoantibodies/cerebrospinal fluid , Brain/pathology , Child , Child, Preschool , Diagnosis, Differential , Encephalitis/immunology , Epilepsy/cerebrospinal fluid , Epilepsy/diagnosis , Female , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Magnetic Resonance Imaging , Male , Membrane Proteins/immunology , Nerve Tissue Proteins/immunology , Potassium Channels, Voltage-Gated/immunology , Prospective Studies , Proteins/immunology , Radioimmunoprecipitation Assay , Receptors, AMPA/immunology , Receptors, GABA-A/immunology , Receptors, N-Methyl-D-Aspartate/immunology , Retrospective Studies , Transfection
10.
J Med Econ ; 25(1): 808-816, 2022.
Article in English | MEDLINE | ID: mdl-35642753

ABSTRACT

OBJECTIVE: The objective of this study was to assess the face validity of a disease model evaluating the cost-effectiveness of ataluren for the treatment of nonsense mutation Duchenne muscular dystrophy (nmDMD). METHODS: This was a Delphi panel study comprising of physicians with first-hand experience of ataluren for the treatment of nmDMD. Consensus was sought for previously unvalidated model data, including patient health status and quality of life measured using the Health Utility Index (HUI), mortality, informal caregiving, and the expected benefit of early ataluren treatment across four states: (1) ambulatory, (2) non-ambulatory, not yet requiring ventilation support, (3) non-ambulatory, night-time ventilation support, and (4) non-ambulatory, full-time ventilation support. RESULTS: Nine experts from five countries participated in the Delphi panel. Consensus was obtained for all questions after three panel rounds (except for two HUI-questions concerning hand function [dexterity]). Consensus HUI-derived utilities for state (1) were 1.0000 for ataluren on top of best supportive care (BSC) and 0.7337 for BSC alone. Corresponding estimates for state (2) were 0.3179 and 0.2672, for state (3) 0.1643 and 0.0913, and for state (4) -0.0732 and -0.1163. Consensus mortality rates for states (1), (2), and (3) were 4%, 13%, and 33%, and life expectancy in state (4) was agreed to be 3 years. Panelists further agreed that two informal caregivers typically provide day-to-day care/support to patients with nmDMD, and that starting treatment with ataluren at 2 versus 5 years of age would be expected to delay loss of ambulation by an additional 2 years, and initiation of night-time and full-time ventilation support by an additional 3 years, respectively. LIMITATIONS: The main limitation concerns the size of the Delphi panel, govern primarily by the rarity of the disease. CONCLUSION: This study confirms the face validity of key clinical parameters and assumptions underlying the ataluren cost-effectiveness model.


Subject(s)
Muscular Dystrophy, Duchenne , Caregivers , Child, Preschool , Codon, Nonsense , Humans , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Quality of Life , Reproducibility of Results
11.
Neurol Genet ; 8(3): e685, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36381256

ABSTRACT

Background and Objectives: Genetic testing has become an integral part of health care, allowing the confirmation of thousands of hereditary diseases, including neuromuscular disorders (NMDs). The reported average prevalence of individual inherited NMDs is 3.7-4.99 per 10,000. This number varies greatly in the selected populations after applying population-wide studies. The aim of this study was to evaluate the effect of genetic analysis as the first-tier test in patients with NMD and to calculate the disease prevalence and allelic frequencies for reoccurring genetic variants. Methods: Patients with NMD from Latvia with molecular tests confirming their diagnosis in 2008-2020 were included in this retrospective study. Results: Diagnosis was confirmed in 153 unique cases of all persons tested. Next-generation sequencing resulted in a detection rate of 37%. Two of the most common childhood-onset NMDs in our population were spinal muscular atrophy and dystrophinopathies, with a birth prevalence of 1.01 per 10,000 newborns and 2.08 per 10,000 (male newborn population), respectively. The calculated point prevalence was 0.079 per 10,000 for facioscapulohumeral muscular dystrophy type 1, 0.078 per 10,000 for limb-girdle muscular dystrophy, 0.073 per 10,000 for nondystrophic congenital myotonia, 0.052 per 10,000 for spinobulbar muscular atrophy, and 0.047 per 10,000 for type 1 myotonic dystrophy. Discussion: DNA diagnostics is a successful approach. The carrier frequencies of the common CAPN3, FKRP, SPG11, and HINT1 gene variants as well as that of the SMN1 gene exon 7 deletion in the population of Latvia are comparable with data from Europe. The carrier frequency of the CLCN1 gene variant c.2680C>T p.(Arg894Ter) is 2.11%, and consequently, congenital myotonia is the most frequent NMD in our population.

12.
Front Genet ; 13: 780764, 2022.
Article in English | MEDLINE | ID: mdl-35222531

ABSTRACT

There are recent reports of associations of variants in the HPDL gene with a hereditary neurological disease that presents with a wide spectrum of clinical severity, ranging from severe neonatal encephalopathy with no psychomotor development to adolescent-onset uncomplicated spastic paraplegia. Here, we report two probands from unrelated families presenting with severe and intermediate variations of the clinical course. A homozygous variant in the HPDL gene was detected in each proband; however, there was no known parental consanguinity. We also highlight reductions in citrate synthase and mitochondrial complex I activity detected in both probands in different tissues, reflecting the previously proposed mitochondrial nature of disease pathogenesis associated with HPDL mutations. Further, we speculate on the functional consequences of the detected variants, although the function and substrate of the HPDL enzyme are currently unknown.

13.
Article in English | MEDLINE | ID: mdl-36229191

ABSTRACT

BACKGROUND AND OBJECTIVE: The spectrum of myelin oligodendrocyte glycoprotein (MOG) antibody-associated disorder (MOGAD) comprises monophasic diseases such as acute disseminated encephalomyelitis (ADEM), optic neuritis (ON), and transverse myelitis and relapsing courses of these presentations. Persistently high MOG antibodies (MOG immunoglobulin G [IgG]) are found in patients with a relapsing disease course. Prognostic factors to determine the clinical course of children with a first MOGAD are still lacking. The objective of the study is to assess the clinical and laboratory prognostic parameters for a risk of relapse and the temporal dynamics of MOG-IgG titers in children with MOGAD in correlation with clinical presentation and disease course. METHODS: In this prospective multicenter hospital-based study, children with a first demyelinating attack and complete data set comprising clinical and radiologic findings, MOG-IgG titer at onset, and clinical and serologic follow-up data were included. Serum samples were analyzed by live cell-based assay, and a titer level of ≥1:160 was classified as MOG-IgG-positive. RESULTS: One hundred sixteen children (f:m = 57:59) with MOGAD were included and initially diagnosed with ADEM (n = 59), unilateral ON (n = 12), bilateral ON (n = 16), myelitis (n = 6), neuromyelitis optica spectrum disorder (n = 8) or encephalitis (n = 6). The median follow-up time was 3 years in monophasic and 5 years in relapsing patients. There was no significant association between disease course and MOG-IgG titers at onset, sex, age at presentation, or clinical phenotype. Seroconversion to MOG-IgG-negative within 2 years of the initial event showed a significant risk reduction for a relapsing disease course. Forty-two/one hundred sixteen patients (monophasic n = 26, relapsing n = 16) had serial MOG-IgG testing in years 1 and 2 after the initial event. In contrast to relapsing patients, monophasic patients showed a significant decrease of MOG-IgG titers during the first and second years, often with seroconversion to negative titers. During the follow-up, MOG-IgG titers were persistently higher in relapsing than in monophasic patients. Decrease in MOG-IgG of ≥3 dilution steps after the first and second years was shown to be associated with a decreased risk of relapses. In our cohort, no patient experienced a relapse after seroconversion to MOG-IgG-negative. DISCUSSION: In this study, patients with declining MOG-IgG titers, particularly those with seroconversion to MOG-IgG-negative, are shown to have a significantly reduced relapse risk.


Subject(s)
Encephalomyelitis, Acute Disseminated , Neuromyelitis Optica , Optic Neuritis , Humans , Immunoglobulin G , Myelin-Oligodendrocyte Glycoprotein , Neoplasm Recurrence, Local , Prospective Studies , Syndrome
14.
Psych J ; 4(4): 226-30, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26663628

ABSTRACT

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a disease occurring when antibodies produced by the body's own immune system attack NMDA-type glutamate receptors in the brain. Most anti-NMDAR encephalitis cases are associated with paraneoplastic syndrome. We analyze the case of a 15-year-old girl who was hospitalized in a child psychiatry clinic in Riga, Latvia, with de novo acute polymorphic psychotic disorder gradually progressing to a catatonic state. The patient received antipsychotic and electroconvulsive therapy with no beneficial effect. The council of doctors discussed differential diagnoses of schizophrenia-induced catatonia and the autoimmune limbic encephalitis-induced catatonic condition. When the diagnosis of anti-NMDAR autoimmune encephalitis was finally confirmed by repeated immunological assays (specific immunoglobulin [Ig] G and IgM in her blood serum and cerebrospinal fluid), and a paraneoplastic process was ruled out, she was started on immunomodulating therapy (methylprednisolone, Ig, plasmapheresis, rituximab), which changed the course of her disease. On immunomodulating treatment, her physical and mental health have gradually improved to almost complete reconvalescence. Psychiatrists should consider anti-NMDAR encephalitis as a differential diagnosis in first-episode psychosis patients presenting with disorientation, disturbed consciousness, pronounced cognitive deficits, movement disorder, dysautonomia, or rapid deterioration, and test for specific IgG NR1 autoantibodies, even if there are no specific findings on routine neuroimaging, electroencephalography (EEG), or cerebrospinal fluid tests.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Psychotic Disorders/etiology , Receptors, N-Methyl-D-Aspartate/immunology , Adolescent , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/drug therapy , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/psychology , Autoantibodies/blood , Catatonia/diagnosis , Delayed Diagnosis , Diagnosis, Differential , Female , Glutamic Acid/therapeutic use , Humans , Immunoglobulin G/therapeutic use , Latvia , Receptors, Glutamate
15.
Case Rep Neurol Med ; 2013: 254950, 2013.
Article in English | MEDLINE | ID: mdl-24024053

ABSTRACT

Limb-girdle muscular dystrophies (LGMDs) is a heterogeneous group of muscular dystrophies that mostly affect the pelvic and shoulder girdle muscle groups. We report here a case of neuromuscular disease associated with Dupuytren's contracture, which has never been described before as cosegregating with an autosomal dominant type of inheritance. Dupuytren's contracture is a common disease, especially in Northern Europe. Comorbid conditions associated with Dupuytren's contracture are repetitive trauma to the hands, diabetes, and seizures, but it has never before been associated with neuromuscular disease. We hypothesize that patients may harbor mutations in genes with functions related to neuromuscular disease and Dupuytren's contracture development.

SELECTION OF CITATIONS
SEARCH DETAIL