Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Publication year range
1.
J Virol ; 94(10)2020 05 04.
Article in English | MEDLINE | ID: mdl-32132233

ABSTRACT

Members of the flavivirus genus share a high level of sequence similarity and often circulate in the same geographical regions. However, whether T cells induced by one viral species cross-react with other related flaviviruses has not been globally addressed. In this study, we tested pools of epitopes derived from dengue (DENV), Zika (ZIKV), Japanese encephalitis (JEV), West Nile (WNV), and yellow fever (YFV) viruses by intracellular cytokine staining (ICS) using peripheral blood mononuclear cells (PBMCs) of individuals naturally exposed to DENV or immunized with DENV (TV005) or YF17D vaccine. CD8 T cell responses recognized epitopes from multiple flaviviruses; however, the magnitude of cross-reactive responses was consistently severalfold lower than those to the autologous epitope pools and was associated with lower expression of activation markers such as CD40L, CD69, and CD137. Next, we characterized the antigen sensitivity of short-term T cell lines (TCL) representing 29 different individual epitope/donor combinations. TCL derived from DENV monovalent vaccinees induced CD8 and CD4 T cells that cross-reacted within the DENV serocomplex but were consistently associated with >100-fold-lower antigen sensitivity for most other flaviviruses, with no cross-recognition of YFV-derived peptides. CD8 and CD4 TCL from YF17D vaccinees were associated with very limited cross-reactivity with any other flaviviruses and in five out of eight cases >1,000-fold-lower antigen sensitivity. Overall, our data suggest limited cross-reactivity for both CD4 and CD8 T cell responses between flaviviruses and have implications for understanding immunity elicited by natural infection and strategies to develop live attenuated vaccines against flaviviral species.IMPORTANCE The envelope (E) protein is the dominant target of neutralizing antibodies for dengue virus (DENV) and yellow fever virus (YFV). Accordingly, several DENV vaccine constructs use the E protein in a live attenuated vaccine format, utilizing a backbone derived from a heterologous flavivirus (such as YF) as a delivery vector. This backbone comprises the nonstructural (NS) and capsid (C) antigens, which are dominant targets of T cell responses. Here, we demonstrate that cross-reactivity at the level of T cell responses among different flaviviruses is very limited, despite high levels of sequence homology. Thus, the use of heterologous flavivirus species as a live attenuated vaccine vector is not likely to generate optimal T cell responses and might thus impair vaccine performance.


Subject(s)
Cross Reactions/immunology , Flavivirus Infections/immunology , Flavivirus/immunology , Vaccination , Vaccines, Attenuated/immunology , Viral Vaccines/immunology , Adolescent , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/immunology , Dengue/immunology , Dengue/prevention & control , Dengue Vaccines/immunology , Dengue Virus/immunology , Encephalitis, Japanese/immunology , Encephalitis, Japanese/prevention & control , Epitopes, T-Lymphocyte/genetics , Female , Flavivirus Infections/prevention & control , Humans , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Sequence Homology , West Nile Fever/immunology , West Nile Fever/prevention & control , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow Fever Vaccine , Yellow fever virus/immunology , Young Adult , Zika Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/prevention & control
2.
J Virol ; 92(4)2018 02 15.
Article in English | MEDLINE | ID: mdl-29167337

ABSTRACT

The well-characterized association between HLA-B*27:05 and protection against HIV disease progression has been linked to immunodominant HLA-B*27:05-restricted CD8+ T-cell responses toward the conserved Gag KK10 (residues 263 to 272) and polymerase (Pol) KY9 (residues 901 to 909) epitopes. We studied the impact of the 3 amino acid differences between HLA-B*27:05 and the closely related HLA-B*27:02 on the HIV-specific CD8+ T-cell response hierarchy and on immune control of HIV. Genetic epidemiological data indicate that both HLA-B*27:02 and HLA-B*27:05 are associated with slower disease progression and lower viral loads. The effect of HLA-B*27:02 appeared to be consistently stronger than that of HLA-B*27:05. In contrast to HLA-B*27:05, the immunodominant HIV-specific HLA-B*27:02-restricted CD8+ T-cell response is to a Nef epitope (residues 142 to 150 [VW9]), with Pol KY9 subdominant and Gag KK10 further subdominant. This selection was driven by structural differences in the F pocket, mediated by a polymorphism between these two HLA alleles at position 81. Analysis of autologous virus sequences showed that in HLA-B*27:02-positive subjects, all three of these CD8+ T-cell responses impose selection pressure on the virus, whereas in HLA-B*27:05-positive subjects, there is no Nef VW9-mediated selection pressure. These studies demonstrate that HLA-B*27:02 mediates protection against HIV disease progression that is at least as strong as or stronger than that mediated by HLA-B*27:05. In combination with the protective Gag KK10 and Pol KY9 CD8+ T-cell responses that dominate HIV-specific CD8+ T-cell activity in HLA-B*27:05-positive subjects, a Nef VW9-specific response is additionally present and immunodominant in HLA-B*27:02-positive subjects, mediated through a polymorphism at residue 81 in the F pocket, that contributes to selection pressure against HIV.IMPORTANCE CD8+ T cells play a central role in successful control of HIV infection and have the potential also to mediate the eradication of viral reservoirs of infection. The principal means by which protective HLA class I molecules, such as HLA-B*27:05 and HLA-B*57:01, slow HIV disease progression is believed to be via the particular HIV-specific CD8+ T cell responses restricted by those alleles. We focus here on HLA-B*27:05, one of the best-characterized protective HLA molecules, and the closely related HLA-B*27:02, which differs by only 3 amino acids and which has not been well studied in relation to control of HIV infection. We show that HLA-B*27:02 is also protective against HIV disease progression, but the CD8+ T-cell immunodominance hierarchy of HLA-B*27:02 differs strikingly from that of HLA-B*27:05. These findings indicate that the immunodominant HLA-B*27:02-restricted Nef response adds to protection mediated by the Gag and Pol specificities that dominate anti-HIV CD8+ T-cell activity in HLA-B*27:05-positive subjects.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HLA-B27 Antigen/genetics , Immunodominant Epitopes/immunology , gag Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/genetics , Genes, MHC Class I , HIV Infections/virology , HIV-1 , Humans , Viral Load
3.
J Virol ; 91(7)2017 04 01.
Article in English | MEDLINE | ID: mdl-28077659

ABSTRACT

Immune control of viral infections is heavily dependent on helper CD4+ T cell function. However, the understanding of the contribution of HIV-specific CD4+ T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4+ T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4+ T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4+ T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4+ T cells in HIV controllers than progressors (P = 0.0001), and these expanded Gag-specific CD4+ T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control (r = -0.5, P = 0.02). These data identify an association between HIV-specific CD4+ T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4+ T cell responses in natural infections.IMPORTANCE Increasing evidence suggests that virus-specific CD4+ T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4+ T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV infections worldwide. Understanding the contribution of HIV-specific CD4+ T cell responses in clade C infection is particularly important for developing vaccines that would be efficacious in sub-Saharan Africa, where clade C infection is dominant. Here, we employed MHC class II tetramers designed to immunodominant Gag epitopes and used them to characterize CD4+ T cell responses in HIV-1 clade C infection. Our results demonstrate an association between the frequency of HIV-specific CD4+ T cell responses targeting an immunodominant DRB1*11-Gag41 complex and HIV control, highlighting the important contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infections.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV-1/immunology , Histocompatibility Antigens Class II/physiology , gag Gene Products, Human Immunodeficiency Virus/immunology , Alleles , CD4-Positive T-Lymphocytes/virology , Disease Progression , Disease Resistance , Female , Gene Frequency , HIV Infections/pathology , HIV Infections/virology , Humans , Male , Viral Load
4.
J Immunol ; 194(3): 1141-53, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25539816

ABSTRACT

The attenuated yellow fever (YF) vaccine (YF-17D) was developed in the 1930s, yet little is known about the protective mechanisms underlying its efficiency. In this study, we analyzed the relative contribution of cell-mediated and humoral immunity to the vaccine-induced protection in a murine model of YF-17D infection. Using different strains of knockout mice, we found that CD4(+) T cells, B cells, and Abs are required for full clinical protection of vaccinated mice, whereas CD8(+) T cells are dispensable for long-term survival after intracerebral challenge. However, by analyzing the immune response inside the infected CNS, we observed an accelerated T cell influx into the brain after intracerebral challenge of vaccinated mice, and this T cell recruitment correlated with improved virus control in the brain. Using mice deficient in B cells we found that, in the absence of Abs, YF vaccination can still induce some antiviral protection, and in vivo depletion of CD8(+) T cells from these animals revealed a pivotal role for CD8(+) T cells in controlling virus replication in the absence of a humoral response. Finally, we demonstrated that effector CD8(+) T cells also contribute to viral control in the presence of circulating YF-specific Abs. To our knowledge, this is the first time that YF-specific CD8(+) T cells have been demonstrated to possess antiviral activity in vivo.


Subject(s)
Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , Yellow Fever/immunology , Yellow fever virus/immunology , Adaptive Immunity , Animals , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Brain/immunology , Brain/metabolism , Brain/virology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD40 Ligand/metabolism , CD8-Positive T-Lymphocytes/metabolism , Chemotaxis, Leukocyte/immunology , Disease Models, Animal , Female , Immunization, Passive , Lymphocyte Depletion , Mice , Mice, Knockout , Vaccination , Virus Replication , Yellow Fever/genetics , Yellow Fever/mortality , Yellow Fever/prevention & control , Yellow Fever Vaccine/immunology
5.
J Immunol ; 194(11): 5329-45, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25911754

ABSTRACT

Immunodominance describes a phenomenon whereby the immune system consistently targets only a fraction of the available Ag pool derived from a given pathogen. In the case of CD8(+) T cells, these constrained epitope-targeting patterns are linked to HLA class I expression and determine disease progression. Despite the biological importance of these predetermined response hierarchies, little is known about the factors that control immunodominance in vivo. In this study, we conducted an extensive analysis of CD8(+) T cell responses restricted by a single HLA class I molecule to evaluate the mechanisms that contribute to epitope-targeting frequency and antiviral efficacy in HIV-1 infection. A clear immunodominance hierarchy was observed across 20 epitopes restricted by HLA-B*42:01, which is highly prevalent in populations of African origin. Moreover, in line with previous studies, Gag-specific responses and targeting breadth were associated with lower viral load set-points. However, peptide-HLA-B*42:01 binding affinity and stability were not significantly linked with targeting frequencies. Instead, immunodominance correlated with epitope-specific usage of public TCRs, defined as amino acid residue-identical TRB sequences that occur in multiple individuals. Collectively, these results provide important insights into a potential link between shared TCR recruitment, immunodominance, and antiviral efficacy in a major human infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , HIV-1/immunology , Immunodominant Epitopes/immunology , Receptors, Antigen, T-Cell/immunology , Adult , Amino Acid Sequence , Antibody Affinity/immunology , Base Sequence , DNA, Complementary/genetics , Epitope Mapping , Female , HIV Infections/immunology , HLA-B Antigens/immunology , Humans , Sequence Analysis, DNA , Viral Load , gag Gene Products, Human Immunodeficiency Virus/immunology
6.
J Immunol ; 193(10): 4790-802, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25311805

ABSTRACT

MHC class I molecules (HLA-I in humans) present peptides derived from endogenous proteins to CTLs. Whereas the peptide-binding specificities of HLA-A and -B molecules have been studied extensively, little is known about HLA-C specificities. Combining a positional scanning combinatorial peptide library approach with a peptide-HLA-I dissociation assay, in this study we present a general strategy to determine the peptide-binding specificity of any MHC class I molecule. We applied this novel strategy to 17 of the most common HLA-C molecules, and for 16 of these we successfully generated matrices representing their peptide-binding motifs. The motifs prominently shared a conserved C-terminal primary anchor with hydrophobic amino acid residues, as well as one or more diverse primary and auxiliary anchors at P1, P2, P3, and/or P7. Matrices were used to generate a large panel of HLA-C-specific peptide-binding data and update our pan-specific NetMHCpan predictor, whose predictive performance was considerably improved with respect to peptide binding to HLA-C. The updated predictor was used to assess the specificities of HLA-C molecules, which were found to cover a more limited sequence space than HLA-A and -B molecules. Assessing the functional significance of these new tools, HLA-C*07:01 transgenic mice were immunized with stable HLA-C*07:01 binders; six of six tested stable peptide binders were immunogenic. Finally, we generated HLA-C tetramers and labeled human CD8(+) T cells and NK cells. These new resources should support future research on the biology of HLA-C molecules. The data are deposited at the Immune Epitope Database, and the updated NetMHCpan predictor is available at the Center for Biological Sequence Analysis and the Immune Epitope Database.


Subject(s)
Computational Biology , Epitopes , HLA-C Antigens/metabolism , Alleles , Amino Acid Sequence , Animals , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Databases, Factual , Gene Expression , HLA-A Antigens/chemistry , HLA-A Antigens/immunology , HLA-A Antigens/metabolism , HLA-B Antigens/chemistry , HLA-B Antigens/immunology , HLA-B Antigens/metabolism , HLA-C Antigens/chemistry , HLA-C Antigens/immunology , Humans , Iodine Radioisotopes , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , Mice, Transgenic , Molecular Sequence Data , Multigene Family , Peptide Library , Protein Binding , Protein Multimerization , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism
7.
Immunogenetics ; 67(11-12): 641-50, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26416257

ABSTRACT

A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 .


Subject(s)
Computational Biology/methods , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Neural Networks, Computer , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Algorithms , Amino Acid Sequence , Animals , Binding Sites , Cluster Analysis , Databases, Protein , Epitopes/immunology , Histocompatibility Antigens Class II/chemistry , Humans , Mice , Models, Molecular , Molecular Sequence Data , Protein Binding , Sequence Homology, Amino Acid
8.
J Virol ; 87(11): 6283-95, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23536658

ABSTRACT

It has been reported that adenovirus (Ad)-primed CD8 T cells may display a distinct and partially exhausted phenotype. Given the practical implications of this claim, we decided to analyze in detail the quality of Ad-primed CD8 T cells by directly comparing these cells to CD8 T cells induced through infection with lymphocytic choriomeningitis virus (LCMV). We found that localized immunization with intermediate doses of Ad vector induces a moderate number of functional CD8 T cells which qualitatively match those found in LCMV-infected mice. The numbers of these cells may be efficiently increased by additional adenoviral boosting, and, importantly, the generated secondary memory cells cannot be qualitatively differentiated from those induced by primary infection with replicating virus. Quantitatively, DNA priming prior to Ad vaccination led to even higher numbers of memory cells. In this case, the vaccination led to the generation of a population of memory cells characterized by relatively low CD27 expression and high CD127 and killer cell lectin-like receptor subfamily G member 1 (KLRG1) expression. These memory CD8 T cells were capable of proliferating in response to viral challenge and protecting against infection with live virus. Furthermore, viral challenge was followed by sustained expansion of the memory CD8 T-cell population, and the generated memory cells did not appear to have been driven toward exhaustive differentiation. Based on these findings, we suggest that adenovirus-based prime-boost regimens (including Ad serotype 5 [Ad5] and Ad5-like vectors) represent an effective means to induce a substantially expanded, long-lived population of high-quality transgene-specific memory CD8 T cells.


Subject(s)
Adenoviruses, Human/immunology , Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , Genetic Vectors/immunology , Glycoproteins/immunology , Immunologic Memory , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Viral Proteins/immunology , Adenoviruses, Human/genetics , Animals , Antigens, Viral/administration & dosage , Antigens, Viral/genetics , Female , Genetic Vectors/genetics , Glycoproteins/administration & dosage , Glycoproteins/genetics , Humans , Lymphocytic Choriomeningitis/prevention & control , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/genetics , Mice , Mice, Inbred C57BL , Vaccination , Viral Proteins/administration & dosage , Viral Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Viral Vaccines/immunology
9.
J Virol ; 87(19): 10889-94, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23864640

ABSTRACT

HLA-B*57 is strongly associated with immune control of HIV and delayed AIDS progression. The closely related, but less protective, HLA-B*58:01 presents similar epitopes, but HLA-B*58:01(+) individuals do not generate CD8(+) T cells targeting the KF11-Gag epitope, which has been linked to low viremia. Here we show that HLA-B*58:01 binds and presents KF11 peptide, but HIV-infected HLA-B*58:01(+) cells fail to process KF11. This unexpected finding demonstrates that immunodominance patterns can be influenced by intracellular events independent of HLA binding motifs.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes/immunology , HIV Infections/immunology , HIV-1/immunology , HLA-B Antigens/immunology , Viremia/immunology , CD8-Positive T-Lymphocytes/metabolism , HIV Infections/metabolism , HIV Infections/virology , HLA-B Antigens/metabolism , Humans , Peptide Fragments/immunology , Peptide Fragments/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Viral Load , Viremia/metabolism , gag Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/metabolism
10.
J Virol ; 86(2): 919-29, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22090105

ABSTRACT

The genetic polymorphism that has the greatest impact on immune control of human immunodeficiency virus (HIV) infection is expression of HLA-B*57. Understanding of the mechanism for this strong effect remains incomplete. HLA-B*57 alleles and the closely related HLA-B*5801 are often grouped together because of their similar peptide-binding motifs and HIV disease outcome associations. However, we show here that the apparently small differences between HLA-B*57 alleles, termed HLA-B*57 micropolymorphisms, have a significant impact on immune control of HIV. In a study cohort of >2,000 HIV C-clade-infected subjects from southern Africa, HLA-B*5703 is associated with a lower viral-load set point than HLA-B*5702 and HLA-B*5801 (medians, 5,980, 15,190, and 19,000 HIV copies/ml plasma; P = 0.24 and P = 0.0005). In order to better understand these observed differences in HLA-B*57/5801-mediated immune control of HIV, we undertook, in a study of >1,000 C-clade-infected subjects, a comprehensive analysis of the epitopes presented by these 3 alleles and of the selection pressure imposed on HIV by each response. In contrast to previous studies, we show that each of these three HLA alleles is characterized both by unique CD8(+) T-cell specificities and by clear-cut differences in selection pressure imposed on the virus by those responses. These studies comprehensively define for the first time the CD8(+) T-cell responses and immune selection pressures for which these protective alleles are responsible. These findings are consistent with HLA class I alleles mediating effective immune control of HIV through the number of p24 Gag-specific CD8(+) T-cell responses generated that can drive significant selection pressure on the virus.


Subject(s)
Epitopes, T-Lymphocyte/immunology , HIV Infections/genetics , HIV Infections/immunology , HIV-1/immunology , HLA-B Antigens/genetics , Polymorphism, Genetic , Selection, Genetic , Africa, Southern , Alleles , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cohort Studies , Epitopes, T-Lymphocyte/genetics , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , HIV-1/physiology , HLA-B Antigens/immunology , Humans , Viral Load , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology
11.
J Virol ; 86(23): 12643-54, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22973023

ABSTRACT

The strongest genetic influence on immune control in HIV-1 infection is the HLA class I genotype. Rapid disease progression in B-clade infection has been linked to HLA-B*35 expression, in particular to the less common HLA-B*3502 and HLA-B*3503 subtypes but also to the most prevalent subtype, HLA-B*3501. In these studies we first demonstrated that whereas HLA-B*3501 is associated with a high viral set point in two further B-clade-infected cohorts, in Japan and Mexico, this association does not hold in two large C-clade-infected African cohorts. We tested the hypothesis that clade-specific differences in HLA associations with disease outcomes may be related to distinct targeting of critical CD8(+) T-cell epitopes. We observed that only one epitope was significantly targeted differentially, namely, the Gag-specific epitope NPPIPVGDIY (NY10, Gag positions 253 to 262) (P = 2 × 10(-5)). In common with two other HLA-B*3501-restricted epitopes, in Gag and Nef, that were not targeted differentially, a response toward NY10 was associated with a significantly lower viral set point. Nonimmunogenicity of NY10 in B-clade-infected subjects derives from the Gag-D260E polymorphism present in ∼90% of B-clade sequences, which critically reduces recognition of the Gag NY10 epitope. These data suggest that in spite of any inherent HLA-linked T-cell receptor repertoire differences that may exist, maximizing the breadth of the Gag-specific CD8(+) T-cell response, by the addition of even a single epitope, may be of overriding importance in achieving immune control of HIV infection. This distinction is of direct relevance to development of vaccines designed to optimize the anti-HIV CD8(+) T-cell response in all individuals, irrespective of HLA type.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/genetics , Gene Products, gag/genetics , HIV Infections/genetics , HIV Infections/immunology , HIV-1 , HLA-B35 Antigen/genetics , Africa, Southern , Disease Progression , Enzyme-Linked Immunospot Assay , Epitopes, T-Lymphocyte/immunology , Flow Cytometry , Gene Products, gag/immunology , HLA-B35 Antigen/classification , HLA-B35 Antigen/immunology , Humans , Japan , Mexico , Phylogeny , United Kingdom , Viral Load
12.
Malar J ; 12: 376, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-24168370

ABSTRACT

BACKGROUND: Malaria is responsible for up to a 600,000 deaths per year; conveying an urgent need for the development of a malaria vaccine. Studies with whole sporozoite vaccines in mice and non-human primates have shown that sporozoite-induced CD8+ T cells targeting liver stage antigens can mediate sterile protection. There is a need for a direct method to identify and phenotype malaria vaccine-induced CD8+ T cells in humans. METHODS: Fluorochrome-labelled tetramers consisting of appropriate MHC class I molecules in complex with predicted binding peptides derived from Plasmodium falciparum AMA-1 were used to label ex vivo AMA-1 epitope specific CD8+ T cells from research subjects responding strongly to immunization with the NMRC-M3V-Ad-PfCA (adenovirus-vectored) malaria vaccine. The identification of these CD8+ T cells on the basis of their expression of early activation markers was also investigated. RESULTS: Analyses by flow cytometry demonstrated that two of the six tetramers tested: TLDEMRHFY: HLA-A*01:01 and NEVVVKEEY: HLA-B*18:01, labelled tetramer-specific CD8+ T cells from two HLA-A*01:01 volunteers and one HLA-B*18:01 volunteer, respectively. By contrast, post-immune CD8+ T cells from all six of the immunized volunteers exhibited enhanced expression of the CD38 and HLA-DRhi early activation markers. For the three volunteers with positive tetramer staining, the early activation phenotype positive cells included essentially all of the tetramer positive, malaria epitope- specific CD8+ T cells suggesting that the early activation phenotype could identify all malaria vaccine-induced CD8+ T cells without prior knowledge of their exact epitope specificity. CONCLUSIONS: The results demonstrated that class I tetramers can identify ex vivo malaria vaccine antigen-specific CD8+ T cells and could therefore be used to determine their frequency, cell surface phenotype and transcription factor usage. The results also demonstrated that vaccine antigen-specific CD8+ T cells could be identified by activation markers without prior knowledge of their antigen-specificity, using a subunit vaccine for proof-of-concept. Whether, whole parasite or adjuvanted protein vaccines will also induce {CD38 and HLA-DRhi}+ CD8+ T cell populations reflective of the antigen-specific response will the subject of future investigations.


Subject(s)
ADP-ribosyl Cyclase 1/analysis , CD8-Positive T-Lymphocytes/immunology , HLA-DR Antigens/analysis , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Membrane Glycoproteins/analysis , T-Lymphocyte Subsets/immunology , Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/chemistry , Healthy Volunteers , Humans , Immunophenotyping/methods , Malaria Vaccines/administration & dosage , Membrane Proteins/immunology , Protozoan Proteins/immunology , Staining and Labeling/methods , T-Lymphocyte Subsets/chemistry , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
13.
J Immunol ; 186(2): 1068-80, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21169544

ABSTRACT

Although CD8(+) T cells help control Mycobacterium tuberculosis infection, their M. tuberculosis Ag repertoire, in vivo frequency, and functionality in human tuberculosis (TB) remains largely undefined. We have performed genome-based bioinformatics searches to identify new M. tuberculosis epitopes presented by major HLA class I supertypes A2, A3, and B7 (covering 80% of the human population). A total of 432 M. tuberculosis peptides predicted to bind to HLA-A*0201, HLA-A*0301, and HLA-B*0702 (representing the above supertypes) were synthesized and HLA-binding affinities determined. Peptide-specific CD8(+) T cell proliferation assays (CFSE dilution) in 41 M. tuberculosis-responsive donors identified 70 new M. tuberculosis epitopes. Using HLA/peptide tetramers for the 18 most prominently recognized HLA-A*0201-binding M. tuberculosis peptides, recognition by cured TB patients' CD8(+) T cells was validated for all 18 epitopes. Intracellular cytokine staining for IFN-γ, IL-2, and TNF-α revealed mono-, dual-, as well as triple-positive CD8(+) T cells, indicating these M. tuberculosis peptide-specific CD8(+) T cells were (poly)functional. Moreover, these T cells were primed during natural infection, because they were absent from M. tuberculosis-noninfected individuals. Control CMV peptide/HLA-A*0201 tetramers stained CD8(+) T cells in M. tuberculosis-infected and noninfected individuals equally, whereas Ebola peptide/HLA-A*0201 tetramers were negative. In conclusion, the M. tuberculosis-epitope/Ag repertoire for human CD8(+) T cells is much broader than hitherto suspected, and the newly identified M. tuberculosis Ags are recognized by (poly)functional CD8(+) T cells during control of infection. These results impact on TB-vaccine design and biomarker identification.


Subject(s)
Antigens, Bacterial/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/microbiology , Genome, Bacterial , Lymphocyte Activation/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Tuberculosis/metabolism , Adult , Aged , Antigens, Bacterial/metabolism , Antigens, Bacterial/physiology , CD8-Positive T-Lymphocytes/metabolism , Computational Biology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/metabolism , Epitopes, T-Lymphocyte/physiology , Female , Genome, Human , Humans , Intracellular Fluid/immunology , Intracellular Fluid/metabolism , Intracellular Fluid/microbiology , Lymphocyte Activation/genetics , Male , Middle Aged , Mycobacterium tuberculosis/genetics , Predictive Value of Tests , Tuberculosis/genetics
14.
J Immunol ; 186(10): 5675-86, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21498667

ABSTRACT

The potential contribution of HLA-A alleles to viremic control in chronic HIV type 1 (HIV-1) infection has been relatively understudied compared with HLA-B. In these studies, we show that HLA-A*7401 is associated with favorable viremic control in extended southern African cohorts of >2100 C-clade-infected subjects. We present evidence that HLA-A*7401 operates an effect that is independent of HLA-B*5703, with which it is in linkage disequilibrium in some populations, to mediate lowered viremia. We describe a novel statistical approach to detecting additive effects between class I alleles in control of HIV-1 disease, highlighting improved viremic control in subjects with HLA-A*7401 combined with HLA-B*57. In common with HLA-B alleles that are associated with effective control of viremia, HLA-A*7401 presents highly targeted epitopes in several proteins, including Gag, Pol, Rev, and Nef, of which the Gag epitopes appear immunodominant. We identify eight novel putative HLA-A*7401-restricted epitopes, of which three have been defined to the optimal epitope. In common with HLA-B alleles linked with slow progression, viremic control through an HLA-A*7401-restricted response appears to be associated with the selection of escape mutants within Gag epitopes that reduce viral replicative capacity. These studies highlight the potentially important contribution of an HLA-A allele to immune control of HIV infection, which may have been concealed by a stronger effect mediated by an HLA-B allele with which it is in linkage disequilibrium. In addition, these studies identify a factor contributing to different HIV disease outcomes in individuals expressing HLA-B*5703.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , HLA-A Antigens/genetics , HLA-B Antigens/genetics , Viremia/immunology , Africa , Alleles , CD4 Lymphocyte Count , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Female , Flow Cytometry , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , HLA-A Antigens/immunology , HLA-B Antigens/immunology , Humans , Linkage Disequilibrium , Molecular Sequence Data , Sequence Analysis, Protein , Viral Load , gag Gene Products, Human Immunodeficiency Virus/immunology , nef Gene Products, Human Immunodeficiency Virus/immunology , pol Gene Products, Human Immunodeficiency Virus/immunology , rev Gene Products, Human Immunodeficiency Virus/immunology
15.
Immunology ; 132(4): 482-91, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21294723

ABSTRACT

Major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTL) are known to play an important role in the control of Mycobacterium tuberculosis infection so identification of CTL epitopes from M. tuberculosis is of importance for the development of effective peptide-based vaccines. In the present work, bioinformatics technology was employed to predict binding motifs of 9mer peptides derived from M. tuberculosis for the 12 HLA-I supertypes. Subsequently, the predicted peptides were synthesized and assayed for binding to HLA-I molecules in a biochemically based system. The antigenicity of a total of 157 peptides with measured affinity for HLA-I molecules of K(D) ≤ 500 nM were evaluated using peripheral blood T cells from strongly purified protein derivative reactive healthy donors. Of the 157 peptides, eight peptides (5%) were found to induce T-cell responses. As judged from blocking with HLA class I and II subtype antibodies in the ELISPOT assay culture, none of the eight antigenic peptides induced HLA class I restricted CD8(+) T-cell responses. Instead all responses were blocked by pan-HLA class II and anti-HLA-DR antibodies. In addition, CD4(+) T-cell depletion before the 10 days of expansion, resulted in total loss of reactivity in the ELISPOT culture for most peptide specificities. FACS analyses with intracellular interferon-γ staining of T cells expanded in the presence of M. tuberculosis peptides confirmed that the responsive cells were indeed CD4(+). In conclusion, T-cell immunity against HLA-I binding 9mer M. tuberculosis-derived peptides might in many cases turn out to be mediated by CD4(+) T cells and restricted by HLA-II molecules. The use of 9mer peptides recognized by both CD8(+) and CD4(+) T cells might be of importance for the development of future M. tuberculosis peptide-based vaccines.


Subject(s)
Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class I/immunology , Mycobacterium tuberculosis/immunology , Peptides/immunology , T-Lymphocytes/immunology , Adult , Amino Acid Sequence , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Enzyme-Linked Immunosorbent Assay , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , Female , Flow Cytometry , HLA-DP Antigens/immunology , HLA-DP Antigens/metabolism , HLA-DR Antigens/immunology , HLA-DR Antigens/metabolism , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Male , Middle Aged , Peptides/metabolism , Protein Binding/immunology , T-Lymphocytes/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
16.
Immunogenetics ; 63(1): 43-55, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21079948

ABSTRACT

Traditionally, T cell epitope discovery requires considerable amounts of tedious, slow, and costly experimental work. During the last decade, prediction tools have emerged as essential tools allowing researchers to select a manageable list of epitope candidates to test from a larger peptide, protein, or even proteome. However, no current tools address the complexity caused by the highly polymorphic nature of the restricting HLA molecules, which effectively individualizes T cell responses. To fill this gap, we here present an easy-to-use prediction tool named HLArestrictor ( http://www.cbs.dtu.dk/services/HLArestrictor ), which is based on the highly versatile and accurate NetMHCpan predictor, which here has been optimized for the identification of both the MHC restriction element and the corresponding minimal epitope of a T cell response in a given individual. As input, it requires high-resolution (i.e., 4-digit) HLA typing of the individual. HLArestrictor then predicts all 8-11mer peptide binders within one or more larger peptides and provides an overview of the predicted HLA restrictions and minimal epitopes. The method was tested on a large dataset of HIV IFNγ ELIspot peptide responses and was shown to identify HLA restrictions and minimal epitopes for about 90% of the positive peptide/patient pairs while rejecting more than 95% of the negative peptide-HLA pairs. Furthermore, for 18 peptide/HLA tetramer validated responses, HLArestrictor in all cases predicted both the HLA restriction element and minimal epitope. Thus, HLArestrictor should be a valuable tool in any T cell epitope discovery process aimed at identifying new epitopes from infectious diseases and other disease models.


Subject(s)
Epitopes, T-Lymphocyte/genetics , HLA Antigens/genetics , Software , Amino Acid Sequence , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cohort Studies , Databases, Protein , Enzyme-Linked Immunospot Assay , Epitope Mapping/statistics & numerical data , Epitopes, T-Lymphocyte/chemistry , HIV Infections/genetics , HIV Infections/immunology , HLA Antigens/chemistry , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Molecular Sequence Data , Peptides/genetics , Peptides/immunology
17.
Viruses ; 13(11)2021 11 03.
Article in English | MEDLINE | ID: mdl-34835021

ABSTRACT

It is generally believed that a successful Zika virus (ZIKV) vaccine should induce neutralizing antibodies against the ZIKV envelope (E) protein to efficiently halt viral infection. However, E-specific neutralizing antibodies have been implicated in a phenomenon called antibody-dependent enhancement, which represents an ongoing concern in the flavivirus-vaccinology field. In this report, we investigated the vaccination potential of replication-deficient adenoviral vectors encoding the ZIKV non-structural proteins 1 and 2 (NS1/NS2) and employed the strategy of linking the antigens to the MHC-II associated invariant chain (li) to improve immunogenicity and by inference, the level of protection. We demonstrated that li-linkage enhanced the production of anti-NS1 antibodies and induced an accelerated and prolonged polyfunctional CD8 T cell response in mice, which ultimately resulted in a high degree of protection against ZIKV infection of the CNS.


Subject(s)
Antigens, Viral/immunology , Histocompatibility Antigens Class II/immunology , Zika Virus Infection/immunology , Zika Virus Infection/prevention & control , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody-Dependent Enhancement , CD8-Positive T-Lymphocytes , Disease Models, Animal , Female , Immunogenicity, Vaccine , Mice , Mice, Inbred C57BL , Vaccination , Viral Nonstructural Proteins/immunology , Viral Vaccines/immunology , Zika Virus/immunology , Zika Virus Infection/virology
18.
Front Immunol ; 12: 758154, 2021.
Article in English | MEDLINE | ID: mdl-34659264

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has severely impacted daily life all over the world. Any measures to slow down the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to decrease disease severity are highly requested. Recent studies have reported inverse correlations between plasma levels of vitamin D and susceptibility to SARS-CoV-2 infection and COVID-19 severity. Therefore, it has been proposed to supplement the general population with vitamin D to reduce the impact of COVID-19. However, by studying the course of COVID-19 and the immune response against SARS-CoV-2 in a family with a mutated, non-functional vitamin D receptor, we here demonstrate that vitamin D signaling was dispensable for mounting an efficient adaptive immune response against SARS-CoV-2 in this family. Although these observations might not directly be transferred to the general population, they question a central role of vitamin D in the generation of adaptive immunity against SARS-CoV-2.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Familial Hypophosphatemic Rickets/genetics , Receptors, Calcitriol/genetics , SARS-CoV-2/immunology , Adaptive Immunity/genetics , Adaptive Immunity/immunology , COVID-19/immunology , Familial Hypophosphatemic Rickets/immunology , Female , Humans , Immunologic Memory/immunology , Lymphocyte Count , Vitamin D/blood , Vitamin D/therapeutic use
19.
Biol Blood Marrow Transplant ; 16(10): 1370-81, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20353833

ABSTRACT

In fully HLA-matched allogeneic hematopoietic cell transplantation (HCT), the main mechanism of the beneficial graft-versus-tumor (GVT) effect and of detrimental graft-versus-host disease (GVHD) is believed to be caused by donor cytotoxic T cells directed against disparate recipient minor histocompatibility antigens (miHAs). The most common origin of disparate miHAs is nonsynonymous single nucleotide polymorphism (nsSNP) differences between donors and patients. To date, only some 30 miHAs have been identified and registered, but considering the many different HLA types in the human population, as well as all the possible nsSNP differences between any 2 individuals, it is likely that many miHAs have yet to be discovered. The objective of the current study was to predict novel HLA-A- and HLA-B-restricted miHAs in a cohort of patients treated with nonmyeloablative conditioning allogeneic HCT (matched related donor, n = 70; matched unrelated donor, n = 56) for a hematologic malignancy. Initially, the cohort was genotyped for 53 nsSNPs in 11 known miHA source proteins. Twenty-three nsSNPs within 6 miHA source proteins showed variation in the graft-versus-host (GVH) direction. No correlation between the number of disparate nsSNPs and clinical outcome was seen. Next, miHAs in the GVH direction were predicted for each patient-donor pair. Using the NetMHCpan predictor, we identified peptides encompassing an nsSNP variant uniquely expressed by the patient and with predicted binding to any of the HLA-A or -B molecules expressed by the patient and donor. Patients with more than the median of 3 predicted miHAs had a significantly lower 5-year overall survival (42% vs 70%, P = .0060; adjusted hazard ratio [HR], 2.6, P = .0047) and significantly higher treatment-related mortality (39% vs 10%, P = .0094; adjusted HR, 4.6, P = .0038). No association between the number of predicted miHAs and any other clinical outcome parameters was observed. Collectively, our data suggest that the clinical outcome of HCT is affected not by disparate nsSNPs per se, but rather by the HLA-restricted presentation and recognition of peptides encompassing these. Our data also suggest that 6 of the 11 proteins included in the current study could contain more miHAs yet to be identified, and that the presence of multiple miHAs confers a higher risk of mortality after nonmyeloablative conditioning HCT. Furthermore, our data suggest a possible role for in silico based miHA predictions in donor selection as well as in selecting candidate miHAs for further evaluation in in vitro and in vivo experiments.


Subject(s)
Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation/statistics & numerical data , Histocompatibility , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Polymorphism, Single Nucleotide , Transplantation Conditioning/methods , Adult , Aged , Cohort Studies , Female , Follow-Up Studies , Genotype , Graft vs Host Disease/epidemiology , Graft vs Host Disease/etiology , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Proportional Hazards Models , Transplantation, Homologous/statistics & numerical data , Treatment Outcome , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use , Whole-Body Irradiation , Young Adult
20.
PLoS One ; 15(1): e0226182, 2020.
Article in English | MEDLINE | ID: mdl-31929537

ABSTRACT

People living with HIV (PLHIV) are at increased risk for cardiovascular disease (CVD), and immunity against cytomegalovirus (CMV) may be a contributing factor. We hypothesized that enhanced T-cell responses against CMV and CMV-IgG antibody-levels are associated with higher arterial blood pressure in PLHIV. We assessed serum CMV-IgG, systolic- (SBP) and diastolic- (DBP) blood pressure, pulse pressure (PP), traditional risk factors, activated CD8+ T-cells (CD38+HLA-DR+), senescent CD8+ T-cells (CD28-CD57+) and interleukin-6 (IL-6) in 60 PLHIV and 31 HIV-uninfected controls matched on age, gender, education and comorbidity. In PLHIV, expression of interleukin-2, tumor necrosis factor-α and interferon-γ was measured by intracellular-cytokine-staining after stimulation of T-cells with CMV-pp65 and CMV-gB. Associations between CMV-specific immune responses and hypertension, SBP, DBP or PP were assessed by multivariate logistic and linear regression models adjusted for appropriate confounders. The median age of PLHIV was 47 years and 90% were male. Prevalence of hypertension in PLHIV was 37% compared to 55% of HIV-uninfected controls. CMV-specific CD8+ T-cell responses were independently associated with higher PP (CMV-pp65; ß = 2.29, p = 0.001, CMV-gB; ß = 2.42, p = 0.001) in PLHIV. No significant differences were found with regard to individual measures of SBP and DBP. A possible weak association was found between CMV-IgG and hypertension (ß = 1.33, p = 0.049) after adjustment for age, smoking and LDL-cholesterol. HIV-related factors, IL-6, CD8+ T-cell activation or CD8+ T-cell senescence did not mediate the associations, and no associations were found between CMV-specific CD4+ T-cell responses and blood pressure in PLHIV. In conclusion, increased arterial blood pressure in PLHIV may be affected by heightened CMV-specific CD8+ T-cell responses.


Subject(s)
Blood Pressure , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus/immunology , HIV Infections/pathology , Adult , Antibodies, Viral/blood , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Case-Control Studies , Cellular Senescence , Cytomegalovirus/metabolism , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/pathology , Female , HIV Infections/complications , Humans , Hypertension/complications , Hypertension/epidemiology , Hypertension/pathology , Interleukin-2/analysis , Interleukin-6/blood , Logistic Models , Lymphocyte Activation , Male , Middle Aged , Risk Factors , Viral Matrix Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL