Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Am Chem Soc ; 146(4): 2333-2338, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38241610

ABSTRACT

Odd-electron bonds, i.e., the two-center, three-electron (2c/3e), or one-electron (2c/1e) bonds, have attracted tremendous interest owing to their novel bonding nature and radical properties. Herein, complex [K(THF)6][LSn:···Sn:L] (1), featuring the first and unsupported 2c/1e Sn···Sn σ-bond with a long distance (3.2155(9) Å), was synthesized by reduction of stannylene [LSn:] (L = N,N-dpp-o-phenylene diamide) with KC8. The one-electron Sn-Sn bond in 1 was confirmed by the crystal structure, DFT calculations, EPR spectroscopy, and reactivity studies. This compound can be viewed as a stabilized radical by delocalizing to two metal centers and can readily mediate radical reactions such as C-C coupling of benzaldehyde.

2.
J Am Chem Soc ; 145(2): 811-821, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36596224

ABSTRACT

The catalytic transformation of N2 to NH3 by transition metal complexes is of great interest and importance but has remained a challenge to date. Despite the essential role of vanadium in biological N2 fixation, well-defined vanadium complexes that can catalyze the conversion of N2 to NH3 are scarce. In particular, a V(NxHy) intermediate derived from proton/electron transfer reactions of coordinated N2 remains unknown. Here, we report a dinitrogen-bridged divanadium complex bearing POCOP (2,6-(tBu2PO)2-C6H3) pincer and aryloxy ligands, which can serve as a catalyst for the reduction of N2 to NH3 and N2H4. Low-temperature protonation and reduction of the dinitrogen complex afforded the first structurally characterized neutral metal hydrazido(2-) species ([V]═NNH2), which mediated 15N2 conversion to 15NH3, indicating that it is a plausible intermediate of the catalysis. DFT calculations showed that the vanadium hydrazido complex [V]═NNH2 possessed a N-H bond dissociation free energy (BDFEN-H) of as high as 59.1 kcal/mol. The protonation of a vanadium amide complex ([V]-NH2) with [Ph2NH2][OTf] resulted in the release of NH3 and the formation of a vanadium triflate complex, which upon reduction under N2 afforded the vanadium dinitrogen complex. These transformations model the final steps of a vanadium-catalyzed N2 reduction cycle. Both experimental and theoretical studies suggest that the catalytic reaction may proceed via a distal pathway to liberate NH3. These findings provide unprecedented insights into the mechanism of N2 reduction related to FeV nitrogenase.


Subject(s)
Ammonia , Vanadium , Ammonia/chemistry , Oxidation-Reduction , Nitrogenase/metabolism , Protons , Catalysis
3.
J Org Chem ; 84(3): 1647-1653, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30608146

ABSTRACT

The multifunctionalization of unactivated cyclic ketones was developed via an electrochemically intermolecular α-amination under metal-free conditions. The reaction can be carried out smoothly with a broad scope of the aromatic amines substrates under mild conditions, affording a variety of α-enaminones with good to excellent yields in one step.

4.
J Am Chem Soc ; 140(14): 4770-4773, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29589753

ABSTRACT

In the hydrothermal synthesis of highly ordered mesoporous silica material SBA-15, strong acid is typically required to catalyze the hydrolysis and condensation of silica species. Meanwhile, under strongly acidic conditions, the transition metal ions, e.g., iron ions, are difficult to incorporate into SBA-15 because of the facile dissociation of Fe-O-Si bonds. Here, we demonstrate an acid-free green synthetic strategy for the synthesis of highly ordered mesoporous SBA-15 and Fe-SBA-15 with the assistance of hydroxyl free radicals that are generated by physical or chemical methods. The prepared materials exhibit a large specific surface area compared to the counterparts prepared by conventional method under acidic conditions. Moreover, Fe-SBA-15 shows high metal loading efficiency as over 50%. Density functional theory calculations suggest that the hydroxyl free radicals exhibit higher catalytic activity than H+ ions for the hydrolysis of tetraethyl orthosilicate. This radical-facilitated synthesis approach overcomes the challenge to the direct synthesis of highly ordered SBA-15 and Fe-SBA-15 without adding any acid, providing a facile and environmentally friendly route for future large-scale production of ordered mesoporous materials.

5.
Angew Chem Int Ed Engl ; 57(13): 3504-3508, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29392823

ABSTRACT

The design of functional metallohydrogels is attractive but challenging. A rational approach is introduced for designing functional metallohydrogels using chiral ligands, a phenylalanine derivative with a pyridyl group (l/d-PF). Intriguingly, the as-prepared metallohydrogel exhibits excellent O2 binding and activating properties. Insights into the O2 binding pathway reveals the presence of a novel [(l+d)-PF-Cu3+ -O2- ] species, which can efficiently reduce ferric cytochrome c with the reactive O2- by receiving an electron from reductant ascorbic acid. This study provides helpful instructions for developing new artificial systems with specific functions through the effective combination of chiral ligands with metal ions.

6.
J Org Chem ; 82(12): 6434-6440, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28535683

ABSTRACT

2'-Aminoacetophenones undergo a C(sp3)-H oxidation followed by intramolecular C-N bond formation by virtue of a simple electrochemical oxidation in the presence of n-Bu4NI, providing various isatins with moderate to good yields. The reaction intermediates were detected, and a radical-based pathway was proposed.

7.
Inorg Chem ; 56(21): 12678-12681, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29023109

ABSTRACT

Neutral N-pyrazolyl radicals [3,5-R2pz]• as reactive intermediates were generated by one-electron oxidization of the corresponding 3,5-disubstituted pyrazolato anions [3,5-R2pz]- (R = tBu, Ph) with BiCl3 and trapped by the use of 5,5-dimethyl-1-pyrroline-N-oxide as a spin trap, which was confirmed by electron paramagnetic resonance spectral analysis. With dimerization of the postulated pyrazolato low-valent BiII radical species, two novel paddlewheel pyrazolatodibismuthanes [L2(Bi-Bi)L2] [L = η1,η1-3,5-R2pz; R = tBu (5α, 5ß, and 5γ), Ph (6)] were isolated and structurally characterized.

8.
Chemistry ; 21(38): 13302-10, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26241129

ABSTRACT

Reactions of the dimeric cobalt complex [(L(-) Co)2 ] (1, L=[(2,6-iPr2 C6 H3 )NC(Me)]2 ) with polyarenes afforded a series of mononuclear and dinuclear complexes: [LCo(η(4) -anthracene)] (2), [LCo(µ-η(4) :η(4) -naphthalene)CoL] (3), and [LCo(µ-η(4) :η(4) -phenanthrene)CoL] (4). The pyrene complexes [{Na2 (Et2 O)2 }{LCo(µ-η(3) :η(3) -pyrene)CoL}] (5) and [{Na2 (Et2 O)3 }{LCo(η(3) -pyrene)}] (6) were obtained by treating precursor 1 with pyrene followed by reduction with Na metal. These complexes contain three potential redox active centers: the cobalt metal and both α-diimine and polyarene ligands. Through a combination of X-ray crystallography, EPR spectroscopy, magnetic susceptibility measurement, and DFT computations, the electronic configurations of these complexes were studied. It was determined that complexes 2-4 have a high-spin Co(I) center coupled with a radical α-diimine ligand and a neutral polyarene ligand. Whereas, the ligand L in complexes 5 and 6 has been further reduced to the dianion, the cobalt remains in a formal (I) oxidation state, and the pyrene molecule is either neutral or monoanionic.

9.
J Biol Chem ; 287(29): 24721-33, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22549771

ABSTRACT

Ca(2+) is an integral component of the Mn(4)O(5)Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S(2)' state of the Ca(2+)-depleted cluster from spinach is examined by X- and Q-band EPR and (55)Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca(2+) removal, its electronic structure remains essentially unaltered, i.e. that of a manganese tetramer. No redistribution of the manganese valence states and only minor perturbation of the exchange interactions between the manganese ions were found. Interestingly, the S(2)' state in spinach PS II is very similar to the native S(2) state of Thermosynechococcus elongatus in terms of spin state energies and insensitivity to methanol addition. These results assign the Ca(2+) a functional as opposed to a structural role in water splitting catalysis, such as (i) being essential for efficient proton-coupled electron transfer between Y(Z) and the manganese cluster and/or (ii) providing an initial binding site for substrate water. Additionally, a novel (55)Mn(2+) signal, detected by Q-band pulse EPR and ENDOR, was observed in Ca(2+)-depleted PS II. Mn(2+) titration, monitored by (55)Mn ENDOR, revealed a specific Mn(2+) binding site with a submicromolar K(D). Ca(2+) titration of Mn(2+)-loaded, Ca(2+)-depleted PS II demonstrated that the site is reversibly made accessible to Mn(2+) by Ca(2+) depletion and reconstitution. Mn(2+) is proposed to bind at one of the extrinsic subunits. This process is possibly relevant for the formation of the Mn(4)O(5)Ca cluster during photoassembly and/or D1 repair.


Subject(s)
Calcium/metabolism , Oxygen/metabolism , Photosystem II Protein Complex/metabolism , Electron Spin Resonance Spectroscopy , Manganese/metabolism , Metalloproteins/chemistry , Metalloproteins/metabolism , Models, Molecular , Photosystem II Protein Complex/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Spinacia oleracea/metabolism
10.
Chemistry ; 19(45): 15240-7, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24115108

ABSTRACT

A nickel-nickel-bonded complex, [{Ni(µ-L(.-))}2] (1; L=[(2,6-iPr2C6H3)NC(Me)]2), was synthesized from reduction of the LNiBr2 precursor by sodium metal. Further controllable reduction of 1 with 1.0, 2.0 and 3.0 equiv of Na, respectively, afforded the singly, doubly, and triply reduced compounds [Na(DME)3]·[{Ni(µ-L(.-))}2] (2; DME=1,2-dimethoxyethane), [Na(Et2O)]Na[(L(.-))Ni-NiL(2-)] (3), and [Na(Et2O)]2Na[L(2-)Ni-NiL(2-)] (4). Here L represents the neutral ligand, L(.-) denotes its radical monoanion, and L(2-) is the dianion. All of the four compounds feature a short Ni-Ni bond from 2.2957(6) to 2.4649(8) Å. Interestingly, they display two different structures: the perpendicular (1 and 2) and the coaxial (3 and 4) structure, in which the metal-metal bond axis is perpendicular to or collinear with the axes of the α-diimine ligands, respectively. The electronic structures, Ni-Ni bonding nature, and energetic comparisons of the two structure types were investigated by DFT computations.

11.
Org Biomol Chem ; 11(39): 6691-4, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-23995231

ABSTRACT

A cobalt-catalyzed oxidative [3 + 2] cycloaddition cascades of dihydroisoquinoline esters with nitroolefins or N-sulfuryl aldimines were developed at room temperature. A multi-component reaction for the synthesis of 5,6-dihydroimidazo[2,1-a]isoquinolines were also realized under almost identical conditions. This method is particularly suitable for the synthesis of tricyclic nitrogen heterocycles due to its simple manipulation, wide scope of the reaction substrates and excellent regioselectivity.

12.
Org Lett ; 25(27): 5067-5072, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37387463

ABSTRACT

A metal-free electrophotochemical C(sp3)-H arylation was developed under mild conditions. This method enables a switchable synthesis of diaryl alcohols and diaryl alkanes from inactive benzylic carbons. More importantly, a cheap and safe mediator N-chlorosuccinimide (NCS) was developed, which was employed for the hydrogen atom transfer (HAT) process of the benzylic C-H bond. In addition, this active radical was captured and identified by electron paramagnetic resonance (EPR).


Subject(s)
Alkanes , Carbon , Hydrogen
13.
Science ; 382(6674): 1056-1065, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38033072

ABSTRACT

The development of functionally distinct catalysts for enantioselective synthesis is a prominent yet challenging goal of synthetic chemistry. In this work, we report a family of chiral N-heterocyclic carbene (NHC)-ligated boryl radicals as catalysts that enable catalytic asymmetric radical cycloisomerization reactions. The radical catalysts can be generated from easily prepared NHC-borane complexes, and the broad availability of the chiral NHC component provides substantial benefits for stereochemical control. Mechanistic studies support a catalytic cycle comprising a sequence of boryl radical addition, hydrogen atom transfer, cyclization, and elimination of the boryl radical catalyst, wherein the chiral NHC subunit determines the enantioselectivity of the radical cyclization. This catalysis allows asymmetric construction of valuable chiral heterocyclic products from simple starting materials.

14.
Biochim Biophys Acta ; 1807(1): 11-21, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20863810

ABSTRACT

Metalloradical EPR signals have been found in intact Photosystem II at cryogenic temperatures. They reflect the light-driven formation of the tyrosine Z radical (Y(Z)) in magnetic interaction with the CaMn(4) cluster in a particular S state. These so-called split EPR signals, induced at cryogenic temperatures, provide means to study the otherwise transient Y(Z) and to probe the S states with EPR spectroscopy. In the S(0) and S(1) states, the respective split signals are induced by illumination of the sample in the visible light range only. In the S(3) state the split EPR signal is induced irrespective of illumination wavelength within the entire 415-900nm range (visible and near-IR region) [Su, J. H., Havelius, K. G. V., Ho, F. M., Han, G., Mamedov, F., and Styring, S. (2007) Biochemistry 46, 10703-10712]. An important question is whether a single mechanism can explain the induction of the Split S(3) signal across the entire wavelength range or whether wavelength-dependent mechanisms are required. In this paper we confirm that the Y(Z) radical formation in the S(1) state, reflected in the Split S(1) signal, is driven by P680-centered charge separation. The situation in the S(3) state is different. In Photosystem II centers with pre-reduced quinone A (Q(A)), where the P680-centered charge separation is blocked, the Split S(3) EPR signal could still be induced in the majority of the Photosystem II centers using both visible and NIR (830nm) light. This shows that P680-centered charge separation is not involved. The amount of oxidized electron donors and reduced electron acceptors (Q(A)(-)) was well correlated after visible light illumination at cryogenic temperatures in the S(1) state. This was not the case in the S(3) state, where the Split S(3) EPR signal was formed in the majority of the centers in a pathway other than P680-centered charge separation. Instead, we propose that one mechanism exists over the entire wavelength interval to drive the formation of the Split S(3) signal. The origin for this, probably involving excitation of one of the Mn ions in the CaMn(4) cluster in Photosystem II, is discussed.


Subject(s)
Photosystem II Protein Complex/chemistry , Cyanobacteria/metabolism , Electron Spin Resonance Spectroscopy/methods , Electron Transport , Electrons , Kinetics , Oxidation-Reduction , Photosystem II Protein Complex/isolation & purification , Photosystem II Protein Complex/metabolism , Plants/metabolism , Quinones/metabolism , Thylakoids/metabolism
15.
Biochim Biophys Acta ; 1807(7): 829-40, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21406177

ABSTRACT

The electronic properties of the Mn(4)O(x)Ca cluster in the S(2) state of the oxygen-evolving complex (OEC) were studied using X- and Q-band EPR and Q-band (55)Mn-ENDOR using photosystem II preparations isolated from the thermophilic cyanobacterium T. elongatus and higher plants (spinach). The data presented here show that there is very little difference between the two species. Specifically it is shown that: (i) only small changes are seen in the fitted isotropic hyperfine values, suggesting that there is no significant difference in the overall spin distribution (electronic coupling scheme) between the two species; (ii) the inferred fine-structure tensor of the only Mn(III) ion in the cluster is of the same magnitude and geometry for both species types, suggesting that the Mn(III) ion has the same coordination sphere in both sample preparations; and (iii) the data from both species are consistent with only one structural model available in the literature, namely the Siegbahn structure [Siegbahn, P. E. M. Accounts Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al., Phys. Chem. Chem. Phys.2009, 11, 6788-6798]. These measurements were made in the presence of methanol because it confers favorable magnetic relaxation properties to the cluster that facilitate pulse-EPR techniques. In the absence of methanol the separation of the ground state and the first excited state of the spin system is smaller. For cyanobacteria this effect is minor but in plant PS II it leads to a break-down of the S(T)=½ spin model of the S(2) state. This suggests that the methanol-OEC interaction is species dependent. It is proposed that the effect of small organic solvents on the electronic structure of the cluster is to change the coupling between the outer Mn (Mn(A)) and the other three Mn ions that form the trimeric part of the cluster (Mn(B), Mn(C), Mn(D)), by perturbing the linking bis-µ-oxo bridge. The flexibility of this bridging unit is discussed with regard to the mechanism of O-O bond formation.


Subject(s)
Cyanobacteria/metabolism , Methanol/metabolism , Oxygen/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Spinacia oleracea/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Electron Spin Resonance Spectroscopy , Manganese/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism
16.
Phys Rev Lett ; 108(23): 230501, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-23003928

ABSTRACT

Single molecular magnets (SMMs) are among the potential systems for quantum memory and quantum information processing. Quantum coherence and oscillation are critical for these applications. The ground-state quantum coherence and Rabi oscillations of the SMM V15 ([V15(IV)As6(III)O42(H2O)]6-) have been studied in this context. We have affirmatively measured at 2.4 K the Rabi quantum oscillations and coherence time T2 for the ground states of the V15 ion of collective spin S=1/2, in addition to confirming the previously reported results for the S=3/2 excited states. The oscillations of S=3/2 and S=1/2 states are of different frequencies, and so can be separately selected for purposive manipulations. T2 of 188±4 ns (S=3/2) and 149±10 ns (S=1/2) are much less than T1∼12 µs and are further extendible via various approaches for qubit implementations.

17.
Inorg Chem ; 51(24): 13162-70, 2012 Dec 17.
Article in English | MEDLINE | ID: mdl-23066635

ABSTRACT

Reaction of L(0)NiBr(2) with 2 equiv of NaH yielded the Ni(II) hydride complex [(L(•-))Ni(µ-H)(2)Ni(L(•-))] (1) (L = [(2,6-iPr(2)C(6)H(3))NC(Me)](2); L(0) represents the neutral ligand, L(•-) is its radical-anionic form, and L(2-) denotes the dianion) in good yield. Stepwise reduction of complex 1 led to a series of nickel hydrides. Reduction of 1 with 1 equiv of sodium metal afforded a singly reduced species [Na(DME)(3)][(L(•-))Ni(µ-H)(2)Ni(L(•-))] (2a) (DME = 1,2-dimethoxyethane), which contains a mixed-valent core [Ni(µ-H)(2)Ni](+). With 2 equiv of Na a doubly reduced species [Na(DME)](2)[L(2-)Ni(µ-H)(2)NiL(2-)] (3a) was obtained, in which each monoanion (L(•-)) in the precursor 1 has been reduced to L(2-). By using potassium as the reducing agent, two analogous species [K(DME)(4)][(L(•-))Ni(µ-H)(2)Ni(L(•-))] (2b) and [K(DME)](2)[L(2-)Ni(µ-H)(2)NiL(2-)] (3b) were obtained. Further treatment of 3b with 2 equiv of K led to a trinuclear complex [K(DME)(THF)](2)K(2)[L(2-)Ni(µ-H)(2)Ni(µ-H)(2)NiL(2-)] (4), which contains one Ni(II) and two Ni(I) centers with a triplet ground state. When 1 and 3a were warmed in toluene or benzene, respectively, three reverse-sandwich dinickel complexes, [(L(•-))Ni(µ-η(3):η(3)-C(7)H(8))Ni(L(•-))] (5) and [Na(DME)](2)[L(2-)Ni(µ-η(3):η(3)-C(6)H(5)R)NiL(2-)] (6: R = CH(3); 7: R = H), were isolated. Reaction of 1 with Me(3)SiN(3) gave the N(3)-bridged complex [(L(•-))Ni(µ-η(1)-N(3))(2)Ni(L(•-))] (8). The crystal structures of complexes 1-8 have been determined by X-ray diffraction, and their electronic structures have been fully studied by EPR/NMR spectroscopy.

18.
Chem Sci ; 13(33): 9560-9568, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36091900

ABSTRACT

Developing highly efficient catalytic protocols for C-sp(3)-H bond aerobic oxidation under mild conditions is a long-desired goal of chemists. Inspired by nature, a biomimetic approach for the aerobic oxidation of C-sp(3)-H by galactose oxidase model compound CuIIL and NHPI (N-hydroxyphthalimide) was developed. The CuIIL-NHPI system exhibited excellent performance in the oxidation of C-sp(3)-H bonds to ketones, especially for light alkanes. The biomimetic catalytic protocol had a broad substrate scope. Mechanistic studies revealed that the CuI-radical intermediate species generated from the intramolecular redox process of CuIILH2 was critical for O2 activation. Kinetic experiments showed that the activation of NHPI was the rate-determining step. Furthermore, activation of NHPI in the CuIIL-NHPI system was demonstrated by time-resolved EPR results. The persistent PINO (phthalimide-N-oxyl) radical mechanism for the aerobic oxidation of C-sp(3)-H bond was demonstrated.

19.
J Am Chem Soc ; 133(10): 3635-48, 2011 Mar 16.
Article in English | MEDLINE | ID: mdl-21341708

ABSTRACT

The electronic structures of the native Mn(4)O(x)Ca cluster and the biosynthetically substituted Mn(4)O(x)Sr cluster of the oxygen evolving complex (OEC) of photosystem II (PSII) core complexes isolated from Thermosynechococcus elongatus, poised in the S(2) state, were studied by X- and Q-band CW-EPR and by pulsed Q-band (55)Mn-ENDOR spectroscopy. Both wild type and tyrosine D less mutants grown photoautotrophically in either CaCl(2) or SrCl(2) containing media were measured. The obtained CW-EPR spectra of the S(2) state displayed the characteristic, clearly noticeable differences in the hyperfine pattern of the multiline EPR signal [Boussac et al. J. Biol. Chem.2004, 279, 22809-22819]. In sharp contrast, the manganese ((55)Mn) ENDOR spectra of the Ca and Sr forms of the OEC were remarkably similar. Multifrequency simulations of the X- and Q-band CW-EPR and (55)Mn-pulsed ENDOR spectra using the Spin Hamiltonian formalism were performed to investigate this surprising result. It is shown that (i) all four manganese ions contribute to the (55)Mn-ENDOR spectra; (ii) only small changes are seen in the fitted isotropic hyperfine values for the Ca(2+) and Sr(2+) containing OEC, suggesting that there is no change in the overall spin distribution (electronic coupling scheme) upon Ca(2+)/Sr(2+) substitution; (iii) the changes in the CW-EPR hyperfine pattern can be explained by a small decrease in the anisotropy of at least two hyperfine tensors. It is proposed that modifications at the Ca(2+) site may modulate the fine structure tensor of the Mn(III) ion. DFT calculations support the above conclusions. Our data analysis also provides strong support for the notion that in the S(2) state the coordination of the Mn(III) ion is square-pyramidal (5-coordinate) or octahedral (6-coordinate) with tetragonal elongation. In addition, it is shown that only one of the currently published OEC models, the Siegbahn structure [Siegbahn, P. E. M. Acc. Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al. Phys. Chem. Chem. Phys.2009, 11, 6788-6798], is consistent with all data presented here. These results provide important information for the structure of the OEC and the water-splitting mechanism. In particular, the 5-coordinate Mn(III) is a potential site for substrate 'water' (H(2)O, OH(-)) binding. Its location within the cuboidal structural unit, as opposed to the external 'dangler' position, may have important consequences for the mechanism of O-O bond formation.


Subject(s)
Calcium/chemistry , Cyanobacteria/enzymology , Photosystem II Protein Complex/chemistry , Strontium/chemistry , Electron Spin Resonance Spectroscopy , Electrons , Fourier Analysis , Manganese/chemistry , Protein Conformation
20.
Phys Rev Lett ; 106(4): 040501, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21405311

ABSTRACT

A crucial challenge for future quantum technologies is to protect fragile entanglement against environment-induced decoherence. Here we demonstrate experimentally that dynamical decoupling can preserve bipartite pseudoentanglement in phosphorous donors in a silicon system. In particular, the lifetime of pseudoentangled states is extended from 0.4 µs in the absence of decoherence control to 30 µs in the presence of a two-flip dynamical decoupling sequence.

SELECTION OF CITATIONS
SEARCH DETAIL