ABSTRACT
TGF-ß signaling can be pro-tumorigenic or tumor suppressive. We investigated this duality in pancreatic ductal adenocarcinoma (PDA), which, with other gastrointestinal cancers, exhibits frequent inactivation of the TGF-ß mediator Smad4. We show that TGF-ß induces an epithelial-mesenchymal transition (EMT), generally considered a pro-tumorigenic event. However, in TGF-ß-sensitive PDA cells, EMT becomes lethal by converting TGF-ß-induced Sox4 from an enforcer of tumorigenesis into a promoter of apoptosis. This is the result of an EMT-linked remodeling of the cellular transcription factor landscape, including the repression of the gastrointestinal lineage-master regulator Klf5. Klf5 cooperates with Sox4 in oncogenesis and prevents Sox4-induced apoptosis. Smad4 is required for EMT but dispensable for Sox4 induction by TGF-ß. TGF-ß-induced Sox4 is thus geared to bolster progenitor identity, whereas simultaneous Smad4-dependent EMT strips Sox4 of an essential partner in oncogenesis. Our work demonstrates that TGF-ß tumor suppression functions through an EMT-mediated disruption of a lineage-specific transcriptional network.
Subject(s)
Carcinoma, Ductal/genetics , Epithelial-Mesenchymal Transition , Gene Regulatory Networks , Pancreatic Neoplasms/genetics , Transforming Growth Factor beta/antagonists & inhibitors , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Apoptosis , Carcinoma, Ductal/pathology , Kruppel-Like Transcription Factors/metabolism , Mice , Organoids/metabolism , Organoids/pathology , Pancreatic Neoplasms/pathology , SOXC Transcription Factors/metabolism , Smad4 Protein/metabolismABSTRACT
In vitro modeling of human disease has recently become feasible with induced pluripotent stem cell (iPSC) technology. Here, we established patient-derived iPSCs from a Li-Fraumeni syndrome (LFS) family and investigated the role of mutant p53 in the development of osteosarcoma (OS). LFS iPSC-derived osteoblasts (OBs) recapitulated OS features including defective osteoblastic differentiation as well as tumorigenic ability. Systematic analyses revealed that the expression of genes enriched in LFS-derived OBs strongly correlated with decreased time to tumor recurrence and poor patient survival. Furthermore, LFS OBs exhibited impaired upregulation of the imprinted gene H19 during osteogenesis. Restoration of H19 expression in LFS OBs facilitated osteoblastic differentiation and repressed tumorigenic potential. By integrating human imprinted gene network (IGN) into functional genomic analyses, we found that H19 mediates suppression of LFS-associated OS through the IGN component DECORIN (DCN). In summary, these findings demonstrate the feasibility of studying inherited human cancer syndromes with iPSCs.
Subject(s)
Gene Regulatory Networks , Induced Pluripotent Stem Cells/cytology , Li-Fraumeni Syndrome/complications , Osteosarcoma/etiology , Adolescent , Adult , Animals , Child , Decorin/metabolism , Female , Humans , Li-Fraumeni Syndrome/genetics , Li-Fraumeni Syndrome/pathology , Male , Mesenchymal Stem Cells/metabolism , Mice , Models, Biological , Neoplasm Transplantation , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis , Osteosarcoma/genetics , Osteosarcoma/pathology , RNA, Long Noncoding/metabolism , Transplantation, Heterologous , Tumor Suppressor Protein p53/metabolismABSTRACT
Sodium-ion batteries (SIBs) as one of the promising alternatives to lithium-ion batteries have achieved remarkable progress in the past. However, the all-climate performance is still very challenging for SIBs. Herein, 15-Crown-5 (15-C-5) is screened as an electrolyte additive from a number of ether molecules theoretically. The good sodiophilicity, high molecule rigidity, and bulky size enable it to reshape the solvation sheath and promote the anion engagement in the solvated structures by molecule crowding. This change also enhances Na-ion transfer, inhibits side reactions, and leads to a thin and robust solid-electrolyte interphase. Furthermore, the electrochemical stability and operating temperature windows of the electrolyte are extended. These profits improve the electrochemical performance of SIBs in all climates, much better than the case without 15-C-5. This improvement is also adopted to µ-Sn, µ-Bi, hard carbon, and MoS2. This work opens a door to prioritize the potential molecules in theory for advanced electrolytes.
ABSTRACT
TGF-ß receptors phosphorylate SMAD2 and SMAD3 transcription factors, which then form heterotrimeric complexes with SMAD4 and cooperate with context-specific transcription factors to activate target genes. Here we provide biochemical and structural evidence showing that binding of SMAD2 to DNA depends on the conformation of the E3 insert, a structural element unique to SMAD2 and previously thought to render SMAD2 unable to bind DNA. Based on this finding, we further delineate TGF-ß signal transduction by defining distinct roles for SMAD2 and SMAD3 with the forkhead pioneer factor FOXH1 as a partner in the regulation of differentiation genes in mouse mesendoderm precursors. FOXH1 is prebound to target sites in these loci and recruits SMAD3 independently of TGF-ß signals, whereas SMAD2 remains predominantly cytoplasmic in the basal state and set to bind SMAD4 and join SMAD3:FOXH1 at target promoters in response to Nodal TGF-ß signals. The results support a model in which signal-independent binding of SMAD3 and FOXH1 prime mesendoderm differentiation gene promoters for activation, and signal-driven SMAD2:SMAD4 binds to promoters that are preloaded with SMAD3:FOXH1 to activate transcription.
Subject(s)
Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Models, Molecular , Signal Transduction , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta/metabolism , Animals , Embryo, Mammalian , Mice , Mice, Inbred C57BL , Protein Binding , Protein Structure, Tertiary , Smad2 Protein/chemistry , Smad2 Protein/metabolism , Smad3 Protein/chemistry , Smad3 Protein/metabolismABSTRACT
The embryonic stem (ES) cell transcriptional and chromatin-modifying networks are critical for self-renewal maintenance. However, it remains unclear whether these networks functionally interact and, if so, what factors mediate such interactions. Here, we show that WD repeat domain 5 (Wdr5), a core member of the mammalian Trithorax (trxG) complex, positively correlates with the undifferentiated state and is a regulator of ES cell self-renewal. We demonstrate that Wdr5, an "effector" of H3K4 methylation, interacts with the pluripotency transcription factor Oct4. Genome-wide protein localization and transcriptome analyses demonstrate overlapping gene regulatory functions between Oct4 and Wdr5. The Oct4-Sox2-Nanog circuitry and trxG cooperate in activating transcription of key self-renewal regulators, and furthermore, Wdr5 expression is required for the efficient formation of induced pluripotent stem (iPS) cells. We propose an integrated model of transcriptional and epigenetic control, mediated by select trxG members, for the maintenance of ES cell self-renewal and somatic cell reprogramming.
Subject(s)
Embryonic Stem Cells/metabolism , Gene Regulatory Networks , Proteins/metabolism , Animals , Chromatin Immunoprecipitation , Embryonic Stem Cells/cytology , Histone-Lysine N-Methyltransferase , Histones/metabolism , Intracellular Signaling Peptides and Proteins , Methylation , Mice , Myeloid-Lymphoid Leukemia Protein/metabolism , Octamer Transcription Factor-3/metabolism , Sequence Analysis, DNA , Transcriptional ActivationABSTRACT
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
Epithelial-to-mesenchymal transitions (EMTs) are phenotypic plasticity processes that confer migratory and invasive properties to epithelial cells during development, wound-healing, fibrosis and cancer1-4. EMTs are driven by SNAIL, ZEB and TWIST transcription factors5,6 together with microRNAs that balance this regulatory network7,8. Transforming growth factor ß (TGF-ß) is a potent inducer of developmental and fibrogenic EMTs4,9,10. Aberrant TGF-ß signalling and EMT are implicated in the pathogenesis of renal fibrosis, alcoholic liver disease, non-alcoholic steatohepatitis, pulmonary fibrosis and cancer4,11. TGF-ß depends on RAS and mitogen-activated protein kinase (MAPK) pathway inputs for the induction of EMTs12-19. Here we show how these signals coordinately trigger EMTs and integrate them with broader pathophysiological processes. We identify RAS-responsive element binding protein 1 (RREB1), a RAS transcriptional effector20,21, as a key partner of TGF-ß-activated SMAD transcription factors in EMT. MAPK-activated RREB1 recruits TGF-ß-activated SMAD factors to SNAIL. Context-dependent chromatin accessibility dictates the ability of RREB1 and SMAD to activate additional genes that determine the nature of the resulting EMT. In carcinoma cells, TGF-ß-SMAD and RREB1 directly drive expression of SNAIL and fibrogenic factors stimulating myofibroblasts, promoting intratumoral fibrosis and supporting tumour growth. In mouse epiblast progenitors, Nodal-SMAD and RREB1 combine to induce expression of SNAIL and mesendoderm-differentiation genes that drive gastrulation. Thus, RREB1 provides a molecular link between RAS and TGF-ß pathways for coordinated induction of developmental and fibrogenic EMTs. These insights increase our understanding of the regulation of epithelial plasticity and its pathophysiological consequences in development, fibrosis and cancer.
Subject(s)
DNA-Binding Proteins/metabolism , Epithelial-Mesenchymal Transition , Fibrosis/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , ras Proteins/metabolism , Animals , Cell Line, Tumor , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/drug effects , Female , Fibrosis/pathology , Gastrulation , Humans , Mice , Mitogen-Activated Protein Kinases/metabolism , Neoplasms/enzymology , Organoids/metabolism , Organoids/pathology , Smad Proteins/metabolism , Snail Family Transcription Factors/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics , Transforming Growth Factor beta/pharmacologyABSTRACT
The RB1 gene is frequently mutated in human cancers but its role in tumorigenesis remains incompletely defined. Using an induced pluripotent stem cell (iPSC) model of hereditary retinoblastoma (RB), we report that the spliceosome is an up-regulated target responding to oncogenic stress in RB1-mutant cells. By investigating transcriptomes and genome occupancies in RB iPSCderived osteoblasts (OBs), we discover that both E2F3a, which mediates spliceosomal gene expression, and pRB, which antagonizes E2F3a, coregulate more than one-third of spliceosomal genes by cobinding to their promoters or enhancers. Pharmacological inhibition of the spliceosome in RB1-mutant cells leads to global intron retention, decreased cell proliferation, and impaired tumorigenesis. Tumor specimen studies and genome-wide TCGA (The Cancer Genome Atlas) expression profile analyses support the clinical relevance of pRB and E2F3a in modulating spliceosomal gene expression in multiple cancer types including osteosarcoma (OS). High levels of pRB/E2F3aregulated spliceosomal genes are associated with poor OS patient survival. Collectively, these findings reveal an undiscovered connection between pRB, E2F3a, the spliceosome, and tumorigenesis, pointing to the spliceosomal machinery as a potentially widespread therapeutic vulnerability of pRB-deficient cancers.
Subject(s)
Bone Neoplasms , Carcinogenesis , E2F3 Transcription Factor , Gene Expression Regulation, Neoplastic , Induced Pluripotent Stem Cells , Osteosarcoma , Retinoblastoma Binding Proteins , Spliceosomes , Ubiquitin-Protein Ligases , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Carcinogenesis/genetics , E2F3 Transcription Factor/genetics , E2F3 Transcription Factor/metabolism , Genes, Retinoblastoma , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation , Osteosarcoma/genetics , Osteosarcoma/pathology , Retinal Neoplasms/genetics , Retinoblastoma/genetics , Retinoblastoma Binding Proteins/genetics , Retinoblastoma Binding Proteins/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolismABSTRACT
High-entropy alloys (HEAs) have garnered considerable attention as promising nanocatalysts for effectively utilizing Pt in catalysis toward oxygen reduction reactions due to their unique properties. Nonetheless, there is a relative dearth of attention regarding the structural evolution of HEAs in response to electrochemical conditions. In this work, we propose a thermal reduction method to synthesize high entropy nanoparticles by leveraging the confinement effect and abundant nitrogen-anchored sites provided by pyrolyzed metal-organic frameworks (MOFs). Notably, the prepared catalysts exhibit enhanced activity accompanied by structural reconstruction during electrochemical activation, approaching 1 order of magnitude higher mass activity compared to Pt/C in oxygen reduction. Atomic-scale structural characterization reveals that abundant defects and single atoms are formed during the activation process, contributing to a significant boost in the catalytic performance for oxygen reduction reactions. This study provides deep insights into surface reconstruction engineering during electrochemical operations, with practical implications for fuel cell applications.
ABSTRACT
BACKGROUND: The major cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) has emerged as a key mediator of inflammation that underlies cardiovascular disease. On interaction with double-stranded DNA, cGAS generates the second messenger 2',3'-cyclic GMP-AMP (cGAMP) that directly binds to and activates the stimulator of interferon genes, which in turn leads to enhanced expression of genes encoding interferons and proinflammatory cytokines. Here, we show that cGAMP generated by cGAS also directly activates PKGI (cGMP-dependent protein kinase 1), a mechanism that underlies crosstalk between inflammation and blood pressure regulation. METHODS: The ability of cGAS and cGAMP to activate PKGI was assessed using molecular, cellular, and biochemical analyses, and in myography experiments, as well. The release of cGAMP from the endothelium was measured using an ELISA, and its uptake into the vascular smooth muscle was assessed using molecular and biochemical approaches, including the identification and targeting of specific cGAMP transporters. The blood pressure of wild-type and cGAS-/- mice was assessed using implanted telemetry probes. cGAS was activated by in vivo transfection with G3-YSD or mice were made septic by administration of lipopolysaccharide. RESULTS: The detection of cytosolic DNA by cGAS within the vascular endothelium leads to formation of cGAMP that was found to be actively extruded by MRP1 (multidrug resistance protein 1). Once exported, this cGAMP is then imported into neighboring vascular smooth muscle cells through the volume-regulated anion channel, where it can directly activate PKGI. The activation of PKGI by cGAMP mediates vasorelaxation that is dependent on the activity of MRP1 and volume-regulated anion channel, but independent of the canonical nitric oxide pathway. This mechanism of PKGI activation mediates lowering of blood pressure and contributes to hypotension and tissue hypoperfusion during sepsis. CONCLUSIONS: The activation of PKGI by cGAMP enables the coupling of blood pressure to cytosolic DNA sensing by cGAS, which plays a key role during sepsis by mediating hypotension and tissue hypoperfusion.
Subject(s)
DNA , Hypotension , Animals , Mice , Blood Pressure , DNA/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , InflammationABSTRACT
We report here a new type of metal fluoride cluster that can be stabilized inside fullerene via in situ fluorine encapsulation followed by exohedral trifluoromethylation, giving rise to rare-earth metal fluoride clusterfullerenes (FCFs) M2F@C80(CF3) (M = Gd and Y). The molecular structure of Gd2F@C80(CF3) was unambiguously determined by single-crystal X-ray analysis to show a µ2-fluoride-bridged Gd-F-Gd cluster with short Gd-F bonds of 2.132(7) and 2.179(7) Å. The 19F NMR spectrum of the diamagnetic Y2F@C80(CF3) confirms the existence of the endohedral F atom, which exhibits a triplet with a large 19F-89Y coupling constant of 74 Hz and a high temperature sensitivity of the 19F chemical shift of 0.057 ppm/K. Theoretical studies reveal the ionic Y-F bonding nature arising from the highest electronegativity of the F element and an electronic configuration of [Y2F]5+@[C80]5- with an open-shell carbon cage, which thus necessitates the stabilization of FCFs by exohedral trifluoromethylation.
ABSTRACT
Controllable ring-opening of polycyclic aromatic hydrocarbons plays a crucial role in various chemical and biological processes. However, breaking down aromatic covalent C-C bonds is exceptionally challenging due to their high stability and strong aromaticity. This study presents a seminal report on the precise and highly selective on-surface ring-opening of the seven-membered ring within the aromatic azulene moieties under mild conditions. The chemical structures of the resulting products were identified using bond-resolved scanning probe microscopy. Furthermore, through density functional theory calculations, we uncovered the mechanism behind the ring-opening process and elucidated its chemical driving force. The key to achieving this ring-opening process lies in manipulating the local aromaticity of the aromatic azulene moiety through strain-induced internal ring rearrangement and cyclodehydrogenation. By precisely controlling these factors, we successfully triggered the desired ring-opening reaction. Our findings not only provide valuable insights into the ring-opening process of polycyclic aromatic hydrocarbons but also open up new possibilities for the manipulation and reconstruction of these important chemical structures.
ABSTRACT
The pursuit of robust, long-range magnetic ordering in two-dimensional (2D) materials holds immense promise for driving technological advances. However, achieving this goal remains a grand challenge due to enhanced quantum and thermal fluctuations as well as chemical instability in the 2D limit. While magnetic ordering has been realized in atomically thin flakes of transition metal chalcogenides and metal halides, these materials often suffer from air instability. In contrast, 2D carbon-based materials are stable enough, yet the challenge lies in creating a high density of local magnetic moments and controlling their long-range magnetic ordering. Here, we report a novel wafer-scale synthesis of an air-stable metallo-carbon nitride monolayer (MCN, denoted as MN4/CNx), featuring ultradense single magnetic atoms and exhibiting robust room-temperature ferromagnetism. Under low-pressure chemical vapor deposition conditions, thermal dehydrogenation and polymerization of metal phthalocyanine (MPc) on copper foil at elevated temperature generate a substantial number of nitrogen coordination sites for anchoring magnetic single atoms in monolayer MN4/CNx (where M = Fe, Co, and Ni). The incorporation of densely populating MN4 sites into monolayer MCN networks leads to robust ferromagnetism up to room temperature, enabling the observation of anomalous Hall effects with excellent chemical stability. Detailed electronic structure calculations indicate that the presence of high-density metal sites results in the emergence of spin-split d-bands near the Fermi level, causing a favorable long-range ferromagnetic exchange coupling through direct exchange interactions. Our work demonstrates a novel synthesis approach for wafer-scale MCN monolayers with robust room-temperature ferromagnetism and may shed light on practical electronic and spintronic applications.
ABSTRACT
As the dimensionality of materials generally affects their characteristics, thin films composed of low-dimensional nanomaterials, such as nanowires (NWs) or nanoplates, are of great importance in modern engineering. Among various bottom-up film fabrication strategies, interfacial assembly of nanoscale building blocks holds great promise in constructing large-scale aligned thin films, leading to emergent or enhanced collective properties compared to individual building blocks. As for 1D nanostructures, the interfacial self-assembly causes the morphology orientation, effectively achieving anisotropic electrical, thermal, and optical conduction. However, issues such as defects between each nanoscale building block, crystal orientation, and homogeneity constrain the application of ordered films. The precise control of transdimensional synthesis and the formation mechanism from 1D to 2D are rarely reported. To meet this gap, we introduce an interfacial-assembly-induced interfacial synthesis strategy and successfully synthesize quasi-2D nanofilms via the oriented attachment of 1D NWs on the liquid interface. Theoretical sampling and simulation show that NWs on the liquid interface maintain their lowest interaction energy for the ordered crystal plane (110) orientation and then rearrange and attach to the quasi-2D nanofilm. This quasi-2D nanofilm shows enhanced electric conductivity and unique optical properties compared with its corresponding 1D geometry materials. Uncovering these growth pathways of the 1D-to-2D transition provides opportunities for future material design and synthesis at the interface.
ABSTRACT
BACKGROUND: For oral cavity squamous cell carcinoma (OSCC), extent of extranodal extension (ENE) (minor, ≤2 mm; major, >2 mm) is differentially prognostic, whereas limitations exist with the 8th edition of American Joint Committee on Cancer/International Union Against Cancer TNM N-classification (TNM-8-N). METHODS: Resected OSCC patients at four centers were included and extent of ENE was recorded. Thresholds for optimal overall survival (OS) discrimination of lymph node (LN) features were established. After dividing into training and validation sets, two new N-classifications were created using 1) recursive partitioning analysis (RPA), and 2) adjusted hazard ratios (aHRs) and were ranked against TNM-8-N and two published proposals. RESULTS: A total of 1460 patients were included (pN0: 696; pN+: 764). Of the pN+ cases, 135 (18%) had bilateral/contralateral LNs; 126 (17%) and 244 (32%) had minor and major ENE, and two (0.3%) had LN(s) >6 cm without ENE (N3a). LN number (1 and >1 vs. 0: aHRs, 1.92 [95% confidence interval (CI), 1.44-2.55] and 3.21 [95% CI, 2.44-4.22]), size (>3 vs. ≤3 cm: aHR, 1.88 [95% CI, 1.44-2.45]), and ENE extent (major vs. minor: aHR, 1.40 [95% CI, 1.05-1.87]) were associated with OS, whereas presence of contralateral LNs was not (aHR, 1.05 [95% CI, 0.81-1.36]). The aHR proposal provided optimal performance with these changes to TNM-8-N: 1) stratification of ENE extent, 2) elimination of N2c and 6-cm threshold, and 3) stratification of N2b by 3 cm threshold. CONCLUSION: A new N-classification improved staging performance compared to TNM-8-N, by stratifying by ENE extent, eliminating the old N2c category and the 6 cm threshold, and by stratifying multiple nodes by size.
Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/pathology , Neoplasm Staging , Mouth Neoplasms/pathology , Carcinoma, Squamous Cell/surgery , Carcinoma, Squamous Cell/pathology , Prognosis , Lymph Nodes/pathology , Head and Neck Neoplasms/pathology , Retrospective StudiesABSTRACT
Polyphenol oxidases (PPOs) are type-3 copper enzymes and are involved in many biological processes. However, the potential functions of PPOs in pollination are not fully understood. In this work, we have screened 13 PPO members in Nicotiana. tabacum (named NtPPO1-13, NtPPOs) to explore their characteristics and functions in pollination. The results show that NtPPOs are closely related to PPOs in Solanaceae and share conserved domains except NtPPO4. Generally, NtPPOs are diversely expressed in different tissues and are distributed in pistil and male gametes. Specifically, NtPPO9 and NtPPO10 are highly expressed in the pistil and mature anther. In addition, the expression levels and enzyme activities of NtPPOs are increased after N. tabacum self-pollination. Knockdown of NtPPOs would affect pollen growth after pollination, and the purines and flavonoid compounds are accumulated in self-pollinated pistil. Altogether, our findings demonstrate that NtPPOs potentially play a role in the pollen tube growth after pollination through purines and flavonoid compounds, and will provide new insights into the role of PPOs in plant reproduction.
Subject(s)
Nicotiana , Pollination , Nicotiana/genetics , Pollination/genetics , Pollen Tube , Flowers , Flavonoids/metabolism , Purines/metabolismABSTRACT
Crops face constant threats from insect pests, which can lead to sudden disasters and global famine. One of the most dangerous pests is the Asian citrus psyllid (ACP), which poses a significant threat to citrus plantations worldwide. Effective and adaptive management strategies to combat ACP are always in demand. Plant resistance (PR) is a key element in pest management, playing crucial roles such as deterring pests through antifeedant and repellant properties, while also attracting natural enemies of these pests. One effective and innovative approach is the use of entomopathogenic fungi (EPF) to reduce pest populations. Additionally, other natural enemies play an important role in controlling certain insect pests. Given the significance of PR, EPF, and natural arthropod enemies (NAE), this review highlights the benefits of these strategies against ACP, drawing on successful examples from recent research. Furthermore, we discuss how EPF can be effectively utilized in citrus orchards, proposing strategies to ensure its efficient use and safeguard food security in the future.
ABSTRACT
Spermatogenesis is a highly organized process by which undifferentiated spermatogonia self-renew and differentiate into spermatocytes and spermatids. The entire developmental process from spermatogonia to sperm occurs within the seminiferous tubules. Spermatogenesis is supported by the close interaction of germ cells with Sertoli cells. In this study, testicular tissues were collected from Hu sheep at 8 timepoints after birth: 0, 30, 90, 180, 270, 360, 540, and 720 days. Immunofluorescence staining and histological analysis were used to explore the development of male germ cells and Sertoli cells in the Hu sheep testes at these timepoints. The changes in seminiferous tubule diameter and male germ cells in the Hu sheep testes at these different developmental stages were analyzed. Then, specific molecular markers were used to study the proliferation and differentiation of spermatogonia, the timepoint of spermatocyte appearance, and the maturation and proliferation of Sertoli cells in the seminiferous tubules. Finally, the formation of the blood-testes barrier was studied using antibodies against the main components of the blood-testes barrier, ß-catenin, and ZO-1. These findings not only increased the understanding of the development of the Hu sheep testes, but also laid a solid theoretical foundation for Hu sheep breeding.
Subject(s)
Sertoli Cells , Testis , Male , Animals , Sheep , Semen , Spermatogenesis , SpermatogoniaABSTRACT
A family of microporous titanium-containing metal-organic frameworks (denoted as M2Ti-CPCDC, M = Mn, Co, Ni) has been synthesized by using a bimetallic [M2Ti(µ3-O)(COO)6] cluster and a tritopic carbazole-based organic ligand H3CPCDC. M2Ti-CPCDC are stable and display permanent porosity for N2 and CO2 uptake, ranking among the most porous titanium-based metal-organic frameworks. M2Ti-CPCDC crystals exhibit n-type semiconductor behavior. Further catalytic studies demonstrate that all M2Ti-CPCDC materials are applicable for triggering photo-oxidative reactions of amines in air. More specifically, amines with electron-donating groups afford the aldehydes as the main products, while amines bearing electron-withdrawing groups give rise to imines as the main product. Among them, Mn2Ti-CPCDC exhibit the best photocatalytic activity, with conversion of benzylamine up to 99% and selectivity of 99%. Mn2Ti-CPCDC could be recycled in at least three runs while retaining crystallinity and catalytic activity. The reaction mechanism indicates that photoinduced hole (h+), superoxide radical anion (O2·-), and singlet oxygen (1O2) are the main active species involved in the photo-oxidation process.