Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 850
Filter
Add more filters

Publication year range
1.
Cell ; 184(18): 4734-4752.e20, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34450029

ABSTRACT

Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors. To discover hubs of interacting malignant and immune cells, we identified expression programs in different cell types that co-varied across tumors from affected individuals and used spatial profiling to localize coordinated programs. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage and an MMRd-enriched immune hub within the tumor, with activated T cells together with malignant and myeloid cells expressing T cell-attracting chemokines. By identifying interacting cellular programs, we reveal the logic underlying spatially organized immune-malignant cell networks.


Subject(s)
Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Bone Morphogenetic Proteins/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Compartmentation , Cell Line, Tumor , Chemokines/metabolism , Cohort Studies , Colorectal Neoplasms/genetics , DNA Mismatch Repair/genetics , Endothelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Humans , Immunity , Inflammation/pathology , Monocytes/pathology , Myeloid Cells/pathology , Neutrophils/pathology , Stromal Cells/metabolism , T-Lymphocytes/metabolism , Transcription, Genetic
2.
Cell ; 175(4): 984-997.e24, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388455

ABSTRACT

Immune checkpoint inhibitors (ICIs) produce durable responses in some melanoma patients, but many patients derive no clinical benefit, and the molecular underpinnings of such resistance remain elusive. Here, we leveraged single-cell RNA sequencing (scRNA-seq) from 33 melanoma tumors and computational analyses to interrogate malignant cell states that promote immune evasion. We identified a resistance program expressed by malignant cells that is associated with T cell exclusion and immune evasion. The program is expressed prior to immunotherapy, characterizes cold niches in situ, and predicts clinical responses to anti-PD-1 therapy in an independent cohort of 112 melanoma patients. CDK4/6-inhibition represses this program in individual malignant cells, induces senescence, and reduces melanoma tumor outgrowth in mouse models in vivo when given in combination with immunotherapy. Our study provides a high-resolution landscape of ICI-resistant cell states, identifies clinically predictive signatures, and suggests new therapeutic strategies to overcome immunotherapy resistance.


Subject(s)
Antineoplastic Agents/therapeutic use , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Melanoma/immunology , Protein Kinase Inhibitors/therapeutic use , T-Lymphocytes/immunology , Tumor Escape , Aged , Aged, 80 and over , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Humans , Immunotherapy/methods , Male , Melanoma/drug therapy , Melanoma/therapy , Mice , Mice, Inbred C57BL , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology
3.
Proc Natl Acad Sci U S A ; 120(17): e2218522120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068243

ABSTRACT

Prostate cancer (PC) is the most frequently diagnosed malignancy and a leading cause of cancer deaths in US men. Many PC cases metastasize and develop resistance to systemic hormonal therapy, a stage known as castration-resistant prostate cancer (CRPC). Therefore, there is an urgent need to develop effective therapeutic strategies for CRPC. Traditional drug discovery pipelines require significant time and capital input, which highlights a need for novel methods to evaluate the repositioning potential of existing drugs. Here, we present a computational framework to predict drug sensitivities of clinical CRPC tumors to various existing compounds and identify treatment options with high potential for clinical impact. We applied this method to a CRPC patient cohort and nominated drugs to combat resistance to hormonal therapies including abiraterone and enzalutamide. The utility of this method was demonstrated by nomination of multiple drugs that are currently undergoing clinical trials for CRPC. Additionally, this method identified the tetracycline derivative COL-3, for which we validated higher efficacy in an isogenic cell line model of enzalutamide-resistant vs. enzalutamide-sensitive CRPC. In enzalutamide-resistant CRPC cells, COL-3 displayed higher activity for inhibiting cell growth and migration, and for inducing G1-phase cell cycle arrest and apoptosis. Collectively, these findings demonstrate the utility of a computational framework for independent validation of drugs being tested in CRPC clinical trials, and for nominating drugs with enhanced biological activity in models of enzalutamide-resistant CRPC. The efficiency of this method relative to traditional drug development approaches indicates a high potential for accelerating drug development for CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Nitriles/pharmacology , Drug Discovery , Castration , Drug Resistance, Neoplasm , Receptors, Androgen/metabolism
4.
J Virol ; 98(2): e0189923, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38294245

ABSTRACT

After Epstein-Barr virus (EBV) genome replication and encapsidation in the nucleus, nucleocapsids are translocated into the cytoplasm for subsequent tegumentation and maturation. The EBV BGLF4 kinase, which induces partial disassembly of the nuclear lamina, and the nuclear egress complex BFRF1/BFLF2 coordinately facilitate the nuclear egress of nucleocapsids. Here, we demonstrate that within EBV reactivated epithelial cells, viral capsids, tegument proteins, and glycoproteins are clustered in the juxtanuclear concave region, accompanied by redistributed cytoplasmic organelles and the cytoskeleton regulator IQ-domain GTPase-activation protein 1 (IQGAP1), close to the microtubule-organizing center (MTOC). The assembly compartment (AC) structure was diminished in BGLF4-knockdown TW01-EBV cells and BGLF4-knockout bacmid-carrying TW01 cells, suggesting that the formation of AC structure is BGLF4-dependent. Notably, glycoprotein gp350/220 was observed by confocal imaging to be distributed in the perinuclear concave region and surrounded by the endoplasmic reticulum (ER) membrane marker calnexin, indicating that the AC may be located within a globular structure derived from ER membranes, adjacent to the outer nuclear membrane. Moreover, the viral capsid protein BcLF1 and tegument protein BBLF1 were co-localized with IQGAP1 near the cytoplasmic membrane in the late stage of replication. Knockdown of IQGAP1 did not affect the AC formation but decreased virion release from both TW01-EBV and Akata+ cells, suggesting IQGAP1-mediated trafficking regulates EBV virion release. The data presented here show that BGLF4 is required for cytoskeletal rearrangement, coordination with the redistribution of cytoplasmic organelles and IQGAP1 for virus maturation, and subsequent IQGAP1-dependent virion release.IMPORTANCEEBV genome is replicated and encapsidated in the nucleus, and the resultant nucleocapsids are translocated to the cytoplasm for subsequent virion maturation. We show that a cytoplasmic AC, containing viral proteins, markers of the endoplasmic reticulum, Golgi, and endosomes, is formed in the juxtanuclear region of epithelial and B cells during EBV reactivation. The viral BGLF4 kinase contributes to the formation of the AC. The cellular protein IQGAP1 is also recruited to the AC and partially co-localizes with the virus capsid protein BcLF1 and tegument protein BBLF1 in EBV-reactivated cells, dependent on the BGLF4-induced cytoskeletal rearrangement. In addition, virion release was attenuated in IQGAP1-knockdown epithelial and B cells after reactivation, suggesting that IQGAP1-mediated trafficking may regulate the efficiency of virus maturation and release.


Subject(s)
Cytoplasm , Herpesvirus 4, Human , Protein Serine-Threonine Kinases , Viral Proteins , Virion , Virus Assembly , Virus Release , ras GTPase-Activating Proteins , Humans , Capsid Proteins/metabolism , Cytoplasm/metabolism , Cytoplasm/virology , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/chemistry , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/growth & development , Herpesvirus 4, Human/metabolism , Membrane Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , ras GTPase-Activating Proteins/metabolism , Viral Proteins/metabolism , Virion/chemistry , Virion/growth & development , Virion/metabolism , Virus Assembly/physiology , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism
5.
Proc Natl Acad Sci U S A ; 119(31): e2201376119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35878022

ABSTRACT

Relapse to anti-HER2 monoclonal antibody (mAb) therapies, such as trastuzumab in HER2+ breast cancer (BC), is associated with residual disease progression due to resistance to therapy. Here, we identify interferon-γ inducible protein 16 (IFI16)-dependent STING signaling as a significant determinant of trastuzumab responses in HER2+ BC. We show that down-regulation of immune-regulated genes (IRG) is specifically associated with poor survival of HER2+, but not other BC subtypes. Among IRG, IFI16 is identified as a direct target of EZH2, the underexpression of which leads to deficient STING activation and downstream CXCL10/11 expression in response to trastuzumab treatment. Dual inhibition of EZH2 and histone deacetylase (HDAC) significantly activates IFI16-dependent immune responses to trastuzumab. Notably, a combination of a novel histone methylation inhibitor with an HDAC inhibitor induces complete tumor eradication and long-term T cell memory in a HER2+ BC mouse model. Our findings demonstrate an epigenetic regulatory mechanism suppressing the expression of the IFI16-CXCL10/11 signaling pathway that provides a survival advantage to HER2+ BC to confer resistance to trastuzumab treatment.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Membrane Proteins , Nuclear Proteins , Phosphoproteins , Trastuzumab , Animals , Antineoplastic Agents, Immunological/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Cell Line, Tumor , Chemokine CXCL10 , Chemokine CXCL11 , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Immunity , Membrane Proteins/metabolism , Mice , Neoplasm Recurrence, Local/genetics , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Receptor, ErbB-2/genetics , Signal Transduction , Trastuzumab/pharmacology
6.
Genes Dev ; 31(7): 674-687, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28446596

ABSTRACT

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression critical for organismal viability. Changes in miRNA activity are common in cancer, but how these changes relate to subsequent alterations in transcription and the process of tumorigenesis is not well understood. Here, we report a deep transcriptional, oncogenic network regulated by miRNAs. We present analysis of the gene expression and phenotypic changes associated with global miRNA restoration in miRNA-deficient fibroblasts. This analysis uncovers a miRNA-repressed network containing oncofetal genes Imp1, Imp2, and Imp3 (Imp1-3) that is up-regulated primarily transcriptionally >100-fold upon Dicer loss and is resistant to resilencing by complete restoration of miRNA activity. This Dicer-resistant epigenetic switch confers tumorigenicity to these cells. Let-7 targets Imp1-3 are required for this tumorigenicity and feed back to reinforce and sustain expression of the oncogenic network. Together, these Dicer-resistant genes constitute an mRNA expression signature that is present in numerous human cancers and is associated with poor survival.


Subject(s)
Antigens, Neoplasm/genetics , Cell Transformation, Neoplastic/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/physiology , MicroRNAs/genetics , Ribonuclease III/genetics , Ribonuclease III/physiology , Animals , Antigens, Neoplasm/metabolism , Cells, Cultured , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Knockout , Oncogenes , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcriptional Activation
7.
Oncologist ; 29(4): e498-e506, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38227604

ABSTRACT

OBJECTIVE: Reports of tuberculosis (TB) during anticancer treatment with immune checkpoint inhibitors (ICIs) are increasing. However, it is not clear whether the use of ICIs is a significant risk factor for TB, including reactivation or latent TB infection (LTBI). METHODS: To determine the risk of TB reactivation in patients with lung cancer who use ICIs or tyrosine kinase inhibitors (TKIs), we conducted a retrospective study using a hospital-based cancer registry. In addition, we monitored patients with cancer using ICI or TKI in a multicenter prospective study to check the incidence of LTBI. RESULTS: In the retrospective study, several demographic factors were imbalanced between the ICI and TKI groups: the ICI group was younger, had more males, exhibited more squamous cell carcinoma in histology rather than adenocarcinoma, had fewer EGFR mutations, and received more chemotherapy. Propensity score matching was used to control for confounding factors, and we found that the incidence of TB was higher among patients with lung cancer who received ICIs than among those who received TKIs (2298 vs 412 per 100 000 person-years, P = .0165). Through multivariable analysis, group (ICI vs TKI) was the independent risk factor for TB development (adjusted hazard ratio (aHR): 6.29, 95% CI, 1.23-32.09, P = .0269). In the prospective cohort, which included 72 patients receiving ICIs and 50 receiving TKIs, we found that the incidence of positive seroconversion of LTBI by interferon gamma release assay (IGRA) was significantly higher in patients receiving ICIs (18% vs 0%, aHR: 9.88, P = 0.035) under multivariable Cox regression. CONCLUSION: The use of ICIs may be linked to a higher likelihood of TB reactivation and LTBI than individuals solely receiving TKIs as anticancer therapy. Consequently, the implementation of a screening program for TB reactivation and LTBI among patients undergoing ICI treatment could prove advantageous by enabling early detection and prompt treatment of the infection.


Subject(s)
Lung Neoplasms , Tuberculosis , Humans , Male , Immune Checkpoint Inhibitors/adverse effects , Lung Neoplasms/drug therapy , Prospective Studies , Retrospective Studies , Tuberculosis/chemically induced , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Female
8.
Int Immunol ; 35(3): 135-145, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36331874

ABSTRACT

Dysregulation of osteoclasts, the multinucleated cells responsible for bone resorption, contributes to several degenerative bone disorders. Previously, we showed that blocking the leukocyte immunoglobulin (Ig)-like receptor B4 (LILRB4), a kind of inhibitory receptor that plays an important role in immune regulation, promotes osteoclast differentiation in vitro. Here, we explored whether gp49B, the murine ortholog of LILRB4, regulates osteoclastogenesis in vivo, and whether fibronectin (FN), a ligand of LILRB4/gp49B, certainly contributes to LILRB4/gp49B-mediated osteoclastogenesis. In comparison with wild-type mice, gp49B deficiency mice exhibited a loss of trabecular bone number and an increase in osteoclast formation. Gp49B knockout improved the bone resorptive capacity of osteoclasts derived from murine Raw264.7 cells by increasing osteoclast formation. We further revealed that gp49B deficiency increased the receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced signaling transduction by increasing the phosphorylation of transforming growth factor (TGF)-activated kinase 1 (TAK1), NF-κB and mitogen-activated protein kinases (MAPKs). Furthermore, the N-terminal 30 kDa proteolytic fragments of FN promoted gp49B-mediated inhibition of osteoclastogenesis by increasing Src homology-2-containing tyrosine phosphatase 1 (SHP-1) phosphorylation and tumor necrosis factor receptor-associated factor 6 (TRAF6)-SHP-1 association. In summary, the FN-LILRB4/gp49B interaction negatively regulates RANKL-induced TRAF6/TAK1/NF-κB/MAPK signaling in osteoclastogenesis.


Subject(s)
Bone Resorption , Osteogenesis , Animals , Mice , Cell Differentiation , Fibronectins/metabolism , Ligands , NF-kappa B/metabolism , Osteoclasts , TNF Receptor-Associated Factor 6/metabolism
9.
Int Immunol ; 35(7): 339-348, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37083755

ABSTRACT

Natural killer (NK) cells play pivotal roles in innate immunity as well as in anti-tumor responses via natural killing, while their activity is tightly regulated by cell-surface inhibitory receptors. Immunoglobulin-like transcript 3/leukocyte immunoglobulin-like receptor B4 (ILT3/LILRB4, also known as gp49B in mice) is an inhibitory receptor expressed on activated NK cells as well as myeloid-lineage cells. The common physiologic ligand of human LILRB4 and gp49B was identified very recently as fibronectin, particularly the N-terminal 30 kDa domain (FN30). We hypothesized that LILRB4 could bind fibronectin on target cells in trans together with integrins, classical fibronectin receptors, in cis and deliver an inhibitory signal in NK cells, leading to attenuated natural killing. Flow cytometric and confocal microscopic analyses of NK cell-surface gp49B and integrins suggested that these novel and classical fibronectin receptors, respectively, co-engage fibronectin immobilized on a culture plate. Biochemical analyses indicated that tyrosine phosphorylation of spleen tyrosine kinase was augmented in gp49B-deficient NK cells upon binding to the immobilized fibronectin. While surface fibronectin-poor YAC-1 cells were evenly sensitive as to natural killing of both gp49B-positive and -negative NK cells, the killing of fibronectin-rich Lewis lung carcinoma cells, but not the FN30-knockout cells, was augmented among gp49B-deficient NK cells. These results suggest that the natural cytotoxicity of NK cells is negatively regulated through LILRB4/gp49B sensing fibronectin on target cells, which sheds light on the unexpected role of LILRB4 and fibronectin as a potential attenuator of NK cell cytotoxicity in the tumor microenvironment.


Subject(s)
Fibronectins , Killer Cells, Natural , Mice , Animals , Humans , Fibronectins/metabolism , Integrins/metabolism , Receptors, Fibronectin/metabolism , Immunoglobulins/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism
10.
Clin Chem Lab Med ; 62(1): 187-198, 2024 01 26.
Article in English | MEDLINE | ID: mdl-37531579

ABSTRACT

OBJECTIVES: Epstein-Barr virus (EBV) C promoter (Cp) hypermethylation, a crucial factor for EBV latent infection of nasopharyngeal epithelial cells, has been recognized as a promising biomarker for nasopharyngeal carcinoma (NPC) detection. In this study, we develop a novel EBV Cp methylation quantification (E-CpMQ) assay and evaluate its diagnostic performance for NPC detection. METHODS: A novel qPCR assay for simultaneous quantification of methylated- and unmethylated EBV Cp was developed by the combinational modification of MethyLight and QASM, with an innovative calibrator to improve the detection accuracy and consistency. The NP swab samples and synthetic standards were used for the analytical validation of the E-CpMQ. The diagnostic efficacy of the developed E-CpMQ assay was validated in 137 NPC patients and 137 non-NPC controls. RESULTS: The E-CpMQ assay can detect the EBV Cp methylation ratio in one reaction system under 10 copies with 100 % recognition specificity, which is highly correlated to pyrosequencing with a correlation coefficient over 0.99. The calibrated E-CpMQ assay reduces the coefficient of variation by an average of 55.5 % with a total variance of less than 0.06 units standard deviation (SD). Linear methylation ratio detection range from 4.76 to 99.01 %. The sensitivity and specificity of the E-CpMQ respectively are 96.4 % (95 % CI: 91.7-98.8 %), 89.8 % (95 % CI: 83.5-94.3 %). CONCLUSIONS: The developed E-CpMQ assay with a calibrator enables accurate and reproducible EBV Cp methylation ratio quantification and offers a sensitive, specific, cost-effective method for NPC early detection.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/diagnosis , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/diagnosis , Epstein-Barr Virus Infections/genetics , Nasopharyngeal Neoplasms/diagnosis , Nasopharyngeal Neoplasms/genetics , DNA, Viral/genetics , Nasopharynx , DNA Methylation
11.
Nature ; 555(7697): 520-523, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29539638

ABSTRACT

Here we report a multi-tissue gene expression resource that represents the genotypic and phenotypic diversity of modern inbred maize, and includes transcriptomes in an average of 255 lines in seven tissues. We mapped expression quantitative trait loci and characterized the contribution of rare genetic variants to extremes in gene expression. Some of the new mutations that arise in the maize genome can be deleterious; although selection acts to keep deleterious variants rare, their complete removal is impeded by genetic linkage to favourable loci and by finite population size. Modern maize breeders have systematically reduced the effects of this constant mutational pressure through artificial selection and self-fertilization, which have exposed rare recessive variants in elite inbred lines. However, the ongoing effect of these rare alleles on modern inbred maize is unknown. By analysing this gene expression resource and exploiting the extreme diversity and rapid linkage disequilibrium decay of maize, we characterize the effect of rare alleles and evolutionary history on the regulation of expression. Rare alleles are associated with the dysregulation of expression, and we correlate this dysregulation to seed-weight fitness. We find enrichment of ancestral rare variants among expression quantitative trait loci mapped in modern inbred lines, which suggests that historic bottlenecks have shaped regulation. Our results suggest that one path for further genetic improvement in agricultural species lies in purging the rare deleterious variants that have been associated with crop fitness.


Subject(s)
Alleles , Gene Expression Regulation, Plant/genetics , Genetic Fitness/genetics , Zea mays/genetics , Crops, Agricultural/genetics , Genetic Variation/genetics , Genome, Plant/genetics , Genotype , Linkage Disequilibrium , Phenotype , Population Density , Quantitative Trait Loci/genetics , RNA, Plant/genetics , Seeds/genetics , Sequence Analysis, RNA
12.
Acta Pharmacol Sin ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886550

ABSTRACT

Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 µM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.

13.
BMC Health Serv Res ; 24(1): 726, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872151

ABSTRACT

BACKGROUND: In China, economic, urbanization, and policy differences between the eastern and western regions lead to uneven healthcare resources. This disparity is more pronounced in the west due to fewer healthcare personnel per thousand individuals and imbalanced doctor-to-nurse ratios, which exacerbates healthcare challenges. This study examines the spatial distribution of human resources in maternal and child healthcare from 2016 to 2021, highlighting regional disparities and offering insights for future policy development. METHODS: The data were sourced from the "China Health and Family Planning Statistical Yearbook" (2017) and the "China Health and Health Statistics Yearbook" (2018-2022). This study utilized GeoDa 1.8.6 software to conduct both global and local spatial autocorrelation analyses, using China's administrative map as the base dataset. RESULTS: From 2016 to 2021, there was an upward trend in the number of health personnel and various types of health technical personnel in Chinese maternal and child healthcare institutions. The spatial distribution of these personnel from 2016 to 2021 revealed clusters characterized as high-high, low-low, high-low and low-high. Specifically, high-high clusters were identified in Guangxi, Hunan, Jiangxi, and Guangdong provinces; low-low in Xinjiang Uygur Autonomous Region and Inner Mongolia Autonomous Region; high-low in Sichuan province; and low-high in Fujian and Anhui provinces. CONCLUSIONS: From 2016 to 2021, there was evident spatial clustering of health personnel and various health technical personnel in Chinese maternal and child healthcare institutions, indicating regional imbalances.


Subject(s)
Resource Allocation , Humans , China , Female , Spatial Analysis , Child , Health Personnel/statistics & numerical data , Health Workforce/statistics & numerical data , Maternal-Child Health Services/statistics & numerical data
14.
Holist Nurs Pract ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102494

ABSTRACT

The purpose of this study was to understand the relationship between the characteristics, health status, and health-promoting lifestyles of volunteer workers who participate in the community among middle-aged and older adults. A cross-sectional study was conducted to collect data from 173 middle-aged and older adults volunteers from 2 communities in North Taiwan. Data were collected using a structured questionnaire that included Demographic Characteristics Form, Self-Rated Health Status Scale, and Health Promotion Lifestyle Scale. Most of the volunteers were female, with an average age of 60.41 (±9.30) years. The average item score for the health promotion lifestyle was 74.07 (SD = 19.27). Participants scored highest on the social support subscales and lowest on the exercise subscales, followed by health responsibility subscales. Multiple regression analysis revealed that an average of 6 to 8 hours of volunteer services per week, diversity of volunteer services, and self-rated health status were each significantly associated with a greater health promotion lifestyle. Community health care workers should strengthen community volunteer support networks and motivate volunteers to attend health-related classes. Various community activities can remind each volunteer of their health responsibilities and awareness of a healthy promotion lifestyle.

15.
BMC Genomics ; 24(1): 770, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087243

ABSTRACT

BACKGROUND: As the largest substantive organ of animals, the liver plays an essential role in the physiological processes of digestive metabolism and immune defense. However, the cellular composition of the pig liver remains poorly understood. This investigation used single-nucleus RNA sequencing technology to identify cell types from liver tissues of pigs, providing a theoretical basis for further investigating liver cell types in pigs. RESULTS: The analysis revealed 13 cells clusters which were further identified 7 cell types including endothelial cells, T cells, hepatocytes, Kupffer cells, stellate cells, B cells, and cholangiocytes. The dominant cell types were endothelial cells, T cells and hepatocytes in the liver tissue of Dahe pigs and Dahe black pigs, which accounts for about 85.76% and 82.74%, respectively. The number of endothelial cells was higher in the liver tissue of Dahe pigs compared to Dahe black pigs, while the opposite tendency was observed for T cells. Moreover, functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic endothelial cells were significantly enriched in the protein processing in endoplasmic reticulum, MAPK signaling pathway, and FoxO signaling pathway. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic T cells were significantly enriched in the thyroid hormone signaling pathway, B cell receptor signaling pathway, and focal adhesion. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic hepatocytes were significantly enriched in the metabolic pathways. CONCLUSIONS: In summary, this study provides a comprehensive cell atlas of porcine hepatic tissue. The number, gene expression level and functional characteristics of each cell type in pig liver tissue varied between breeds.


Subject(s)
Endothelial Cells , Transcriptome , Animals , Swine , Plant Breeding , Hepatocytes/metabolism , Liver/metabolism
16.
Pharmacogenomics J ; 23(2-3): 50-59, 2023 05.
Article in English | MEDLINE | ID: mdl-36658263

ABSTRACT

Major depressive disorder (MDD) is associated with high heterogeneity in clinical presentation. In addition, response to treatment with selective serotonin reuptake inhibitors (SSRIs) varies considerably among patients. Therefore, identifying genetic variants that may contribute to SSRI treatment responses in MDD is essential. In this study, we analyzed the syndromal factor structures of the Hamilton Depression Rating Scale in 479 patients with MDD by using exploratory factor analysis. All patients were followed up biweekly for 8 weeks. Treatment response was defined for all syndromal factors and total scores. In addition, a genome-wide association study was performed to investigate the treatment outcomes at week 4 and repeatedly assess all visits during follow-up by using mixed models adjusted for age, gender, and population substructure. Moreover, the role of genetic variants in suicidal and sexual side effects was explored, and five syndromal factors for depression were derived: core, insomnia, somatic anxiety, psychomotor-insight, and anorexia. Subsequently, several known genes were mapped to suggestive signals for treatment outcomes, including single-nucleotide polymorphisms (SNPs) in PRF1, UTP20, MGAM, and ENSG00000286536 for psychomotor-insight and in C4orf51 for anorexia. In total, 33 independent SNPs for treatment responses were tested in a mixed model, 12 of which demonstrated a p value <0.05. The most significant SNP was rs2182717 in the ENSR00000803469 gene located on chromosome 6 for the core syndromal factor (ß = -0.638, p = 1.8 × 10-4) in terms of symptom improvement over time. Patients with a GG or GA genotype with the rs2182717 SNP also exhibited a treatment response (ß = 0.089, p = 2.0 × 10-6) at week 4. Moreover, rs1836075352 was associated with sexual side effects (p = 3.2 × 10-8). Pathway and network analyses using the identified SNPs revealed potential biological functions involved in treatment response, such as neurodevelopment-related functions and immune processes. In conclusion, we identified loci that may affect the clinical response to treatment with antidepressants in the context of empirically defined depressive syndromal factors and side effects among the Taiwanese Han population, thus providing novel biological targets for further investigation.


Subject(s)
Depressive Disorder, Major , Selective Serotonin Reuptake Inhibitors , Humans , Selective Serotonin Reuptake Inhibitors/adverse effects , Depression/drug therapy , Depression/genetics , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Anorexia , Genome-Wide Association Study
17.
J Transl Med ; 21(1): 442, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37415167

ABSTRACT

OBJECTIVE: This systematic review and meta-analysis study aimed to evaluate the effectiveness of probiotics supplementation on glycaemic control in patients with type 2 diabetes mellitus (T2DM) based on the data from the randomised clinical trials (RCTs). METHODS: PubMed, Web of Sciences, Embase, and Cochrane Library were searched from the inception to October 2022, and RCTs about probiotics and T2DM were collected. The standardised mean difference (SMD) with 95% confidence interval (CI) was used to estimate the effects of probiotics supplementation on glycaemic control related parameters, e.g. fasting blood glucose (FBG), insulin, haemoglobin A1c (HbA1c), and homeostasis model of assessment of insulin resistance (HOMA-IR). RESULTS: Thirty RCTs including 1,827 T2MD patients were identified. Compared with the placebo group, the probiotics supplementation group had a significant decrease in the parameters of glycaemic control, including FBG (SMD = - 0.331, 95% CI - 0.424 to - 0.238, Peffect < 0.001), insulin (SMD = - 0.185, 95% CI - 0.313 to - 0.056, Peffect = 0.005), HbA1c (SMD = - 0.421, 95% CI - 0.584 to - 0.258, Peffect < 0.001), and HOMA-IR (SMD = - 0.224, 95% CI - 0.342 to - 0.105, Peffect < 0.001). Further subgroup analyses showed that the effect was larger in the subgroups of Caucasians, high baseline body mass index (BMI ≥ 30.0 kg/m2), Bifidobacterium and food-type probiotics (Psubgroup < 0.050). CONCLUSION: This study supported that probiotics supplementation had favourable effects on glycaemic control in T2DM patients. It may be a promising adjuvant therapy for patients with T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Probiotics , Adult , Humans , Glycated Hemoglobin , Blood Glucose , Glycemic Control , Diabetes Mellitus, Type 2/drug therapy , Probiotics/therapeutic use , Probiotics/pharmacology , Insulin/therapeutic use , Randomized Controlled Trials as Topic
18.
J Med Virol ; 95(11): e29224, 2023 11.
Article in English | MEDLINE | ID: mdl-37970759

ABSTRACT

Previous studies have demonstrated strong associations between host genetic factors and Epstein-Barr virus (EBV) VCA-IgA with the risk of nasopharyngeal carcinoma (NPC). However, the specific interplay between host genetics and EBV VCA-IgA on NPC risk is not well understood. In this two-stage case-control study (N = 4804), we utilized interaction and mediation analysis to investigate the interplay between host genetics (genome-wide association study-derived polygenic risk score [PRS]) and EBV VCA-IgA antibody level in the NPC risk. We employed a four-way decomposition analysis to assess the extent to which the genetic effect on NPC risk is mediated by or interacts with EBV VCA-IgA. We consistently found a significant interaction between the PRS and EBV VCA-IgA on NPC risk (discovery population: synergy index [SI] = 2.39, 95% confidence interval [CI] = 1.85-3.10; replication population: SI = 3.10, 95% CI = 2.17-4.44; all pinteraction < 0.001). Moreover, the genetic variants included in the PRS demonstrated similar interactions with EBV VCA-IgA antibody. We also observed an obvious dose-response relationship between the PRS and EBV VCA-IgA antibody on NPC risk (all ptrend < 0.001). Furthermore, our decomposition analysis revealed that a substantial proportion (approximately 90%) of the genetic effects on NPC risk could be attributed to host genetic-EBV interaction, while the risk effects mediated by EBV VCA-IgA antibody were weak and statistically insignificant. Our study provides compelling evidence for an interaction between host genetics and EBV VCA-IgA antibody in the development of NPC. These findings emphasize the importance of implementing measures to control EBV infection as a crucial strategy for effectively preventing NPC, particularly in individuals at high genetic risk.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/genetics , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Nasopharyngeal Neoplasms/genetics , Case-Control Studies , Genome-Wide Association Study , Antibodies, Viral/genetics , Capsid Proteins/genetics , Antigens, Viral/genetics , Immunoglobulin A
19.
Int Immunol ; 34(8): 435-444, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35689642

ABSTRACT

LILRB4 (B4, also known as ILT3/CD85k) is an immune checkpoint of myeloid lineage cells, albeit its mode of function remains obscure. Our recent identification of a common ligand for both human B4 and its murine ortholog gp49B as the fibronectin (FN) N-terminal 30 kDa domain poses the question of how B4/gp49B regulate cellular activity upon recognition of FN in the plasma and/or the extracellular matrix. Since FN in the extracellular matrix is tethered by FN-binding integrins, we hypothesized that B4/gp49B would tether FN in cooperation with integrins on the cell surface, thus they should be in close vicinity to integrins spatially. This scenario suggests a mode of function of B4/gp49B by which the FN-induced signal is regulated. The FN pull-down complex was found to contain gp49B and integrin ß 1 in bone marrow-derived macrophages. The confocal fluorescent signals of the three molecules on the intrinsically FN-tethering macrophages were correlated to each other. When FN-poor macrophages adhered to culture plates, the gp49-integrin ß 1 signal correlation increased at the focal adhesion, supporting the notion that gp49B and integrin ß 1 become spatially closer to each other there. Adherence of RAW264.7 and THP-1 cells to immobilized FN induced phosphorylation of spleen tyrosine kinase, whose level was augmented under B4/gp49B deficiency. Thus, we concluded that B4/gp49B can co-tether FN in cooperation with integrin in the cis configuration on the same cell, forming a B4/gp49B-FN-integrin triplet as a regulatory unit of a focal adhesion-dependent pro-inflammatory signal in macrophages.


Subject(s)
Fibronectins , Integrins , Animals , Cell Adhesion , Fibronectins/chemistry , Fibronectins/metabolism , Fibronectins/pharmacology , Humans , Integrins/metabolism , Macrophages/metabolism , Membrane Glycoproteins/metabolism , Mice , Phosphorylation , Receptors, Immunologic/metabolism
20.
Tohoku J Exp Med ; 259(4): 273-284, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36642505

ABSTRACT

Mast cells protect a host from invasion by infectious agents and environmental allergens through activation of innate and adaptive immune receptors, their excessive activation being tightly regulated by inhibitory receptors, such as leukocyte immunoglobulin-like receptor (LILR)B4 (gp49B in mice). However, the regulatory mechanism of LILRB4/gp49B expressed on mast cells remains to be clarified in relation to their recently identified ligand, fibronectin (FN), a direct activator of integrins and an indirect stimulator of high-affinity Fc receptor for IgE (FcεRI). Confocal microscopic analysis suggested that gp49B is spatially close to integrin ß1 on non-adhered bone marrow-derived mast cells (BMMCs). Their spatial relatedness increases further at robust focal adhesion sites on cells adhering to immobilized FN. However, the confocal fluorescence signal of the α subunit of FcεRI was found to be correlated to neither gp49B nor integrin ß1 on non-adherent and adherent BMMCs. Stimulation of FcεRI with an immobilized antigen caused FcεRIα signals to accumulate in an inside area surrounded by robust focal adhesion with a concomitant slight increase in the signal correlation of FcεRIα and integrin ß1, accompanied by a less significant increase of the FcεRIα and gp49 correlation. Thus, activating and inhibitory FN receptors integrin and gp49B, respectively, were co-localized via FN at robust focal adhesion sites on BMMCs, while FcεRI was not close to gp49B spatially.


Subject(s)
Fibronectins , Integrins , Animals , Mice , Focal Adhesions , Mast Cells/physiology , Receptors, IgE
SELECTION OF CITATIONS
SEARCH DETAIL