Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 398
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 56(6): 1410-1428.e8, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37257450

ABSTRACT

Although host responses to the ancestral SARS-CoV-2 strain are well described, those to the new Omicron variants are less resolved. We profiled the clinical phenomes, transcriptomes, proteomes, metabolomes, and immune repertoires of >1,000 blood cell or plasma specimens from SARS-CoV-2 Omicron patients. Using in-depth integrated multi-omics, we dissected the host response dynamics during multiple disease phases to reveal the molecular and cellular landscapes in the blood. Specifically, we detected enhanced interferon-mediated antiviral signatures of platelets in Omicron-infected patients, and platelets preferentially formed widespread aggregates with leukocytes to modulate immune cell functions. In addition, patients who were re-tested positive for viral RNA showed marked reductions in B cell receptor clones, antibody generation, and neutralizing capacity against Omicron. Finally, we developed a machine learning model that accurately predicted the probability of re-positivity in Omicron patients. Our study may inspire a paradigm shift in studying systemic diseases and emerging public health concerns.


Subject(s)
Blood Platelets , COVID-19 , Humans , SARS-CoV-2 , Breakthrough Infections , Multiomics , Antibodies, Neutralizing , Antibodies, Viral
2.
Proc Natl Acad Sci U S A ; 121(24): e2400378121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830096

ABSTRACT

Epitranscriptomic RNA modifications have emerged as important regulators of the fate and function of viral RNAs. One prominent modification, the cytidine methylation 5-methylcytidine (m5C), is found on the RNA of HIV-1, where m5C enhances the translation of HIV-1 RNA. However, whether m5C functionally enhances the RNA of other pathogenic viruses remains elusive. Here, we surveyed a panel of commonly found RNA modifications on the RNA of hepatitis B virus (HBV) and found that HBV RNA is enriched with m5C as well as ten other modifications, at stoichiometries much higher than host messenger RNA (mRNA). Intriguingly, m5C is mostly found on the epsilon hairpin, an RNA element required for viral RNA encapsidation and reverse transcription, with these m5C mainly deposited by the cellular methyltransferase NSUN2. Loss of m5C from HBV RNA due to NSUN2 depletion resulted in a partial decrease in viral core protein (HBc) production, accompanied by a near-complete loss of the reverse transcribed viral DNA. Similarly, mutations introduced to remove the methylated cytidines resulted in a loss of HBc production and reverse transcription. Furthermore, pharmacological disruption of m5C deposition led to a significant decrease in HBV replication. Thus, our data indicate m5C methylations as a critical mediator of the epsilon elements' function in HBV virion production and reverse transcription, suggesting the therapeutic potential of targeting the m5C methyltransfer process on HBV epsilon as an antiviral strategy.


Subject(s)
Cytidine , Hepatitis B virus , RNA, Viral , Reverse Transcription , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Hepatitis B virus/physiology , RNA, Viral/genetics , RNA, Viral/metabolism , Cytidine/analogs & derivatives , Cytidine/metabolism , Cytidine/genetics , Humans , Reverse Transcription/genetics , Methylation , Virus Replication/genetics , Epigenesis, Genetic , Virion/metabolism , Virion/genetics , Transcriptome
3.
PLoS Genet ; 18(3): e1010129, 2022 03.
Article in English | MEDLINE | ID: mdl-35353811

ABSTRACT

Over 1,500 variants in the ABCA4 locus cause phenotypes ranging from severe, early-onset retinal degeneration to very late-onset maculopathies. The resulting ABCA4/Stargardt disease is the most prevalent Mendelian eye disorder, although its underlying clinical heterogeneity, including penetrance of many alleles, are not well-understood. We hypothesized that a share of this complexity is explained by trans-modifiers, i.e., variants in unlinked loci, which are currently unknown. We sought to identify these by performing exome sequencing in a large cohort for a rare disease of 622 cases and compared variation in seven genes known to clinically phenocopy ABCA4 disease to cohorts of ethnically matched controls. We identified a significant enrichment of variants in 2 out of the 7 genes. Moderately rare, likely functional, variants, at the minor allele frequency (MAF) <0.005 and CADD>25, were enriched in ROM1, where 1.3% of 622 patients harbored a ROM1 variant compared to 0.3% of 10,865 controls (p = 2.41E04; OR 3.81 95% CI [1.77; 8.22]). More importantly, analysis of common variants (MAF>0.1) identified a frequent haplotype in PRPH2, tagged by the p.Asp338 variant with MAF = 0.21 in the matched general population that was significantly increased in the patient cohort, MAF 0.25, p = 0.0014. Significant differences were also observed between ABCA4 disease subgroups. In the late-onset subgroup, defined by the hypomorphic p.Asn1868Ile variant and including c.4253+43G>A, the allele frequency for the PRPH2 p.Asp338 variant was 0.15 vs 0.27 in the remaining cohort, p = 0.00057. Known functional data allowed suggesting a mechanism by which the PRPH2 haplotype influences the ABCA4 disease penetrance. These associations were replicated in an independent cohort of 408 patients. The association was highly statistically significant in the combined cohorts of 1,030 cases, p = 4.00E-05 for all patients and p = 0.00014 for the hypomorph subgroup, suggesting a substantial trans-modifying role in ABCA4 disease for both rare and common variants in two unlinked loci.


Subject(s)
ATP-Binding Cassette Transporters , Macular Degeneration , ATP-Binding Cassette Transporters/genetics , Eye Proteins/genetics , Gene Frequency , Humans , Macular Degeneration/genetics , Mutation , Pedigree , Phenotype , Stargardt Disease/genetics , Tetraspanins/genetics
4.
J Proteome Res ; 23(6): 1883-1893, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38497708

ABSTRACT

We introduce single cell Proteoform imaging Mass Spectrometry (scPiMS), which realizes the benefit of direct solvent extraction and MS detection of intact proteins from single cells dropcast onto glass slides. Sampling and detection of whole proteoforms by individual ion mass spectrometry enable a scalable approach to single cell proteomics. This new scPiMS platform addresses the throughput bottleneck in single cell proteomics and boosts the cell processing rate by several fold while accessing protein composition with higher coverage.


Subject(s)
Mass Spectrometry , Proteomics , Single-Cell Analysis , Single-Cell Analysis/methods , Proteomics/methods , Humans , Mass Spectrometry/methods , Proteome/analysis
5.
Plant Cell Physiol ; 65(2): 199-215, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37951591

ABSTRACT

Previous studies on the intricate interactions between plants and microorganisms have revealed that fungal volatile compounds (VCs) can affect plant growth and development. However, the precise mechanisms underlying these actions remain to be delineated. In this study, we discovered that VCs from the soilborne fungus Tolypocladium inflatum GT22 enhance the growth of Arabidopsis. Remarkably, priming Arabidopsis with GT22 VCs caused the plant to display an enhanced immune response and mitigated the detrimental effects of both pathogenic infections and copper stress. Transcriptomic analyses of Arabidopsis seedlings treated with GT22 VCs for 3, 24 and 48 h revealed that 90, 83 and 137 genes were differentially expressed, respectively. The responsive genes are known to be involved in growth, hormone regulation, defense mechanisms and signaling pathways. Furthermore, we observed the induction of genes related to innate immunity, hypoxia, salicylic acid biosynthesis and camalexin biosynthesis by GT22 VCs. Among the VCs emitted by GT22, exposure of Arabidopsis seedlings to limonene promoted plant growth and attenuated copper stress. Thus, limonene appears to be a key mediator of the interaction between GT22 and plants. Overall, our findings provide evidence that fungal VCs can promote plant growth and enhance both biotic and abiotic tolerance. As such, our study suggests that exposure of seedlings to T. inflatum GT22 VCs may be a means of improving crop productivity. This study describes a beneficial interaction between T. inflatun GT22 and Arabidopsis. Our investigation of microorganism function in terms of VC activities allowed us to overcome the limitations of traditional microbial application methods. The importance of this study lies in the discovery of T. inflatun GT22 as a beneficial microorganism. This soilborne fungus emits VCs with plant growth-promoting effects and the ability to alleviate both copper and pathogenic stress. Furthermore, our study offers a valuable approach to tracking the activities of fungal VC components via transcriptomic analysis and sheds light on the mechanisms through which VCs promote plant growth and induce resistance. This research significantly advances our knowledge of VC applications and provides an example for further investigations within this field.


Subject(s)
Arabidopsis , Hypocreales , Arabidopsis/genetics , Copper/pharmacology , Copper/metabolism , Limonene/metabolism , Limonene/pharmacology , Hypocreales/metabolism , Plants/metabolism , Seedlings/metabolism , Gene Expression Regulation, Plant
6.
Am J Hum Genet ; 108(5): 903-918, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33909993

ABSTRACT

Macular degeneration (MD) is characterized by the progressive deterioration of the macula and represents one of the most prevalent causes of blindness worldwide. Abnormal intracellular accumulation of lipid droplets and pericellular deposits of lipid-rich material in the retinal pigment epithelium (RPE) called drusen are clinical hallmarks of different forms of MD including Doyne honeycomb retinal dystrophy (DHRD) and age-related MD (AMD). However, the appropriate molecular therapeutic target underlying these disorder phenotypes remains elusive. Here, we address this knowledge gap by comparing the proteomic profiles of induced pluripotent stem cell (iPSC)-derived RPEs (iRPE) from individuals with DHRD and their isogenic controls. Our analysis and follow-up studies elucidated the mechanism of lipid accumulation in DHRD iRPE cells. Specifically, we detected significant downregulation of carboxylesterase 1 (CES1), an enzyme that converts cholesteryl ester to free cholesterol, an indispensable process in cholesterol export. CES1 knockdown or overexpression of EFEMP1R345W, a variant of EGF-containing fibulin extracellular matrix protein 1 that is associated with DHRD and attenuated cholesterol efflux and led to lipid droplet accumulation. In iRPE cells, we also found that EFEMP1R345W has a hyper-inhibitory effect on epidermal growth factor receptor (EGFR) signaling when compared to EFEMP1WT and may suppress CES1 expression via the downregulation of transcription factor SP1. Taken together, these results highlight the homeostatic role of cholesterol efflux in iRPE cells and identify CES1 as a mediator of cholesterol efflux in MD.


Subject(s)
Cholesterol/metabolism , Macular Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , Adolescent , Adult , Carboxylic Ester Hydrolases/genetics , Cell Differentiation/genetics , Cytokines/metabolism , ErbB Receptors/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Humans , Inflammation/metabolism , Lipid Metabolism , Macular Degeneration/pathology , Middle Aged , Optic Disk Drusen/congenital , Optic Disk Drusen/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/metabolism , Retinal Pigment Epithelium/pathology , Signal Transduction , Sp1 Transcription Factor/metabolism , Transcription, Genetic , Unfolded Protein Response
7.
Small ; 20(26): e2311343, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38236167

ABSTRACT

Although lithium-sulfur (Li-S) batteries have broad market prospects due to their high theoretical energy density and potential cost-effectiveness, the practical applications still face serious shuttle effects of polysulfides (LiPSs) and slow redox reactions. Therefore, in this paper, cobalt nitride nanoparticles encapsulated in nitrogen-doped carbon nanotube (CoN@NCNT) are prepared as a functional layer for the separator of high-performance Li-S batteries. Carbon nanotubes with large specific surface areas not only promote the transport of ions and electrons but also weaken the migration of LiPSs and confine the dissolution of LiPSs in electrolytes. The lithiophilic heteroatom N adsorbs LiPSs by strong chemical adsorption, and the CoN particles with high catalytic activity greatly improve the kinetics of the conversion between LiPSs and Li2S2/Li2S during the charge-discharge process. Due to these advantages, the battery with CoN@NCNT modified separator has superior rate performance (initial discharge capacity of 834.7 mAh g-1 after activation at 1 C) and excellent cycle performance (capacity remains 729.7 mAh g-1 after 200 cycles at 0.2 C). This work proposes a strategy that can give the separator a strong ability to confinement-adsorption-catalysis of LiPSs in order to provide more possibilities for the development of Li-S batteries.

8.
Insect Mol Biol ; 33(2): 157-172, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160324

ABSTRACT

Insect chitinases have been proposed as potential targets for pest control. In this work, a novel group IV chitinase gene, MdCht9, from Musca domestica was found to have multiple functions in the physiological activity, including chitin regulation, development and antifungal immunity. The MdCht9 gene was cloned and sequenced, its phylogeny was analysed and its expression was determined in normal and 20E treated larvae. Subsequently, RNA interference (RNAi)-mediated MdCht9 knockdown was performed, followed by biochemical assays, morphological observations and transcriptome analysis. Finally, the recombinant protein MdCht9 (rMdCht9) was purified and tested for anti-microbial activity and enzyme characteristics. The results showed that MdCht9 consists of three domains, highly expressed in a larval salivary gland. RNAi silencing of MdCht9 resulted in significant down-regulation of chitin content and expression of 15 chitin-binding protein (CBP) genes, implying a new insight that MdCht9 might regulate chitin content by influencing the expression of CBPs. In addition, more than half of the lethality and partial wing deformity appeared due to the dsMdCht9 treatment. In addition, the rMdCht9 exhibited anti-microbial activity towards Candida albicans (fungus) but not towards Escherichia coli (G-) or Staphylococcus aureus (G+). Our work expands on previous studies of chitinase while providing a potential target for pest management.


Subject(s)
Chitinases , Houseflies , Animals , Houseflies/genetics , Houseflies/metabolism , Chitinases/metabolism , Larva , Recombinant Proteins/genetics , Chitin/metabolism
9.
Arch Microbiol ; 206(7): 298, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860999

ABSTRACT

A decreased chloramphenicol susceptibility in Haemophilus influenzae is commonly caused by the activity of chloramphenicol acetyltransferases (CATs). However, the involvement of membrane proteins in chloramphenicol susceptibility in H. influenzae remains unclear. In this study, chloramphenicol susceptibility testing, whole-genome sequencing, and analyses of membrane-related genes were performed in 51 H. influenzae isolates. Functional complementation assays and structure-based protein analyses were conducted to assess the effect of proteins with sequence substitutions on the minimum inhibitory concentration (MIC) of chloramphenicol in CAT-negative H. influenzae isolates. Six isolates were resistant to chloramphenicol and positive for type A-2 CATs. Of these isolates, A3256 had a similar level of CAT activity but a higher chloramphenicol MIC relative to the other resistant isolates; it also had 163 specific variations in 58 membrane genes. Regarding the CAT-negative isolates, logistic regression and receiver operator characteristic curve analyses revealed that 48T > G (Asn16Lys), 85 C > T (Leu29Phe), and 88 C > A (Leu30Ile) in HI_0898 (emrA), and 86T > G (Phe29Cys) and 141T > A (Ser47Arg) in HI_1177 (artM) were associated with enhanced chloramphenicol susceptibility, whereas 997G > A (Val333Ile) in HI_1612 (hmrM) was associated with reduced chloramphenicol susceptibility. Furthermore, the chloramphenicol MIC was lower in the CAT-negative isolates with EmrA-Leu29Phe/Leu30Ile or ArtM-Ser47Arg substitution and higher in those with HmrM-Val333Ile substitution, relative to their counterparts. The Val333Ile substitution was associated with enhanced HmrM protein stability and flexibility and increased chloramphenicol MICs in CAT-negative H. influenzae isolates. In conclusion, the substitution in H. influenzae multidrug efflux pump HmrM associated with reduced chloramphenicol susceptibility was characterised.


Subject(s)
Amino Acid Substitution , Anti-Bacterial Agents , Bacterial Proteins , Chloramphenicol O-Acetyltransferase , Chloramphenicol , Haemophilus influenzae , Microbial Sensitivity Tests , Chloramphenicol/pharmacology , Haemophilus influenzae/genetics , Haemophilus influenzae/drug effects , Haemophilus influenzae/metabolism , Haemophilus influenzae/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chloramphenicol O-Acetyltransferase/genetics , Chloramphenicol O-Acetyltransferase/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Chloramphenicol Resistance/genetics , Humans , Haemophilus Infections/microbiology , Whole Genome Sequencing
10.
Stat Med ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772875

ABSTRACT

Recurrent events, including cardiovascular events, are commonly observed in biomedical studies. Understanding the effects of various treatments on recurrent events and investigating the underlying mediation mechanisms by which treatments may reduce the frequency of recurrent events are crucial tasks for researchers. Although causal inference methods for recurrent event data have been proposed, they cannot be used to assess mediation. This study proposed a novel methodology of causal mediation analysis that accommodates recurrent outcomes of interest in a given individual. A formal definition of causal estimands (direct and indirect effects) within a counterfactual framework is given, and empirical expressions for these effects are identified. To estimate these effects, a semiparametric estimator with triple robustness against model misspecification was developed. The proposed methodology was demonstrated in a real-world application. The method was applied to measure the effects of two diabetes drugs on the recurrence of cardiovascular disease and to examine the mediating role of kidney function in this process.

11.
Inorg Chem ; 63(16): 7442-7454, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38606439

ABSTRACT

As electrocatalysts, molecular catalysts with large aromatic systems (such as terpyridine, porphyrin, or phthalocyanine) have been widely applied in the CO2 reduction reaction (CO2RR). However, these monomeric catalysts tend to aggregate due to strong π-π interactions, resulting in limited accessibility of the active site. In light of these challenges, we present a novel strategy of active site isolation for enhancing the CO2RR. Six Ru(Tpy)2 were integrated into the skeleton of a metallo-organic supramolecule by stepwise self-assembly in order to form a rhombus-fused six-pointed star R1 with active site isolation. The turnover frequency (TOF) of R1 was as high as 10.73 s-1 at -0.6 V versus reversible hydrogen electrode (vs RHE), which is the best reported value so far at the same potential to our knowledge. Furthermore, by increasing the connector density on R1's skeleton, a more stable triangle-fused six-pointed star T1 was successfully synthesized. T1 exhibits exceptional stability up to 126 h at -0.4 V vs RHE and excellent TOF values of CO. The strategy of active site isolation and connector density increment significantly enhanced the catalytic activity by increasing the exposure of the active site. This work provides a starting point for the design of molecular catalysts and facilitates the development of a new generation of catalysts with a high catalytic performance.

12.
Int J Hyperthermia ; 41(1): 2304250, 2024.
Article in English | MEDLINE | ID: mdl-38342495

ABSTRACT

PURPOSE: Cisplatin is commonly prescribed in hyperthermic intraperitoneal chemotherapy (HIPEC) for peritoneal malignancy. Acute kidney injury (AKI) is regarded as a common complication after HIPEC combined with cytoreductive surgery (CRS). However, post-HIPEC chronic kidney disease (CKD) is scarce and less investigated. This study aims to investigate the incidence of CKD following cisplatin-based HIPEC and to analyse the associated risk factors. MATERIALS AND METHODS: From January 2016 to August 2021, a total of 55 patients treated with CRS and cisplatin-based HIPEC for peritoneal carcinomatosis were categorized retrospectively into groups, with and without CKD. Demographics, comorbidity, surgery, postoperative management, and complications were collected to evaluate risk factors for cisplatin-based HIPEC-related CKD. Univariate and multivariate analyses were conducted to confirm the correlation between different variables and CKD occurrence. RESULTS: Of the 55 patients, 24 (43.6%) patients developed AKI and 17 (70.8%) patients of these AKI patients progressed to CKD. Multivariate regression analysis identified intraoperative use of parecoxib (Odds Ratio (OR) = 4.39) and intraoperative maximum temperature > 38.5°C (OR = 6.40) as major risk factors for cisplatin-based HIPEC-related CKD occurrence. Though type II diabetes mellitus and intraoperative complications were the independent risk factors of AKI following cisplatin-based HIPEC, but they were not shown in CKD analysis. CONCLUSION: Intraoperative use of parecoxib during cisplatin-based HIPEC emerged as a significant risk factor for postoperative CKD. Clinicians should exercise caution in prescribing parecoxib during HIPEC procedures. Additionally, maintaining intraoperative body temperature below 38.5°C might be crucial to mitigate the risk of CKD development. This study underscores the importance of identifying and preventing specific risk factors to improve long-term renal outcomes in patients undergoing cisplatin-based HIPEC.


Subject(s)
Acute Kidney Injury , Diabetes Mellitus, Type 2 , Hyperthermia, Induced , Renal Insufficiency, Chronic , Humans , Cisplatin/adverse effects , Hyperthermic Intraperitoneal Chemotherapy/adverse effects , Retrospective Studies , Hyperthermia, Induced/adverse effects , Risk Factors , Acute Kidney Injury/etiology , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Cytoreduction Surgical Procedures/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Combined Modality Therapy , Survival Rate
13.
BMC Med Inform Decis Mak ; 24(1): 71, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475812

ABSTRACT

BACKGROUND: Wearable devices have the advantage of always being with individuals, enabling easy detection of their movements. Smart clothing can provide feedback to family caregivers of older adults with disabilities who require in-home care. METHODS: This study describes the process of setting up a smart technology-assisted (STA) home-nursing care program, the difficulties encountered, and strategies applied to improve the program. The STA program utilized a smart-vest, designed specifically for older persons with dementia or recovering from hip-fracture surgery. The smart-vest facilitated nurses' and family caregivers' detection of a care receiver's movements via a remote-monitoring system. Movements included getting up at night, time spent in the bathroom, duration of daytime immobility, leaving the house, and daily activity. Twelve caregivers of older adults and their care receiver participated; care receivers included persons recovering from hip fracture (n = 5) and persons living with dementia (n = 7). Data about installation of the individual STA in-home systems, monitoring, and technical difficulties encountered were obtained from researchers' reports. Qualitative data about the caregivers' and care receivers' use of the system were obtained from homecare nurses' reports, which were explored with thematic analysis. RESULTS: Compiled reports from the research team identified three areas of difficulty with the system: incompatibility with the home environment, which caused extra hours of manpower and added to the cost of set-up and maintenance; interruptions in data transmissions, due to system malfunctions; and inaccuracies in data transmissions, due to sensors on the smart-vest. These difficulties contributed to frustration experienced by caregivers and care receivers. CONCLUSIONS: The difficulties encountered impeded implementation of the STA home nursing care. Each of these difficulties had their own unique problems and strategies to resolve them. Our findings can provide a reference for future implementation of similar smart-home systems, which could facilitate ease-of-use for family caregivers.


Subject(s)
Dementia , Hip Fractures , Home Care Services , Humans , Aged , Aged, 80 and over , Caregivers , Home Nursing , Clothing
14.
Am J Occup Ther ; 78(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38165221

ABSTRACT

IMPORTANCE: Clarifying the relationship between kindergarteners' characteristics and their future handwriting performance is beneficial for the early detection of children at risk of handwriting difficulties. OBJECTIVE: To determine which visual-perceptual and motor skills and behavioral traits significantly predict kindergartners' Chinese handwriting legibility and speed in the first grade. DESIGN: One-year longitudinal, observational design. SETTING: Kindergarten and elementary schools. PARTICIPANTS: One hundred six kindergarten children (53 boys and 53 girls; ages 5 or 6 yr) were recruited. OUTCOMES AND MEASURES: The participants completed two subtests of the Bruininks-Oseretsky Test of Motor Proficiency-Second Edition, Test of Visual Perceptual Skills-Third Edition, Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery™ VMI), and the Attention-Deficit/Hyperactivity Disorder Test-Chinese Version in kindergarten. Their handwriting legibility (character accuracy and construction) and speed were assessed by investigator-developed Chinese handwriting tests in the first grade. RESULTS: Multivariate regression analyses indicated the independent predictive power of spatial relationships (p = .042) and inattention (p = .004) for character accuracy. Visual-motor integration (VMI; p = .008) and inattention (p = .002) were the key predictors of character construction. Manual dexterity (p = .001) was the only significant predictor of writing speed. CONCLUSIONS AND RELEVANCE: Kindergarteners who perform poorly in spatial relationships, VMI, manual dexterity, and attention are likely to have less legible Chinese handwriting and slow writing speed in first grade. Plain-Language Summary: Children's visual-perceptual and motor skills and behavioral traits in kindergarten can predict their Chinese handwriting legibility and speed in first grade. This study found that kindergarteners who performed poorly in spatial relationships, VMI, manual dexterity, and attention were likely to have less legible Chinese handwriting and slow writing speed in the first grade.


Subject(s)
Motor Skills , Schools , Child , Female , Humans , Male , Educational Status , Handwriting , Language , Child, Preschool
15.
Plant Mol Biol ; 111(1-2): 21-36, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36109466

ABSTRACT

KEY MESSAGE: Plant-deleterious microbial volatiles activate the transactivation of hypoxia, MAMPs and wound responsive genes in Arabidopsis thaliana. AtMKK1 and AtMKK3 are involved in the plant-deleterious microbial volatiles-induced defense responses. Microbial volatile compounds (mVCs) are a collection of volatile metabolites from microorganisms with biological effects on all living organisms. mVCs function as gaseous modulators of plant growth and plant health. In this study, the defense events induced by plant-deleterious mVCs were investigated. Enterobacter aerogenes VCs lead to growth inhibition and immune responses in Arabidopsis thaliana. E. aerogenes VCs negatively regulate auxin response and transport gene expression in the root tip, as evidenced by decreased expression of DR5::GFP, PIN3::PIN3-GFP and PIN4::PIN4-GFP. Data from transcriptional analysis suggests that E. aerogenes VCs trigger hypoxia response, innate immune responses and metabolic processes. In addition, the transcript levels of the genes involved in the synthetic pathways of antimicrobial metabolites camalexin and coumarin are increased after the E. aerogenes VCs exposure. Moreover, we demonstrate that MKK1 serves as a regulator of camalexin biosynthesis gene expression in response to E. aerogenes VCs, while MKK3 is the regulator of coumarin biosynthesis gene expression. Additionally, MKK1 and MKK3 mediate the E. aerogenes VCs-induced callose deposition. Collectively, these studies provide molecular insights into immune responses by plant-deleterious mVCs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Indoles/metabolism , Plants/metabolism , Coumarins/metabolism , Gene Expression Regulation, Plant , Plant Roots/metabolism
16.
Plant Mol Biol ; 113(4-5): 143-155, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37985583

ABSTRACT

Microbial volatile compounds (mVCs) may cause stomatal closure to limit pathogen invasion as part of plant innate immune response. However, the mechanisms of mVC-induced stomatal closure remain unclear. In this study, we co-cultured Enterobacter aerogenes with Arabidopsis (Arabidopsis thaliana) seedlings without direct contact to initiate stomatal closure. Experiments using the reactive oxygen species (ROS)-sensitive fluorescent dye, H2DCF-DA, showed that mVCs from E. aerogenes enhanced ROS production in guard cells of wild-type plants. The involvement of ROS in stomatal closure was then demonstrated in an ROS production mutant (rbohD). In addition, we identified two stages of signal transduction during E. aerogenes VC-induced stomatal closure by comparing the response of wild-type Arabidopsis with a panel of mutants. In the early stage (3 h exposure), E. aerogenes VCs induced stomatal closure in wild-type and receptor-like kinase THESEUS1 mutant (the1-1) but not in rbohD, plant hormone-related mutants (nced3, erf4, jar1-1), or MAPK kinase mutants (mkk1 and mkk3). However, in the late stage (24 h exposure), E. aerogenes VCs induced stomatal closure in wild-type and rbohD but not in nced3, erf4, jar1-1, the1-1, mkk1 or mkk3. Taken together, our results suggest that E. aerogenes mVC-induced plant immune responses modulate stomatal closure in Arabidopsis by a multi-phase mechanism.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Abscisic Acid/pharmacology , Reactive Oxygen Species , Plant Stomata/physiology
17.
Hum Mol Genet ; 30(14): 1293-1304, 2021 06 26.
Article in English | MEDLINE | ID: mdl-33909047

ABSTRACT

Over 1200 variants in the ABCA4 gene cause a wide variety of retinal disease phenotypes, the best known of which is autosomal recessive Stargardt disease (STGD1). Disease-causing variation encompasses all mutation categories, from large copy number variants to very mild, hypomorphic missense variants. The most prevalent disease-causing ABCA4 variant, present in ~ 20% of cases of European descent, c.5882G > A p.(Gly1961Glu), has been a subject of controversy since its minor allele frequency (MAF) is as high as ~ 0.1 in certain populations, questioning its pathogenicity, especially in homozygous individuals. We sequenced the entire ~140Kb ABCA4 genomic locus in an extensive cohort of 644 bi-allelic, i.e. genetically confirmed, patients with ABCA4 disease and analyzed all variants in 140 compound heterozygous and 10 homozygous cases for the p.(Gly1961Glu) variant. A total of 23 patients in this cohort additionally harbored the deep intronic c.769-784C > T variant on the p.(Gly1961Glu) allele, which appears on a specific haplotype in ~ 15% of p.(Gly1961Glu) alleles. This haplotype was present in 5/7 of homozygous cases, where the p.(Gly1961Glu) was the only known pathogenic variant. Three cases had an exonic variant on the same allele with the p.(Gly1961Glu). Patients with the c.[769-784C > T;5882G > A] complex allele exhibit a more severe clinical phenotype, as seen in compound heterozygotes with some more frequent ABCA4 mutations, e.g. p.(Pro1380Leu). Our findings indicate that the c.769-784C > T variant is major cis-acting modifier of the p.(Gly1961Glu) allele. The absence of such additional allelic variation on most p.(Gly1961Glu) alleles largely explains the observed paucity of affected homozygotes in the population.


Subject(s)
ATP-Binding Cassette Transporters , ATP-Binding Cassette Transporters/genetics , Alleles , Gene Frequency , Humans , Mutation , Penetrance , Phenotype , Stargardt Disease/genetics
18.
J Antimicrob Chemother ; 78(7): 1622-1631, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37210083

ABSTRACT

BACKGROUND: Cefepime and aztreonam are highly efficacious against H. influenzae, and resistant strains are rare. In this study, we isolated cefepime- and aztreonam-nonsusceptible H. influenzae strains and addressed the molecular basis of their resistance to cefepime and aztreonam. METHODS: Two hundred and 28 specimens containing H. influenzae were screened, of which 32 isolates were enrolled and applied to antimicrobial susceptibility testing and whole-genome sequencing. Genetic variations that were detected in all nonsusceptible isolates with statistical significance by Fisher's exact tests were identified as cefepime or aztreonam nonsusceptibility related. Functional complementation assays were conducted to assess the in vitro effects of proteins with sequence substitutions on drug susceptibility. RESULTS: Three H. influenzae isolates were nonsusceptible to cefepime, one of which was also nonsusceptible to aztreonam. Genes encoding TEM, SHV and CTX-M extended-spectrum ß-lactamases were not detected in the cefepime- and aztreonam-nonsusceptible isolates. Five genetic variations in four genes and 10 genetic variations in five genes were associated with cefepime and aztreonam nonsusceptibility, respectively. Phylogenetic analyses revealed that changes in FtsI were correlated strongly with the MIC of cefepime and moderately with aztreonam. FtsI Thr532Ser-Tyr557His cosubstitution linked to cefepime nonsusceptibility and Asn305Lys-Ser385Asn-Glu416Asp cosubstitution to aztreonam nonsusceptibility. Functional complementation assays revealed that these cosubstitutions increased MICs of cefepime and aztreonam in susceptible H. influenzae isolates, respectively. CONCLUSIONS: Genetic variations relevant to resistant phenotypes of cefepime and aztreonam nonsusceptibility in H. influenzae were identified. Moreover, the effects of FtsI cosubstitutions on increasing MICs of cefepime and aztreonam in H. influenzae were demonstrated.


Subject(s)
Aztreonam , Haemophilus influenzae , Cefepime/pharmacology , Aztreonam/pharmacology , Phylogeny , beta-Lactamases/metabolism , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
19.
PLoS Pathog ; 17(6): e1009683, 2021 06.
Article in English | MEDLINE | ID: mdl-34166473

ABSTRACT

COVID-19 is a global crisis of unimagined dimensions. Currently, Remedesivir is only fully licensed FDA therapeutic. A major target of the vaccine effort is the SARS-CoV-2 spike-hACE2 interaction, and assessment of efficacy relies on time consuming neutralization assay. Here, we developed a cell fusion assay based upon spike-hACE2 interaction. The system was tested by transient co-transfection of 293T cells, which demonstrated good correlation with standard spike pseudotyping for inhibition by sera and biologics. Then established stable cell lines were very well behaved and gave even better correlation with pseudotyping results, after a short, overnight co-incubation. Results with the stable cell fusion assay also correlated well with those of a live virus assay. In summary we have established a rapid, reliable, and reproducible cell fusion assay that will serve to complement the other neutralization assays currently in use, is easy to implement in most laboratories, and may serve as the basis for high throughput screens to identify inhibitors of SARS-CoV-2 virus-cell binding and entry.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Biological Assay/methods , COVID-19/virology , Receptors, Coronavirus/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/blood , Cell Fusion , HEK293 Cells , Humans , Receptors, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Transfection , Virus Attachment
20.
J Exp Zool B Mol Dev Evol ; 340(6): 392-402, 2023 09.
Article in English | MEDLINE | ID: mdl-37039065

ABSTRACT

One of the most intriguing traits found in domestic chickens is the Crest phenotype. This trait, characterized by a tuft of elongated feathers sprouted from the head, is found in breeds such as Polish chickens and Silkie chickens. Moreover, some crested chicken breeds also exhibit a protuberance in their anterodorsal skull region. Previous studies have strived to identify the causative factors of this trait. This study aimed to elucidate the role of chicken HOXC8 and HOXC10 in the formation of the Crest phenotype. We explored the effect of ectopic expression of HOXC8 or HOXC10 on the chicken craniofacial morphology using the RCAS retrovirus transformation system. Microcomputed tomography scanning was conducted to measure the 3D structure of the cranial bone of transgenic embryos for geometric morphometric analysis. We found that the ectopic expression of HOXC8 or HOXC10 in chicken heads caused mild morphological changes in the skull compared with the GFP-transgenic control group. Geometric morphometric analysis showed that HOXC8 and HOXC10 transgenic groups expressed a mild upward shape change in the frontal region of the skull compared with the control group, which is similar to what is seen in the crested chicken breeds. In conclusion, this study supports findings in previous studies in which HOX genes play a role in the formation of the altered skull morphology related to the Crest phenotype. It also supports that mutations in HOX genes may contribute to intra- and inter-specific variation in morphological traits in vertebrates.


Subject(s)
Chickens , Genes, Homeobox , Animals , Chickens/genetics , X-Ray Microtomography , Phenotype , Skull/anatomy & histology , Animals, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL