Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Cell ; 185(24): 4488-4506.e20, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36318922

ABSTRACT

When challenged by hypertonicity, dehydrated cells must recover their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless condensates, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to restore cell volume. WNK1 condensate formation is driven by its intrinsically disordered C terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows kinase activity despite an inhibitory ionic milieu and permits cell volume recovery through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.


Subject(s)
Protein Serine-Threonine Kinases , Phosphorylation , Cell Size
2.
Annu Rev Physiol ; 86: 429-452, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-37931170

ABSTRACT

The cytoplasm is densely packed with molecules that contribute to its nonideal behavior. Cytosolic crowding influences chemical reaction rates, intracellular water mobility, and macromolecular complex formation. Overcrowding is potentially catastrophic; to counteract this problem, cells have evolved acute and chronic homeostatic mechanisms that optimize cellular crowdedness. Here, we provide a physiology-focused overview of molecular crowding, highlighting contemporary advances in our understanding of its sensing and control. Long hypothesized as a form of crowding-induced microcompartmentation, phase separation allows cells to detect and respond to intracellular crowding through the action of biomolecular condensates, as indicated by recent studies. Growing evidence indicates that crowding is closely tied to cell size and fluid volume, homeostatic responses to physical compression and desiccation, tissue architecture, circadian rhythm, aging, transepithelial transport, and total body electrolyte and water balance. Thus, molecular crowding is a fundamental physiologic parameter that impacts diverse functions extending from molecule to organism.


Subject(s)
Water-Electrolyte Balance , Water , Humans
3.
Physiology (Bethesda) ; 39(5): 0, 2024 09 01.
Article in English | MEDLINE | ID: mdl-38624245

ABSTRACT

The purpose of this review is to highlight transformative advances that have been made in the field of biomolecular condensates, with special emphasis on condensate material properties, physiology, and kinases, using the With-No-Lysine (WNK) kinases as a prototypical example. To convey how WNK kinases illustrate important concepts for biomolecular condensates, we start with a brief history, focus on defining features of biomolecular condensates, and delve into some examples of how condensates are implicated in cellular physiology (and pathophysiology). We then highlight how WNK kinases, through the action of "WNK droplets" that ubiquitously regulate intracellular volume and kidney-specific "WNK bodies" that are implicated in distal tubule salt reabsorption and potassium homeostasis, exemplify many of the defining features of condensates. Finally, this review addresses the controversies within this emerging field and questions to address.


Subject(s)
Signal Transduction , WNK Lysine-Deficient Protein Kinase 1 , Animals , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , WNK Lysine-Deficient Protein Kinase 1/metabolism
4.
Am J Physiol Cell Physiol ; 326(1): C282-C293, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38047299

ABSTRACT

A key regulator of blood pressure homeostasis is the steroid hormone aldosterone, which is released as the final signaling hormone of the renin-angiotensin-aldosterone-signaling (RAAS) system. Aldosterone increases sodium (Na+) reabsorption in the kidney distal nephron to regulate blood volume. Unregulated RAAS signaling can lead to hypertension and cardiovascular disease. The serum and glucocorticoid kinase (SGK1) coordinates much of the Na+ reabsorption in the cortical collecting duct (CCD) tubular epithelial cells. We previously demonstrated that aldosterone alters the expression of microRNAs (miRs) in CCD principal cells. The aldosterone-regulated miRs can modulate Na+ transport and the cellular response to aldosterone signaling. However, the sex-specific regulation of miRs by aldosterone in the kidney distal nephron has not been explored. In this study, we report that miR-19, part of the miR-17-92 cluster, is upregulated in female mouse CCD cells in response to aldosterone activation. Mir-19 binding to the 3'-untranslated region of SGK1 was confirmed using a dual-luciferase reporter assay. Increasing miR-19 expression in CCD cells decreased SGK1 message and protein expression. Removal of this cluster using a nephron-specific, inducible knockout mouse model increased SGK1 expression in female mouse CCD cells. The miR-19-induced decrease in SGK1 protein expression reduced the response to aldosterone stimulation and may account for sex-specific differences in aldosterone signaling. By examining evolution of the miR-17-92 cluster, phylogenetic sequence analysis indicated that this cluster arose at the same time that other Na+-sparing and salt regulatory proteins, specifically SGK1, first emerged, indicating a conserved role for these miRs in kidney function of salt and water homeostasis.NEW & NOTEWORTHY Expression of the microRNA-17-92 cluster is upregulated by aldosterone in mouse cortical collecting duct principal cells, exclusively in female mice. MiR-19 in this cluster targets the serum and glucocorticoid kinase (SGK1) to downregulate both mRNA and protein expression, resulting in a decrease in sodium transport across epithelial cells of the collecting duct. The miR-17-92 cluster is evolutionarily conserved and may act as a novel feedback regulator for aldosterone signaling in females.


Subject(s)
MicroRNAs , Female , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Aldosterone/metabolism , Protein Serine-Threonine Kinases/metabolism , Glucocorticoids , Phylogeny , Kidney/metabolism , Sodium/metabolism , Epithelial Sodium Channels/metabolism
5.
Am J Physiol Renal Physiol ; 325(4): F407-F417, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37560770

ABSTRACT

Nocturia (waking to void) is prevalent among older adults. Disruption of the well-described circadian rhythm in urine production with higher nighttime urine output is its most common cause. In young adults, their circadian rhythm is modulated by the 24-h secretory pattern of hormones that regulate salt and water excretion, including antidiuretic hormone (ADH), renin, angiotensin, aldosterone, and atrial natriuretic peptide (ANP). The pattern of hormone secretion is less clear in older adults. We investigated the effect of sleep on the 24-h secretion of these hormones in healthy older adults. Thirteen participants aged ≥65 yr old underwent two 24-h protocols at a clinical research center 6 wk apart. The first used a habitual wake-sleep protocol, and the second used a constant routine protocol that removed the influence of sleep, posture, and diet. To assess hormonal rhythms, plasma was collected at 8:00 am, 12:00 pm, 4:00 pm, and every 30 min from 7:00 pm to 7:00 am. A mixed-effects regression model was used to compare subject-specific and mean trajectories of hormone secretion under the two conditions. ADH, aldosterone, and ANP showed a diurnal rhythm that peaked during sleep in the wake-sleep protocol. These nighttime elevations were significantly attenuated within subjects during the constant routine. We conclude that sleep has a masking effect on circadian rhythm amplitude of ADH, aldosterone, and ANP: the amplitude of each is increased in the presence of sleep and reduced in the absence of sleep. Disrupted sleep could potentially alter nighttime urine output in healthy older adults via this mechanism.NEW & NOTEWORTHY Nocturia (waking to void) is the most common cause of sleep interruption among older adults, and increased nighttime urine production is its primary etiology. We showed that in healthy older adults sleep affects the 24-h secretory rhythm of hormones that regulate salt-water balance, which potentially alters nighttime urine output. Further studies are needed to elucidate the impact of chronic insomnia on the secretory rhythms of these hormones.


Subject(s)
Aldosterone , Nocturia , Young Adult , Humans , Aged , Urination , Sleep/physiology , Circadian Rhythm , Polyuria
6.
J Neuroinflammation ; 19(1): 91, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35413993

ABSTRACT

BACKGROUND: The mechanisms underlying dysfunction of choroid plexus (ChP) blood-cerebrospinal fluid (CSF) barrier and lymphocyte invasion in neuroinflammatory responses to stroke are not well understood. In this study, we investigated whether stroke damaged the blood-CSF barrier integrity due to dysregulation of major ChP ion transport system, Na+-K+-Cl- cotransporter 1 (NKCC1), and regulatory Ste20-related proline-alanine-rich kinase (SPAK). METHODS: Sham or ischemic stroke was induced in C57Bl/6J mice. Changes on the SPAK-NKCC1 complex and tight junction proteins (TJs) in the ChP were quantified by immunofluorescence staining and immunoblotting. Immune cell infiltration in the ChP was assessed by flow cytometry and immunostaining. Cultured ChP epithelium cells (CPECs) and cortical neurons were used to evaluate H2O2-mediated oxidative stress in stimulating the SPAK-NKCC1 complex and cellular damage. In vivo or in vitro pharmacological blockade of the ChP SPAK-NKCC1 cascade with SPAK inhibitor ZT-1a or NKCC1 inhibitor bumetanide were examined. RESULTS: Ischemic stroke stimulated activation of the CPECs apical membrane SPAK-NKCC1 complex, NF-κB, and MMP9, which was associated with loss of the blood-CSF barrier integrity and increased immune cell infiltration into the ChP. Oxidative stress directly activated the SPAK-NKCC1 pathway and resulted in apoptosis, neurodegeneration, and NKCC1-mediated ion influx. Pharmacological blockade of the SPAK-NKCC1 pathway protected the ChP barrier integrity, attenuated ChP immune cell infiltration or neuronal death. CONCLUSION: Stroke-induced pathological stimulation of the SPAK-NKCC1 cascade caused CPECs damage and disruption of TJs at the blood-CSF barrier. The ChP SPAK-NKCC1 complex emerged as a therapeutic target for attenuating ChP dysfunction and lymphocyte invasion after stroke.


Subject(s)
Ischemic Stroke , Stroke , Animals , Choroid Plexus/metabolism , Hydrogen Peroxide , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases , Solute Carrier Family 12, Member 2/metabolism
7.
Am J Physiol Renal Physiol ; 321(2): F245-F254, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34229479

ABSTRACT

Large-conductance K+ (BK) channels expressed in intercalated cells (ICs) in the aldosterone-sensitive distal nephron (ASDN) mediate flow-induced K+ secretion. In the ASDN of mice and rabbits, IC BK channel expression and activity increase with a high-K+ diet. In cell culture, the long isoform of with-no-lysine kinase 1 (L-WNK1) increases BK channel expression and activity. Apical L-WNK1 expression is selectively enhanced in ICs in the ASDN of rabbits on a high-K+ diet, suggesting that L-WNK1 contributes to BK channel regulation by dietary K+. We examined the role of IC L-WNK1 expression in enhancing BK channel activity in response to a high-K+ diet. Mice with IC-selective deletion of L-WNK1 (IC-L-WNK1-KO) and littermate control mice were placed on a high-K+ (5% K+, as KCl) diet for 10 or more days. IC-L-WNK1-KO mice exhibited reduced IC apical + subapical α-subunit expression and BK channel-dependent whole cell currents compared with controls. Six-hour urinary K+ excretion in response a saline load was similar in IC-L-WNK1-KO mice and controls. The observations that IC-L-WNK1-KO mice on a high-K+ diet have higher blood K+ concentration and reduced IC BK channel activity are consistent with impaired urinary K+ secretion, demonstrating that IC L-WNK1 has a role in the renal adaptation to a high-K+ diet.NEW & NOTEWORTHY When mice are placed on a high-K+ diet, genetic disruption of the long form of with no lysine kinase 1 (L-WNK1) in intercalated cells reduced relative apical + subapical localization of the large-conductance K+ channel, blunted large-conductance K+ channel currents in intercalated cells, and increased blood K+ concentration. These data confirm an in vivo role of L-WNK1 in intercalated cells in adaptation to a high-K+ diet.


Subject(s)
Kidney/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Nephrons/metabolism , Potassium/metabolism , WNK Lysine-Deficient Protein Kinase 1/metabolism , Animals , Ion Transport , Kidney/cytology , Mice , WNK Lysine-Deficient Protein Kinase 1/genetics
8.
Am J Physiol Renal Physiol ; 318(6): F1341-F1356, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32281415

ABSTRACT

We characterized mouse blood pressure and ion transport in the setting of commonly used rodent diets that drive K+ intake to the extremes of deficiency and excess. Male 129S2/Sv mice were fed either K+-deficient, control, high-K+ basic, or high-KCl diets for 10 days. Mice maintained on a K+-deficient diet exhibited no change in blood pressure, whereas K+-loaded mice developed an ~10-mmHg blood pressure increase. Following challenge with NaCl, K+-deficient mice developed a salt-sensitive 8 mmHg increase in blood pressure, whereas blood pressure was unchanged in mice fed high-K+ diets. Notably, 10 days of K+ depletion induced diabetes insipidus and upregulation of phosphorylated NaCl cotransporter, proximal Na+ transporters, and pendrin, likely contributing to the K+-deficient NaCl sensitivity. While the anionic content with high-K+ diets had distinct effects on transporter expression along the nephron, both K+ basic and KCl diets had a similar increase in blood pressure. The blood pressure elevation on high-K+ diets correlated with increased Na+-K+-2Cl- cotransporter and γ-epithelial Na+ channel expression and increased urinary response to furosemide and amiloride. We conclude that the dietary K+ maneuvers used here did not recapitulate the inverse effects of K+ on blood pressure observed in human epidemiological studies. This may be due to the extreme degree of K+ stress, the low-Na+-to-K+ ratio, the duration of treatment, and the development of other coinciding events, such as diabetes insipidus. These factors must be taken into consideration when studying the physiological effects of dietary K+ loading and depletion.


Subject(s)
Arterial Pressure , Hypertension/metabolism , Kidney Tubules/metabolism , Potassium Deficiency/metabolism , Potassium, Dietary/metabolism , Sodium Chloride, Dietary/metabolism , Animal Feed , Animals , Diabetes Insipidus/etiology , Diabetes Insipidus/metabolism , Diabetes Insipidus/physiopathology , Epithelial Sodium Channels/metabolism , Hypertension/etiology , Hypertension/physiopathology , Ion Transport , Kidney Tubules/physiopathology , Male , Mice, 129 Strain , Natriuresis , Phosphorylation , Potassium Deficiency/etiology , Potassium Deficiency/physiopathology , Potassium, Dietary/administration & dosage , Potassium, Dietary/toxicity , Sodium Chloride Symporters/metabolism , Sodium Chloride, Dietary/toxicity , Sodium-Potassium-Chloride Symporters/metabolism , Sulfate Transporters/metabolism
9.
J Biol Chem ; 293(9): 3201-3217, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29311259

ABSTRACT

Protein trafficking can act as the primary regulatory mechanism for ion channels with high open probabilities, such as the renal outer medullary (ROMK) channel. ROMK, also known as Kir1.1 (KCNJ1), is the major route for potassium secretion into the pro-urine and plays an indispensable role in regulating serum potassium and urinary concentrations. However, the cellular machinery that regulates ROMK trafficking has not been fully defined. To identify regulators of the cell-surface population of ROMK, we expressed a pH-insensitive version of the channel in the budding yeast Saccharomyces cerevisiae We determined that ROMK primarily resides in the endoplasmic reticulum (ER), as it does in mammalian cells, and is subject to ER-associated degradation (ERAD). However, sufficient ROMK levels on the plasma membrane rescued growth on low-potassium medium of yeast cells lacking endogenous potassium channels. Next, we aimed to identify the biological pathways most important for ROMK regulation. Therefore, we used a synthetic genetic array to identify non-essential genes that reduce the plasma membrane pool of ROMK in potassium-sensitive yeast cells. Genes identified in this screen included several members of the endosomal complexes required for transport (ESCRT) and the class-C core vacuole/endosome tethering (CORVET) complexes. Mass spectroscopy analysis confirmed that yeast cells lacking an ESCRT component accumulate higher potassium concentrations. Moreover, silencing of ESCRT and CORVET components increased ROMK levels at the plasma membrane in HEK293 cells. Our results indicate that components of the post-endocytic pathway influence the cell-surface density of ROMK and establish that components in this pathway modulate channel activity.


Subject(s)
Cell Membrane/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Vacuoles/metabolism , HEK293 Cells , Humans , Mutation , Potassium Channels, Inwardly Rectifying/genetics , Protein Transport
11.
J Biol Chem ; 292(31): 12813-12827, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28630040

ABSTRACT

Type II Bartter syndrome is caused by mutations in the renal outer medullary potassium (ROMK) channel, but the molecular mechanisms underlying this disease are poorly defined. To rapidly screen for ROMK function, we developed a yeast expression system and discovered that yeast cells lacking endogenous potassium channels could be rescued by WT ROMK but not by ROMK proteins containing any one of four Bartter mutations. We also found that the mutant proteins were significantly less stable than WT ROMK. However, their degradation was slowed in the presence of a proteasome inhibitor or when yeast cells contained mutations in the CDC48 or SSA1 gene, which is required for endoplasmic reticulum (ER)-associated degradation (ERAD). Consistent with these data, sucrose gradient centrifugation and indirect immunofluorescence microscopy indicated that most ROMK protein was ER-localized. To translate these findings to a more relevant cell type, we measured the stabilities of WT ROMK and the ROMK Bartter mutants in HEK293 cells. As in yeast, the Bartter mutant proteins were less stable than the WT protein, and their degradation was slowed in the presence of a proteasome inhibitor. Finally, we discovered that low-temperature incubation increased the steady-state levels of a Bartter mutant, suggesting that the disease-causing mutation traps the protein in a folding-deficient conformation. These findings indicate that the underlying pathology for at least a subset of patients with type II Bartter syndrome is linked to the ERAD pathway and that future therapeutic strategies should focus on correcting deficiencies in ROMK folding.


Subject(s)
Bartter Syndrome/genetics , Endoplasmic Reticulum-Associated Degradation , Models, Molecular , Point Mutation , Potassium Channels, Inwardly Rectifying/genetics , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Amino Acid Substitution , Animals , Bartter Syndrome/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Endoplasmic Reticulum-Associated Degradation/drug effects , Enzyme Inhibitors/pharmacology , HEK293 Cells , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Hot Temperature , Humans , Microbial Viability , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Potassium Channels, Inwardly Rectifying/chemistry , Potassium Channels, Inwardly Rectifying/metabolism , Proteasome Inhibitors/pharmacology , Protein Interaction Domains and Motifs , Protein Stability/drug effects , Proteolysis/drug effects , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Valosin Containing Protein
12.
Pflugers Arch ; 470(2): 339-353, 2018 02.
Article in English | MEDLINE | ID: mdl-29134279

ABSTRACT

The renal collecting duct contains two distinct cell types, principal and intercalated cells, expressing potassium Kir4.1/5.1 (KCNJ10/16) and chloride ClC-K2 (ClC-Kb in humans) channels on their basolateral membrane, respectively. Both channels are thought to play important roles in controlling systemic water-electrolyte balance and blood pressure. However, little is known about mechanisms regulating activity of Kir4.1/5.1 and ClC-K2/b. Here, we employed patch clamp analysis at the single channel and whole cell levels in freshly isolated mouse collecting ducts to investigate regulation of Kir4.1/5.1 and ClC-K2/b by dietary K+ and Cl- intake. Treatment of mice with high K+ and high Cl- diet (6% K+, 5% Cl-) for 1 week significantly increased basolateral K+-selective current, single channel Kir4.1/5.1 activity and induced hyperpolarization of basolateral membrane potential in principal cells when compared to values in mice on a regular diet (0.9% K+, 0.5% Cl-). In contrast, basolateral Cl--selective current and single channel ClC-K2/b activity was markedly decreased in intercalated cells under this condition. Substitution of dietary K+ to Na+ in the presence of high Cl- exerted a similar inhibiting action of ClC-K2/b suggesting that the channel is sensitive to variations in dietary Cl- per se. Cl--sensitive with-no-lysine kinase (WNK) cascade has been recently proposed to orchestrate electrolyte transport in the distal tubule during variations of dietary K+. However, co-expression of WNK1 or its major downstream effector Ste20-related proline-alanine-rich kinase (SPAK) had no effect on ClC-Kb over-expressed in Chinese hamster ovary (CHO) cells. Treatment of mice with high K+ diet without concomitant elevations in dietary Cl- (6% K+, 0.5% Cl-) elicited a comparable increase in basolateral K+-selective current, single channel Kir4.1/5.1 activity in principal cells, but had no significant effect on ClC-K2/b activity in intercalated cells. Furthermore, stimulation of aldosterone signaling by Deoxycorticosterone acetate (DOCA) recapitulated the stimulatory actions of high K+ intake on Kir4.1/5.1 channels in principal cells but was ineffective to alter ClC-K2/b activity and basolateral Cl- conductance in intercalated cells. In summary, we report that variations of dietary K+ and Cl- independently regulate basolateral potassium and chloride conductance in principal and intercalated cells. We propose that such discrete mechanism might contribute to fine-tuning of urinary excretion of electrolytes depending on dietary intake.


Subject(s)
Action Potentials , Chlorides/metabolism , Diet , Kidney Tubules, Collecting/metabolism , Potassium/metabolism , Animals , CHO Cells , Cell Membrane/metabolism , Cell Membrane/physiology , Cells, Cultured , Chloride Channels/metabolism , Chlorides/administration & dosage , Chlorides/pharmacology , Cricetinae , Cricetulus , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/drug effects , Male , Mice , Mice, Inbred C57BL , Potassium/administration & dosage , Potassium/pharmacology , Potassium Channels, Inwardly Rectifying/metabolism
13.
J Am Soc Nephrol ; 28(8): 2431-2442, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28289184

ABSTRACT

Adaptation of the organism to potassium (K+) deficiency requires precise coordination among organs involved in K+ homeostasis, including muscle, liver, and kidney. How the latter performs functional and molecular changes to ensure K+ retention is not well understood. Here, we investigated the role of ubiquitin-protein ligase NEDD4-2, which negatively regulates the epithelial sodium channel (ENaC), Na+/Cl- cotransporter (NCC), and with no-lysine-kinase 1 (WNK1). After dietary K+ restriction for 2 weeks, compared with control littermates, inducible renal tubular NEDD4-2 knockout (Nedd4LPax8/LC1 ) mice exhibited severe hypokalemia and urinary K+ wasting. Notably, expression of the ROMK K+ channel did not change in the distal convoluted tubule and decreased slightly in the cortical/medullary collecting duct, whereas BK channel abundance increased in principal cells of the connecting tubule/collecting ducts. However, K+ restriction also enhanced ENaC expression in Nedd4LPax8/LC1 mice, and treatment with the ENaC inhibitor, benzamil, reversed excessive K+ wasting. Moreover, K+ restriction increased WNK1 and WNK4 expression and enhanced SPAK-mediated NCC phosphorylation in Nedd4LPax8/LC1 mice, with no change in total NCC. We propose a mechanism in which NEDD4-2 deficiency exacerbates hypokalemia during dietary K+ restriction primarily through direct upregulation of ENaC, whereas increased BK channel expression has a less significant role. These changes outweigh the compensatory antikaliuretic effects of diminished ROMK expression, increased NCC phosphorylation, and enhanced WNK pathway activity in the distal convoluted tubule. Thus, NEDD4-2 has a crucial role in K+ conservation through direct and indirect effects on ENaC, distal nephron K+ channels, and WNK signaling.


Subject(s)
Adaptation, Physiological , Endosomal Sorting Complexes Required for Transport/physiology , Hypokalemia/physiopathology , Kidney Tubules, Distal/enzymology , Ubiquitin-Protein Ligases/physiology , Animals , Kidney/physiopathology , Mice , Nedd4 Ubiquitin Protein Ligases , Time Factors
14.
Curr Opin Nephrol Hypertens ; 26(5): 411-418, 2017 09.
Article in English | MEDLINE | ID: mdl-28614118

ABSTRACT

PURPOSE OF REVIEW: The current review combines past findings with recent advances in our understanding of the homeostatic response to potassium imbalance. RECENT FINDINGS: Following the ingestion of a dietary potassium load, a combination of extrarenal and renal mechanisms act to maintain extracellular K+ within a tight window. Through hormonal regulation and direct K+ sensing, the nephron is ideally suited to respond to wide shifts in external K+ balance. Current evidence indicates that dietary K+ loading triggers a coordinated kaliuretic response that appears to involve voltage-dependent changes in sodium transport across multiple nephron segments, including the proximal tubule, medullary loop of Henle, and distal tubule. Inhibition of sodium transport in these segments would accomplish the final goal of enhancing distal NaCl delivery, luminal flow, and K+ secretion in the aldosterone sensitive distal nephron (ASDN). SUMMARY: Ongoing research seeks to define the relationship between potassium and volume homeostasis by elucidating pathways that couple renal K+ sensing and tubular function during the potassium stress response.


Subject(s)
Nephrons/metabolism , Potassium, Dietary/administration & dosage , Potassium/metabolism , Animals , Homeostasis , Humans , Ion Transport , Sodium/metabolism , Stress, Physiological
15.
Am J Physiol Renal Physiol ; 311(5): F1015-F1024, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27681560

ABSTRACT

Fabry nephropathy is a major cause of morbidity and premature death in patients with Fabry disease (FD), a rare X-linked lysosomal storage disorder. Gb3, the main substrate of α-galactosidase A (α-Gal A), progressively accumulates within cells in a variety of tissues. Establishment of cell models has been useful as a tool for testing hypotheses of disease pathogenesis. We applied CRISPR/Cas9 genome editing technology to the GLA gene to develop human kidney cell models of FD in human immortalized podocytes, which are the main affected renal cell type. Our podocytes lack detectable α-Gal A activity and have increased levels of Gb3. To explore different pathways that could have distinct patterns of activation under conditions of α-gal A deficiency, we used a high-throughput antibody array to perform phosphorylation profiling of CRISPR/Cas9-edited and control podocytes. Changes in both total protein levels and in phosphorylation status per site were observed. Analysis of our candidate proteins suggests that multiple signaling pathways are impaired in FD.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Fabry Disease/metabolism , Kidney/metabolism , Podocytes/metabolism , alpha-Galactosidase/metabolism , Cell Line , Fabry Disease/genetics , Fabry Disease/pathology , Humans , Kidney/pathology , Podocytes/pathology , Signal Transduction/physiology , alpha-Galactosidase/genetics
16.
Am J Physiol Renal Physiol ; 311(2): F330-42, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27009335

ABSTRACT

The stimulation of postprandial K(+) clearance involves aldosterone-independent and -dependent mechanisms. In this context, serum- and glucocorticoid-induced kinase (SGK)1, a ubiquitously expressed kinase, is one of the primary aldosterone-induced proteins in the aldosterone-sensitive distal nephron. Germline inactivation of SGK1 suggests that this kinase is fundamental for K(+) excretion under conditions of K(+) load, but the specific role of renal SGK1 remains elusive. To avoid compensatory mechanisms that may occur during nephrogenesis, we used inducible, nephron-specific Sgk1(Pax8/LC1) mice to assess the role of renal tubular SGK1 in K(+) regulation. Under a standard diet, these animals exhibited normal K(+) handling. When challenged by a high-K(+) diet, they developed severe hyperkalemia accompanied by a defect in K(+) excretion. Molecular analysis revealed reduced neural precursor cell expressed developmentally downregulated protein (NEDD)4-2 phosphorylation and total expression. γ-Epithelial Na(+) channel (ENaC) expression and α/γENaC proteolytic processing were also decreased in mutant mice. Moreover, with no lysine kinase (WNK)1, which displayed in control mice punctuate staining in the distal convoluted tubule and diffuse distribution in the connecting tubule/cortical colleting duct, was diffused in the distal convoluted tubule and less expressed in the connecting tubule/collecting duct of Sgk(Pax8/LC1) mice. Moreover, Ste20-related proline/alanine-rich kinase phosphorylation, and Na(+)-Cl(-) cotransporter phosphorylation/apical localization were reduced in mutant mice. Consistent with the altered WNK1 expression, increased renal outer medullary K(+) channel apical localization was observed. In conclusion, our data suggest that renal tubular SGK1 is important in the regulation of K(+) excretion via the control of NEDD4-2, WNK1, and ENaC.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Epithelial Sodium Channels/metabolism , Immediate-Early Proteins/deficiency , Immediate-Early Proteins/genetics , Minor Histocompatibility Antigens/metabolism , Potassium/urine , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Amino Acid Sequence , Animals , Antibodies, Blocking/pharmacology , Diet , Gene Expression Regulation , Kidney Tubules/metabolism , Male , Mice , Mice, Knockout , Nedd4 Ubiquitin Protein Ligases , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/immunology , Potassium, Dietary/pharmacology , WNK Lysine-Deficient Protein Kinase 1
17.
Am J Physiol Renal Physiol ; 310(1): F15-26, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26662201

ABSTRACT

Flow-induced K(+) secretion in the aldosterone-sensitive distal nephron is mediated by high-conductance Ca(2+)-activated K(+) (BK) channels. Familial hyperkalemic hypertension (pseudohypoaldosteronism type II) is an inherited form of hypertension with decreased K(+) secretion and increased Na(+) reabsorption. This disorder is linked to mutations in genes encoding with-no-lysine kinase 1 (WNK1), WNK4, and Kelch-like 3/Cullin 3, two components of an E3 ubiquitin ligase complex that degrades WNKs. We examined whether the full-length (or "long") form of WNK1 (L-WNK1) affected the expression of BK α-subunits in HEK cells. Overexpression of L-WNK1 promoted a significant increase in BK α-subunit whole cell abundance and functional channel expression. BK α-subunit abundance also increased with coexpression of a kinase dead L-WNK1 mutant (K233M) and with kidney-specific WNK1 (KS-WNK1), suggesting that the catalytic activity of L-WNK1 was not required to increase BK expression. We examined whether dietary K(+) intake affected L-WNK1 expression in the aldosterone-sensitive distal nephron. We found a paucity of L-WNK1 labeling in cortical collecting ducts (CCDs) from rabbits on a low-K(+) diet but observed robust staining for L-WNK1 primarily in intercalated cells when rabbits were fed a high-K(+) diet. Our results and previous findings suggest that L-WNK1 exerts different effects on renal K(+) secretory channels, inhibiting renal outer medullary K(+) channels and activating BK channels. A high-K(+) diet induced an increase in L-WNK1 expression selectively in intercalated cells and may contribute to enhanced BK channel expression and K(+) secretion in CCDs.


Subject(s)
Kidney Tubules, Collecting/enzymology , Potassium, Dietary/metabolism , Protein Serine-Threonine Kinases/metabolism , Renal Elimination , Animals , Female , Gene Expression Regulation, Enzymologic , HEK293 Cells , Humans , Kidney Tubules, Collecting/cytology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Membrane Potentials , Mice , Minor Histocompatibility Antigens , Mutation , Potassium, Dietary/administration & dosage , Protein Serine-Threonine Kinases/genetics , Rabbits , Transfection , Up-Regulation , WNK Lysine-Deficient Protein Kinase 1
18.
Am J Physiol Renal Physiol ; 308(4): F366-76, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25477473

ABSTRACT

Sodium-coupled SLC12 cation chloride cotransporters play important roles in cell volume and chloride homeostasis, epithelial fluid secretion, and renal tubular salt reabsorption. These cotransporters are phosphorylated and activated indirectly by With-No-Lysine (WNK) kinases through their downstream effector kinases, Ste20- and SPS1-related proline alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Multiple WNK kinases can coexist within a single cell type, although their relative contributions to SPAK/OSR1 activation and salt transport remain incompletely understood. Deletion of specific WNKs from cells that natively express a functional WNK-SPAK/OSR1 network will help resolve these knowledge gaps. Here, we outline a simple method to selectively knock out full-length WNK1 expression from mammalian cells using RNA-guided clustered regularly interspaced short palindromic repeats/Cas9 endonucleases. Two clonal cell lines were generated by using a single-guide RNA (sgRNA) targeting exon 1 of the WNK1 gene, which produced indels that abolished WNK1 protein expression. Both cell lines exhibited reduced endogenous WNK4 protein abundance, indicating that WNK1 is required for WNK4 stability. Consistent with an on-target effect, the reduced WNK4 abundance was associated with increased expression of the KLHL3/cullin-3 E3 ubiquitin ligase complex and was rescued by exogenous WNK1 overexpression. Although the morphology of the knockout cells was indistinguishable from control, they exhibited low baseline SPAK/OSR1 activity and failed to trigger regulatory volume increase after hypertonic stress, confirming an essential role for WNK1 in cell volume regulation. Collectively, our data show how this new, powerful, and accessible gene-editing technology can be used to dissect and analyze WNK signaling networks.


Subject(s)
CRISPR-Cas Systems , Gene Knockdown Techniques/methods , Genome, Human , Intracellular Signaling Peptides and Proteins/deficiency , Protein Serine-Threonine Kinases/deficiency , Adaptor Proteins, Signal Transducing , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Shape , Cell Size , Cullin Proteins/genetics , Cullin Proteins/metabolism , Down-Regulation , Exons , Genotype , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Microfilament Proteins , Minor Histocompatibility Antigens , Osmotic Pressure , Phenotype , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Stability , Signal Transduction , Time Factors , Transfection , WNK Lysine-Deficient Protein Kinase 1
19.
J Biol Chem ; 288(25): 18366-80, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23645669

ABSTRACT

The epithelial sodium channel, ENaC, plays a critical role in maintaining salt and water homeostasis, and not surprisingly defects in ENaC function are associated with disease. Like many other membrane-spanning proteins, this trimeric protein complex folds and assembles inefficiently in the endoplasmic reticulum (ER), which results in a substantial percentage of the channel being targeted for ER-associated degradation (ERAD). Because the spectrum of factors that facilitates the degradation of ENaC is incomplete, we developed yeast expression systems for each ENaC subunit. We discovered that a conserved Hsp70-like chaperone, Lhs1, is required for maximal turnover of the ENaC α subunit. By expressing Lhs1 ATP binding mutants, we also found that the nucleotide exchange properties of this chaperone are dispensable for ENaC degradation. Consistent with the precipitation of an Lhs1-αENaC complex, Lhs1 holdase activity was instead most likely required to support the ERAD of αENaC. Moreover, a complex containing the mammalian Lhs1 homolog GRP170 and αENaC co-precipitated, and GRP170 also facilitated ENaC degradation in human, HEK293 cells, and in a Xenopus oocyte expression system. In both yeast and higher cell types, the effect of Lhs1 on the ERAD of αENaC was selective for the unglycosylated form of the protein. These data establish the first evidence that Lhs1/Grp170 chaperones can act as mediators of ERAD substrate selection.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Epithelial Sodium Channels/metabolism , Glycoproteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Adenosine Triphosphate/metabolism , Amiloride/pharmacology , Animals , Endoplasmic Reticulum/metabolism , Epithelial Sodium Channels/genetics , Female , Glycoproteins/genetics , HEK293 Cells , HSP70 Heat-Shock Proteins/genetics , Humans , Immunoblotting , Ion Transport/drug effects , Membrane Potentials/drug effects , Mutation , Oocytes/metabolism , Oocytes/physiology , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sodium/metabolism , Xenopus
20.
J Biol Chem ; 288(18): 13124-35, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23482560

ABSTRACT

The thiazide-sensitive NaCl cotransporter (NCC) is the primary mediator of salt reabsorption in the distal convoluted tubule and is a key determinant of the blood pressure set point. Given its complex topology, NCC is inefficiently processed and prone to endoplasmic reticulum (ER)-associated degradation (ERAD), although the mechanisms governing this process remain obscure. Here, we identify factors that impact the ER quality control of NCC. Analyses of NCC immunoprecipitates revealed that the cotransporter formed complexes with the core chaperones Hsp90, Hsp70, and Hsp40. Disruption of Hsp90 function accelerated NCC degradation, suggesting that Hsp90 promotes NCC folding. In addition, two cochaperones, the C terminus of Hsp70-interacting protein (CHIP) and the Hsp70/Hsp90 organizer protein, were associated with NCC. Although CHIP, an E3 ubiquitin ligase, promoted NCC ubiquitination and ERAD, the Hsp70/Hsp90 organizer protein stabilized NCC turnover, indicating that these two proteins differentially remodel the core chaperone systems to favor cotransporter degradation and biogenesis, respectively. Adjusting the folding environment in mammalian cells via reduced temperature enhanced NCC biosynthetic trafficking, increased Hsp90-NCC interaction, and diminished binding to Hsp70. In contrast, cotransporters harboring disease-causing mutations that impair NCC biogenesis failed to escape ERAD as efficiently as the wild type protein when cells were incubated at a lower temperature. Instead, these mutants interacted more strongly with Hsp70, Hsp40, and CHIP, consistent with a role for the Hsp70/Hsp40 system in selecting misfolded NCC for ERAD. Collectively, these observations indicate that Hsp70 and Hsp90 comprise two functionally distinct ER quality control checkpoints that sequentially monitor NCC biogenesis.


Subject(s)
Endoplasmic Reticulum/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Multiprotein Complexes/metabolism , Proteolysis , Receptors, Drug/metabolism , Symporters/metabolism , Animals , Cell Line , Dogs , Endoplasmic Reticulum/genetics , HSP70 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/genetics , Humans , Mice , Multiprotein Complexes/genetics , Protein Folding , Receptors, Drug/genetics , Solute Carrier Family 12, Member 3 , Symporters/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL