Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Proteome Res ; 23(9): 3917-3932, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39140824

ABSTRACT

Accurate and reliable detection of fungal pathogens presents an important hurdle to manage infections, especially considering that fungal pathogens, including the globally important human pathogen, Cryptococcus neoformans, have adapted diverse mechanisms to survive the hostile host environment and moderate virulence determinant production during coinfections. These pathogen adaptations present an opportunity for improvements (e.g., technological and computational) to better understand the interplay between a host and a pathogen during disease to uncover new strategies to overcome infection. In this study, we performed comparative proteomic profiling of an in vitro coinfection model across a range of fungal and bacterial burden loads in macrophages. Comparing data-dependent acquisition and data-independent acquisition enabled with parallel accumulation serial fragmentation technology, we quantified changes in dual-perspective proteome remodeling. We report enhanced and novel detection of pathogen proteins with data-independent acquisition-parallel accumulation serial fragmentation (DIA-PASEF), especially for fungal proteins during single and dual infection of macrophages. Further characterization of a fungal protein detected only with DIA-PASEF uncovered a novel determinant of fungal virulence, including altered capsule and melanin production, thermotolerance, and macrophage infectivity, supporting proteomics advances for the discovery of a novel putative druggable target to suppress C. neoformans pathogenicity.


Subject(s)
Cryptococcus neoformans , Fungal Proteins , Macrophages , Proteomics , Cryptococcus neoformans/pathogenicity , Proteomics/methods , Fungal Proteins/metabolism , Fungal Proteins/genetics , Virulence , Macrophages/microbiology , Macrophages/metabolism , Cryptococcosis/microbiology , Humans , Proteome/analysis , Proteome/metabolism , Melanins/metabolism , Melanins/biosynthesis , Animals , Host-Pathogen Interactions , Virulence Factors/metabolism , Mice
2.
Can J Microbiol ; 67(3): 213-225, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33027598

ABSTRACT

Mass-spectrometry (MS)-based proteomics is a powerful and robust platform for studying the interactions between biological systems during health and disease. Bacterial infections represent a significant threat to global health and drive the pursuit of novel therapeutic strategies to combat emerging and resistant pathogens. During infection, the interplay between a host and pathogen determines the ability of the microbe to survive in a hostile environment and promotes an immune response by the host as a protective measure. It is the protein-level changes from either biological system that define the outcome of infection, and MS-based proteomics provides a rapid and effective platform to identify such changes. In particular, proteomics detects alterations in protein abundance, quantifies protein secretion and (or) release, measures an array of post-translational modifications that influence signaling cascades, and profiles protein-protein interactions through protein complex and (or) network formation. Such information provides new insight into the role of known and novel bacterial effectors, as well as the outcome of host cell activation. In this Review, we highlight the diverse applications of MS-based proteomics in profiling the relationship between bacterial pathogens and the host. Our work identifies a plethora of strategies for exploring mechanisms of infection from dual perspectives (i.e., host and pathogen), and we suggest opportunities to extrapolate the current knowledgebase to other biological systems for applications in therapeutic discovery.


Subject(s)
Bacteria/metabolism , Bacterial Infections/metabolism , Proteomics , Bacteria/pathogenicity , Host-Pathogen Interactions , Humans , Mass Spectrometry , Protein Interaction Maps , Protein Processing, Post-Translational , Signal Transduction , Systems Biology
3.
Plant J ; 96(5): 966-981, 2018 12.
Article in English | MEDLINE | ID: mdl-30195273

ABSTRACT

Phytoalexin glyceollins are soybean-specific antimicrobial compounds that are derived from the isoflavonoid pathway. They are synthesized by soybean in response to extrinsic stress such as pathogen attack or injury, thereby conferring partial resistance if synthesized rapidly at the site of infection and at the required concentration. Soybean produces multiple forms of glyceollins that result from the differential prenylation reaction catalyzed by prenyltransferases (PTs) on either the C-2 or C-4 carbon of a pterocarpan glycinol. The soybean genome contains 77 PT-encoding genes (GmPTs) where at least 11 are (iso)flavonoid-specific. Transcript accumulation of five candidates GmPTs was increased in response to Phytophthora sojae infection, suggesting their role in phytoalexin synthesis. The induced GmPTs localize to plastids and display tissue-specific expression. We have in this study identified two additional GmPTs: an isoflavone dimethylallyltransferase 3 (IDT3); and a glycinol 2-dimethylallyl transferase GmPT01. GmPT01 prenylates (-)-glycinol at the C-2 position, localizes in the plastid, and exhibits root-specific gene expression. Furthermore, its expression is induced rapidly in response to stress, and is associated with a quantitative trait loci linked with resistance to P. sojae. Based on these results, we conclude that GmPT01 are possibly one of the loci involved in conferring partial resistance against stem and root rot disease in soybean.


Subject(s)
Dimethylallyltranstransferase/metabolism , Glycine max/enzymology , Methyltransferases/metabolism , Plant Proteins/metabolism , Pterocarpans/biosynthesis , Dimethylallyltranstransferase/genetics , Disease Resistance , Gene Expression Regulation, Plant , Genes, Plant/genetics , Metabolic Networks and Pathways , Methyltransferases/genetics , Phylogeny , Plant Proteins/genetics , Plant Roots/enzymology , Plant Roots/metabolism , Pterocarpans/metabolism , Sequence Alignment , Glycine max/genetics , Glycine max/metabolism
4.
Microbiol Spectr ; 12(8): e0015224, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38953322

ABSTRACT

The increasing prevalence of invasive fungal pathogens is dramatically changing the clinical landscape of infectious diseases, posing an imminent threat to public health. Specifically, Cryptococcus neoformans, the human opportunistic pathogen, expresses elaborate virulence mechanisms and is equipped with sophisticated adaptation strategies to survive in harsh host environments. This study extensively characterizes Wos2, an Hsp90 co-chaperone homolog, featuring bilateral functioning for both cryptococcal adaptation and the resulting virulence response. In this study, we evaluated the proteome and secretome signatures associated with wos2 deletion in enriched and infection-mimicking conditions to reveal Wos2-dependent regulation of the oxidative stress response through global translational reprogramming. The wos2Δ strain demonstrates defective intracellular and extracellular antioxidant protection systems, measurable through a decreased abundance of critical antioxidant enzymes and reduced growth in the presence of peroxide stress. Additional Wos2-associated stress phenotypes were observed upon fungal challenge with heat shock, osmotic stress, and cell membrane stressors. We demonstrate the importance of Wos2 for intracellular lifestyle of C. neoformans during in vitro macrophage infection and provide evidence for reduced phagosomal replication levels associated with wos2Δ. Accordingly, wos2Δ featured significantly reduced virulence within impacting fungal burden in a murine model of cryptococcosis. Our study highlights a vulnerable point in the fungal chaperone network that offers a therapeutic opportunity to interfere with both fungal virulence and fitness.IMPORTANCEThe global impact of fungal pathogens, both emerging and emerged, is undeniable, and the alarming increase in antifungal resistance rates hampers our ability to protect the global population from deadly infections. For cryptococcal infections, a limited arsenal of antifungals and increasing rates of resistance demand alternative therapeutic strategies, including an anti-virulence approach, which disarms the pathogen of critical virulence factors, empowering the host to remove the pathogens and clear the infection. To this end, we apply state-of-the-art mass spectrometry-based proteomics to evaluate the impact of a recently defined novel co-chaperone, Wos2, toward cryptococcal virulence using in vitro and in vivo models of infection. We explore global proteome and secretome remodeling driven by the protein and uncover the novel role in modulating the fungal oxidative stress response. Complementation of proteome findings with in vitro infectivity assays demonstrated the protective role of Wos2 within the macrophage phagosome, influencing fungal replication and survival. These results underscore differential cryptococcal survivability and weakened patterns of dissemination in the absence of wos2. Overall, our study establishes Wos2 as an important contributor to fungal pathogenesis and warrants further research into critical proteins within global stress response networks as potential druggable targets to reduce fungal virulence and clear infection.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Fungal Proteins , Molecular Chaperones , Animals , Humans , Mice , Cryptococcosis/microbiology , Cryptococcus neoformans/pathogenicity , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Macrophages/microbiology , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Oxidative Stress , Proteome/metabolism , Virulence , Virulence Factors/metabolism , Virulence Factors/genetics
5.
Microbiol Resour Announc ; 12(7): e0025823, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37358435

ABSTRACT

The bacterial pathogen Klebsiella pneumoniae causes nosocomial infections with the acquisition of multidrug resistance, impeding treatment options. This study investigated the effect of zinc limitation on the phosphoproteome of K. pneumoniae using quantitative mass spectrometry. New insight is provided into cellular signaling methods used by the pathogen to respond to nutrient-limited environments.

6.
Microbiol Resour Announc ; 12(7): e0018623, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37358437

ABSTRACT

Klebsiella pneumoniae was compared across iron-limited and iron-replete conditions to assess changes within the phosphoproteome using quantitative mass spectrometry. These comparative proteomic data provide insights into cellular responses to nutrient limitation and how nutrient requirements may be exploited to provide potential antimicrobial targets.

7.
Methods Mol Biol ; 2456: 253-262, 2022.
Article in English | MEDLINE | ID: mdl-35612747

ABSTRACT

Bottom-up proteomics enables a systems-level analysis of proteins involved in a particular sample set. In this protocol, we describe the workflow to prepare Klebsiella pneumoniae and macrophage cells for co-culture, how to extract and prepare samples for analysis by high-resolution mass spectrometry, and lastly, how to analyze the output data files. This workflow allows for the identification of proteins involved in both the bacterial and host perspective during pathogenesis.


Subject(s)
Proteins , Proteomics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mass Spectrometry/methods , Proteome/analysis , Proteomics/methods , Virulence , Workflow
8.
mBio ; 13(4): e0168722, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35862772

ABSTRACT

The interactions between a host and microbe drive the health and disease status of the host. Of importance is the cause of dysbiosis in the presence of a pathogen, and critically, the relationship between the host and pathogen may evolve over time through response and adaptation. For immunocompromised individuals, dual infections are prevalent and contribute to disease severity and treatment options. Here, we explore the global reprogramming of host cells in response to immediate and established microbial infections with the human fungal pathogen Cryptococcus neoformans and the nosocomial bacterial pathogen Klebsiella pneumoniae. Using quantitative proteomics, we uncovered cross-kingdom protein-level changes associated with initial fungal infection, followed by a remarkable adaptation of the host and pathogen to a dormant state. This stabilization is disrupted over time upon bacterial infection, with the production of virulence-associated bacterial proteins and severely altered host response. We support our findings with the profiling of two major virulence determinants in C. neoformans, catalase and melanin, which demonstrate an interconnected regulation in response to both host defense and bacterial invasion. Overall, we report novel fungal and bacterial modulation of the host, including adaptation and stabilization, suggesting an opportunity to effectively treat dual infections by selectively targeting proteins critical to the host's infection stage. IMPORTANCE The relationship between the human microbiota and infectious disease outcome is a rapidly expanding area of study. Understanding how the host responds to changes in its symbiotic relationship with microbes provides new insight into how disruption can promote disease. In this study, we investigated the evolving relationship between innate immune cells of the host during immediate and established infections with fungal and bacterial pathogens, commonly observed within the lungs of immunocompromised individuals. We observed critical reprogramming of each biological system over time and in response to the changing environment, which influences microbial virulence. The goal of this important work is to improve our fundamental understanding of pathogenesis, as well as the regulatory relationships between hosts and microbes that drive disease outcome. We envision defining improved therapeutic treatment options for the host dependent on disease state to reduce the global impact and burden of infectious diseases, especially in the face of ever-increasing rates of antimicrobial resistance.


Subject(s)
Cross Infection , Cryptococcosis , Cryptococcus neoformans , Cryptococcosis/microbiology , Humans , Macrophages/microbiology , Virulence
9.
Sci Rep ; 11(1): 2556, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510334

ABSTRACT

Type I Diacylglycerol acyltransferase (DGAT1) catalyzes the final step of the biosynthesis process of triacylglycerol (TAG), the major storage lipids in plant seeds, through the esterification of diacylglycerol (DAG). To characterize the function of DGAT1 genes on the accumulation of oil and other seed composition traits in soybean, transgenic lines were generated via trans-acting siRNA technology, in which three DGAT1 genes (Glyma.13G106100, Glyma.09G065300, and Glyma.17G053300) were downregulated. The simultaneous downregulation of the three isoforms in transgenic lines was found to be associated with the reduction of seed oil concentrations by up to 18 mg/g (8.3%), which was correlated with increases in seed protein concentration up to 42 mg/g (11%). Additionally, the downregulations also influenced the fatty acid compositions in the seeds of transgenic lines through increasing the level of oleic acid, up to 121 mg/g (47.3%). The results of this study illustrate the importance of DGAT1 genes in determining the seed compositions in soybean through the development of new potential technology for manipulating seed quality in soybean to meet the demands for its various food and industrial applications.


Subject(s)
Diacylglycerol O-Acyltransferase/metabolism , Glycine max/metabolism , Plant Proteins/metabolism , Seeds/metabolism , Diacylglycerol O-Acyltransferase/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Seeds/genetics , Glycine max/genetics
10.
Genetics ; 217(2)2021 02 09.
Article in English | MEDLINE | ID: mdl-33724419

ABSTRACT

Candida albicans is a microbial fungus that exists as a commensal member of the human microbiome and an opportunistic pathogen. Cell surface-associated adhesin proteins play a crucial role in C. albicans' ability to undergo cellular morphogenesis, develop robust biofilms, colonize, and cause infection in a host. However, a comprehensive analysis of the role and relationships between these adhesins has not been explored. We previously established a CRISPR-based platform for efficient generation of single- and double-gene deletions in C. albicans, which was used to construct a library of 144 mutants, comprising 12 unique adhesin genes deleted singly, and every possible combination of double deletions. Here, we exploit this adhesin mutant library to explore the role of adhesin proteins in C. albicans virulence. We perform a comprehensive, high-throughput screen of this library, using Caenorhabditis elegans as a simplified model host system, which identified mutants critical for virulence and significant genetic interactions. We perform follow-up analysis to assess the ability of high- and low-virulence strains to undergo cellular morphogenesis and form biofilms in vitro, as well as to colonize the C. elegans host. We further perform genetic interaction analysis to identify novel significant negative genetic interactions between adhesin mutants, whereby combinatorial perturbation of these genes significantly impairs virulence, more than expected based on virulence of the single mutant constituent strains. Together, this study yields important new insight into the role of adhesins, singly and in combinations, in mediating diverse facets of virulence of this critical fungal pathogen.


Subject(s)
Candida albicans/genetics , Cell Adhesion Molecules/genetics , Fungal Proteins/genetics , Animals , Biofilms , Caenorhabditis elegans/microbiology , Candida albicans/pathogenicity , Candida albicans/physiology , Cell Adhesion Molecules/metabolism , Cloning, Molecular , Fungal Proteins/metabolism , Mutation , Virulence/genetics
11.
J Vis Exp ; (164)2020 10 20.
Article in English | MEDLINE | ID: mdl-33165315

ABSTRACT

The technological achievements of mass spectrometry (MS)-based quantitative proteomics opens many undiscovered avenues for analyzing an organism's global proteome under varying conditions. This powerful strategy applied to the interactions of microbial pathogens with the desired host comprehensively characterizes both perspectives towards infection. Herein, the workflow describes label-free quantification (LFQ) of the infectome of Cryptococcus neoformans, a fungal facultative intracellular pathogen that is the causative agent of the deadly disease cryptococcosis, in the presence of immortalized macrophage cells. The protocol details the proper protein preparation techniques for both pathogen and mammalian cells within a single experiment, resulting in appropriate peptide submission for liquid-chromatography (LC)-MS/MS analysis. The high throughput generic nature of LFQ allows a wide dynamic range of protein identification and quantification, as well as transferability to any host-pathogen infection setting, maintaining extreme sensitivity. The method is optimized to catalogue extensive, unbiased protein abundance profiles of a pathogen within infection-mimicking conditions. Specifically, the method demonstrated here provides essential information on C. neoformans pathogenesis, such as protein production necessary for virulence and identifies critical host proteins responding to microbial invasion.


Subject(s)
Host-Pathogen Interactions , Proteomics/methods , Workflow , Animals , Cell Line , Cryptococcus neoformans/physiology , Macrophages/metabolism , Macrophages/microbiology , Tandem Mass Spectrometry
12.
Front Microbiol ; 11: 546, 2020.
Article in English | MEDLINE | ID: mdl-32390954

ABSTRACT

Nutrient adaptation is key in limiting environments for the promotion of microbial growth and survival. In microbial systems, iron is an essential component for many cellular processes, and bioavailability varies greatly among different conditions. In the bacterium, Klebsiella pneumoniae, the impact of iron limitation is known to alter transcriptional expression of iron-acquisition pathways and influence secretion of iron-binding siderophores, however, a comprehensive view of iron limitation at the protein level remains to be defined. Here, we apply a mass-spectrometry-based quantitative proteomics strategy to profile the global impact of iron limitation on the cellular proteome and extracellular environment (secretome) of K. pneumoniae. Our data define the impact of iron on proteins involved in transcriptional regulation and emphasize the modulation of a vast array of proteins associated with iron acquisition, transport, and binding. We also identify proteins in the extracellular environment associated with conventional and non-conventional modes of secretion, as well as vesicle release. In particular, we demonstrate a new role for Lon protease in promoting iron homeostasis outside of the cell. Characterization of a Lon protease mutant in K. pneumoniae validates roles in bacterial growth, cell division, and virulence, and uncovers novel degradation candidates of Lon protease associated with improved iron utilization strategies in the absence of the enzyme. Overall, we provide evidence of unique connections between Lon and iron in a bacterial system and suggest a new role for Lon protease in the extracellular environment during nutrient limitation.

13.
J Fungi (Basel) ; 6(4)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322591

ABSTRACT

Perennial ryegrass (Lolium perenne) is the most cultivated cool-season grass worldwide with crucial roles in carbon fixation, turfgrass applications, and fodder for livestock. Lolium perenne forms a mutualism with the strictly vertically transmitted fungal endophyte, Epichloë festucae var lolii. The fungus produces alkaloids that protect the grass from herbivory, as well as conferring protection from drought and nutrient stress. The rising concentration of atmospheric CO2, a proximate cause of climatic change, is known to have many direct and indirect effects on plant growth. There is keen interest in how the nature of this plant-fungal interaction will change with climate change. Lolium perenne is an obligately outcrossing species, meaning that the genetic profile of the host is constantly being reshuffled. Meanwhile, the fungus is asexual implying both a relatively constant genetic profile and the potential for incompatible grass-fungus pairings. In this study, we used a single cultivar, "Alto", of L. perenne. Each plant was infected with one of four strains of the endophyte: AR1, AR37, NEA2, and Lp19 (the "common strain"). We outcrossed the Alto mothers with pollen from a number of individuals from different ryegrass cultivars to create more genetic diversity in the hosts. We collected seed such that we had replicate maternal half-sib families. Seed from each family was randomly allocated into the two levels of the CO2 treatment, 400 and 800 ppm. Elevated CO2 resulted in an c. 18% increase in plant biomass. AR37 produced higher fungal concentrations than other strains; NEA2 produced the lowest fungal concentrations. We did not find evidence of genetic incompatibility between the host plants and the fungal strains. We conducted untargeted metabolomics and quantitative proteomics to investigate the grass-fungus interactions between and within family and treatment groups. We identified a number of changes in both the proteome and metabalome. Taken together, our data set provides new understanding into the intricacy of the interaction between endophyte and host from multiple molecular levels and suggests opportunity to promote plant robustness and survivability in rising CO2 environmental conditions through application of bioprotective epichloid strains.

14.
J Leukoc Biol ; 106(6): 1221-1232, 2019 12.
Article in English | MEDLINE | ID: mdl-31556465

ABSTRACT

The innate immune system is a collective network of cell types involved in cell recruitment and activation using a robust and refined communication system. Engagement of receptor-mediated intracellular signaling initiates communication cascades by conveying information about the host cell status to surrounding cells for surveillance and protection. Comprehensive profiling of innate immune cells is challenging due to low cell numbers, high dynamic range of the cellular proteome, low abundance of secreted proteins, and the release of degradative enzymes (e.g., proteases). However, recent advances in mass spectrometry-based proteomics provides the capability to overcome these limitations through profiling the dynamics of cellular processes, signaling cascades, post-translational modifications, and interaction networks. Moreover, integration of technologies and molecular datasets provide a holistic view of a complex and intricate network of communications underscoring host defense and tissue homeostasis mechanisms. In this Review, we explore the diverse applications of mass spectrometry-based proteomics in innate immunity to define communication patterns of the innate immune cells during health and disease. We also provide a technical overview of mass spectrometry-based proteomic workflows, with a focus on bottom-up approaches, and we present the emerging role of proteomics in immune-based drug discovery while providing a perspective on new applications in the future.


Subject(s)
Cell Communication/immunology , Immunity, Innate , Proteome , Proteomics , Signal Transduction , Animals , Computational Biology/methods , Disease Susceptibility/immunology , Drug Delivery Systems , Drug Discovery , Humans , Mass Spectrometry/methods , Proteomics/methods
15.
Phytochemistry ; 164: 162-171, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31151063

ABSTRACT

In addition to the psychoactive constituents that are typically associated with Cannabis sativa L., there exist numerous other specialized metabolites in this plant that are believed to contribute to its medicinal versatility. This study focused on two such compounds, known as cannflavin A and cannflavin B. These prenylated flavonoids specifically accumulate in C. sativa and are known to exhibit potent anti-inflammatory activity in various animal cell models. However, almost nothing is known about their biosynthesis. Using a combination of phylogenomic and biochemical approaches, an aromatic prenyltransferase from C. sativa (CsPT3) was identified that catalyzes the regiospecific addition of either geranyl diphosphate (GPP) or dimethylallyl diphosphate (DMAPP) to the methylated flavone, chrysoeriol, to produce cannflavins A and B, respectively. Further evidence is presented for an O-methyltransferase (CsOMT21) encoded within the C. sativa genome that specifically converts the widespread plant flavone known as luteolin to chrysoeriol, both of which accumulate in C. sativa. These results therefore imply the following reaction sequence for cannflavins A and B biosynthesis: luteolin ► chrysoeriol ► cannflavin A and cannflavin B. Taken together, the identification of these two unique enzymes represent a branch point from the general flavonoid pathway in C. sativa and offer a tractable route towards metabolic engineering strategies that are designed to produce these two medicinally relevant Cannabis compounds.


Subject(s)
Cannabis/chemistry , Flavones/biosynthesis , Cannabis/metabolism , Flavones/chemistry , Flavones/metabolism , Metabolic Engineering , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL