Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Mol Cell ; 83(14): 2578-2594.e9, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37402368

ABSTRACT

The spliceosome is a staggeringly complex machine, comprising, in humans, 5 snRNAs and >150 proteins. We scaled haploid CRISPR-Cas9 base editing to target the entire human spliceosome and investigated the mutants using the U2 snRNP/SF3b inhibitor, pladienolide B. Hypersensitive substitutions define functional sites in the U1/U2-containing A complex but also in components that act as late as the second chemical step after SF3b is dissociated. Viable resistance substitutions map not only to the pladienolide B-binding site but also to the G-patch domain of SUGP1, which lacks orthologs in yeast. We used these mutants and biochemical approaches to identify the spliceosomal disassemblase DHX15/hPrp43 as the ATPase ligand for SUGP1. These and other data support a model in which SUGP1 promotes splicing fidelity by triggering early spliceosome disassembly in response to kinetic blocks. Our approach provides a template for the analysis of essential cellular machines in humans.


Subject(s)
Epoxy Compounds , Spliceosomes , Humans , Spliceosomes/metabolism , Epoxy Compounds/metabolism , Macrolides/metabolism , RNA Splicing , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Mutagenesis
2.
ACS Nano ; 15(7): 11263-11275, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34128638

ABSTRACT

Protein pores recently enabled a breakthrough in bioanalytics by making it possible to sequence individual DNA and RNA strands during their translocation through the lumen of the pore. Despite this success and the overall promise of nanopore-based single-molecule analytics, protein pores have not yet reached their full potential for the analysis and characterization of globular biomolecules such as natively folded proteins. One reason is that the diameters of available protein pores are too small for accommodating the translocation of most folded globular proteins through their lumen. The work presented here provides a step toward overcoming this limitation by programmed self-assembly of α-helical pore-forming peptides with covalently attached single-stranded DNA (ssDNA). Specifically, hybridization of the peptide ceratotoxin A (CtxA) with N-terminally attached ssDNA to a complementary DNA template strand with 4, 8, or 12 hybridization sites made it possible to trigger the assembly of pores with various diameters ranging from approximately 0.5 to 4 nm. Hybridization of additional DNA strands to these assemblies achieved extended functionality in a modular fashion without the need for modifying the amino acid sequence of the peptides. For instance, functionalization of these semisynthetic biological nanopores with DNA-cholesterol anchors increased their affinity to lipid membranes compared to pores formed by native CtxA, while charged transmembrane segments prolonged their open-state lifetime. Assembly of these hybrid DNA-peptides by a template increased their cytotoxic activity and made it possible to kill cancer cells at 20-fold lower total peptide concentrations than nontemplated CtxA.


Subject(s)
Nanopores , Nanotechnology , DNA/chemistry , Peptides , DNA, Single-Stranded
SELECTION OF CITATIONS
SEARCH DETAIL