Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Nat Rev Mol Cell Biol ; 22(10): 651, 2021 10.
Article in English | MEDLINE | ID: mdl-34294903

Subject(s)
Nuclear Pore
2.
EMBO Rep ; 24(6): e56241, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37039032

ABSTRACT

PLK1 is an important regulator of mitosis whose protein levels and activity fluctuate during the cell cycle. PLK1 dynamically localizes to various mitotic structures to regulate chromosome segregation. However, the signaling pathways linking localized PLK1 activity to its protein stability remain elusive. Here, we identify the Ubiquitin-Binding Protein 2-Like (UBAP2L) that controls both the localization and the protein stability of PLK1. We demonstrate that UBAP2L is a spindle-associated protein whose depletion leads to severe mitotic defects. UBAP2L-depleted cells are characterized by increased PLK1 protein levels and abnormal PLK1 accumulation in several mitotic structures such as kinetochores, centrosomes and mitotic spindle. UBAP2L-deficient cells exit mitosis and enter the next interphase in the presence of aberrant PLK1 kinase activity. The C-terminal domain of UBAP2L mediates its function on PLK1 independently of its role in stress response signaling. Importantly, the mitotic defects of UBAP2L-depleted cells are largely rescued by chemical inhibition of PLK1. Overall, our data suggest that UBAP2L is required to fine-tune the ubiquitin-mediated PLK1 turnover during mitosis as a means to maintain genome fidelity.


Subject(s)
Carrier Proteins , Ubiquitin , Humans , Ubiquitin/metabolism , Carrier Proteins/metabolism , HeLa Cells , Cell Cycle Proteins/metabolism , Mitosis , Spindle Apparatus/metabolism , Phosphorylation
3.
EMBO J ; 39(20): e104467, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32706158

ABSTRACT

Nucleoporins (Nups) build highly organized nuclear pore complexes (NPCs) at the nuclear envelope (NE). Several Nups assemble into a sieve-like hydrogel within the central channel of the NPCs. In the cytoplasm, the soluble Nups exist, but how their assembly is restricted to the NE is currently unknown. Here, we show that fragile X-related protein 1 (FXR1) can interact with several Nups and facilitate their localization to the NE during interphase through a microtubule-dependent mechanism. Downregulation of FXR1 or closely related orthologs FXR2 and fragile X mental retardation protein (FMRP) leads to the accumulation of cytoplasmic Nup condensates. Likewise, models of fragile X syndrome (FXS), characterized by a loss of FMRP, accumulate Nup granules. The Nup granule-containing cells show defects in protein export, nuclear morphology and cell cycle progression. Our results reveal an unexpected role for the FXR protein family in the spatial regulation of nucleoporin condensation.


Subject(s)
Cell Nucleus/metabolism , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/metabolism , Microtubules/metabolism , Nuclear Envelope/metabolism , Nuclear Pore Complex Proteins/metabolism , RNA-Binding Proteins/metabolism , Acrylates/pharmacology , Animals , Cell Line , Cytoplasm/drug effects , Cytoplasm/metabolism , Down-Regulation , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , G1 Phase Cell Cycle Checkpoints/genetics , Humans , In Situ Hybridization, Fluorescence , Interphase/genetics , Mice , Microscopy, Electron, Transmission , Microtubules/drug effects , Microtubules/ultrastructure , Myoblasts/drug effects , Myoblasts/metabolism , Nuclear Envelope/drug effects , Nuclear Envelope/ultrastructure , Nuclear Pore Complex Proteins/genetics , RNA, Small Interfering , RNA-Binding Proteins/genetics
4.
Cell ; 136(2): 235-48, 2009 Jan 23.
Article in English | MEDLINE | ID: mdl-19135240

ABSTRACT

Dysfunction and loss of insulin-producing pancreatic beta cells represent hallmarks of diabetes mellitus. Here, we show that mice lacking the mitogen-activated protein kinase (MAPK) p38delta display improved glucose tolerance due to enhanced insulin secretion from pancreatic beta cells. Deletion of p38delta results in pronounced activation of protein kinase D (PKD), the latter of which we have identified as a pivotal regulator of stimulated insulin exocytosis. p38delta catalyzes an inhibitory phosphorylation of PKD1, thereby attenuating stimulated insulin secretion. In addition, p38delta null mice are protected against high-fat-feeding-induced insulin resistance and oxidative stress-mediated beta cell failure. Inhibition of PKD1 reverses enhanced insulin secretion from p38delta-deficient islets and glucose tolerance in p38delta null mice as well as their susceptibility to oxidative stress. In conclusion, the p38delta-PKD pathway integrates regulation of the insulin secretory capacity and survival of pancreatic beta cells, pointing to a pivotal role for this pathway in the development of overt diabetes mellitus.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulin/metabolism , Mitogen-Activated Protein Kinase 13/metabolism , Protein Kinase C/metabolism , Animals , Exocytosis , Female , Glucose/metabolism , Golgi Apparatus/metabolism , Insulin Secretion , Male , Mice , Mitogen-Activated Protein Kinase 13/genetics , Type C Phospholipases/metabolism
5.
Biol Cell ; 113(6): 272-280, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33554340

ABSTRACT

Cancer is a multi-step disease where an initial tumour progresses through critical steps shaping, in most cases, life-threatening secondary foci called metastases. The oncogenic cascade involves genetic, epigenetic, signalling pathways, intracellular trafficking and/or metabolic alterations within cancer cells. In addition, pre-malignant and malignant cells orchestrate complex and dynamic interactions with non-malignant cells and acellular matricial components or secreted factors within the tumour microenvironment that is instrumental in the progression of the disease. As our aptitude to effectively treat cancer mostly depends on our ability to decipher, properly diagnose and impede cancer progression and metastasis formation, full characterisation of molecular complexes and cellular processes at play along the metastasis cascade is crucial. For many years, the scientific community lacked adapted imaging and molecular technologies to accurately dissect, at the highest resolution possible, tumour and stromal cells behaviour within their natural microenvironment. In that context, the NANOTUMOR consortium is a French national multi-disciplinary workforce which aims at a providing a multi-scale characterisation of the oncogenic cascade, from the atomic level to the dynamic organisation of the cell in response to genetic mutations, environmental changes or epigenetic modifications. Ultimately, this program aims at identifying new therapeutic targets using innovative drug design.


Subject(s)
Databases as Topic , Neoplasms/pathology , Humans
6.
Semin Cell Dev Biol ; 93: 100-110, 2019 09.
Article in English | MEDLINE | ID: mdl-30586619

ABSTRACT

Cullin-RING ubiquitin ligases (CRLs) represent the largest family of E3 ubiquitin ligases that control most if not all cellular processes. In CUL3-based CRLs, the substrate specificity is conferred by the interaction with one of around 183 existing BTB proteins, implying a broad spectrum of possible ubiquitylation signals and possible direct ubiquitylation substrates. Indeed, CUL3-based E3-ligases can catalyze various proteolytic and non-proteolytic ubiquitin signals regulating many physiological and pathophysiological states. Here, we discuss the recent studies focusing on the non-proteolytic CUL3-based signaling in mammalian cells, which emerge as important pathways during cell division, embryonic development as well as other biological processes. Mechanistically, non-proteolytic ubiquitin signals generated by CUL3 E3-ligases often regulate substrates' interactions with other downstream factors or their subcellular localization. Existing data also demonstrate an interplay with the proteolytic ubiquitylation catalyzed on the same substrates by different E3-ligases or by the same CUL3-BTB CRL3s on different substrates. In future, a deeper understanding of the upstream spatiotemporal regulatory mechanisms will help to dissect this fascinating CUL3 ubiquitin code.


Subject(s)
Cullin Proteins/metabolism , Ubiquitin/metabolism , Humans , Proteolysis
7.
FASEB J ; 34(9): 12751-12767, 2020 09.
Article in English | MEDLINE | ID: mdl-32738097

ABSTRACT

Equal segregation of chromosomes during mitosis ensures euploidy of daughter cells. Defects in this process may result in an imbalance in the chromosomal composition and cellular transformation. Proteolytic and non-proteolytic ubiquitylation pathways ensure directionality and fidelity of mitotic progression but specific mitotic functions of deubiquitylating enzymes (DUBs) remain less studied. Here we describe the role of the DUB ubiquitin carboxyl-terminal hydrolase isozyme L3 (UCHL3) in the regulation of chromosome bi-orientation and segregation during mitosis. Downregulation or inhibition of UCHL3 leads to chromosome alignment defects during metaphase. Frequent segregation errors during anaphase are also observed upon inactivation of UCHL3. Mechanistically, UCHL3 interacts with and deubiquitylates Aurora B, the catalytic subunit of chromosome passenger complex (CPC), known to be critically involved in the regulation of chromosome alignment and segregation. UCHL3 does not regulate protein levels of Aurora B or the binding of Aurora B to other CPC subunits. Instead, UCHL3 promotes localization of Aurora B to kinetochores, suggesting its role in the error correction mechanism monitoring bi-orientation of chromosomes during metaphase. Thus, UCHL3 contributes to the regulation of faithful genome segregation and maintenance of euploidy in human cells.


Subject(s)
Chromosome Segregation , Mitosis , Ubiquitin Thiolesterase/physiology , Aurora Kinase B/physiology , HeLa Cells , Humans , Ubiquitination
8.
EMBO J ; 32(17): 2307-20, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23912815

ABSTRACT

Protein ubiquitylation is a post-translational modification that controls all aspects of eukaryotic cell functionality, and its defective regulation is manifested in various human diseases. The ubiquitylation process requires a set of enzymes, of which the ubiquitin ligases (E3s) are the substrate recognition components. Modular CULLIN-RING ubiquitin ligases (CRLs) are the most prevalent class of E3s, comprising hundreds of distinct CRL complexes with the potential to recruit as many and even more protein substrates. Best understood at both structural and functional levels are CRL1 or SCF (SKP1/CUL1/F-box protein) complexes, representing the founding member of this class of multimeric E3s. Another CRL subfamily, called CRL3, is composed of the molecular scaffold CULLIN3 and the RING protein RBX1, in combination with one of numerous BTB domain proteins acting as substrate adaptors. Recent work has firmly established CRL3s as major regulators of different cellular and developmental processes as well as stress responses in both metazoans and higher plants. In humans, functional alterations of CRL3s have been associated with various pathologies, including metabolic disorders, muscle, and nerve degeneration, as well as cancer. In this review, we summarize recent discoveries on the function of CRL3s in both metazoans and plants, and discuss their mode of regulation and specificities.


Subject(s)
Cullin Proteins/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitin-Protein Ligases/physiology , Animals , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cullin Proteins/chemistry , Cullin Proteins/genetics , Humans , Metabolic Diseases/enzymology , Neoplasms/enzymology , Nerve Degeneration/enzymology , Plant Growth Regulators/biosynthesis , Plant Proteins/metabolism , Protein Processing, Post-Translational , Protein Structure, Tertiary , Protein Transport , Signal Transduction/genetics , Stress, Physiological/genetics , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
9.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38652117

ABSTRACT

Assembly of macromolecular complexes at correct cellular sites is crucial for cell function. Nuclear pore complexes (NPCs) are large cylindrical assemblies with eightfold rotational symmetry, built through hierarchical binding of nucleoporins (Nups) forming distinct subcomplexes. Here, we uncover a role of ubiquitin-associated protein 2-like (UBAP2L) in the assembly and stability of properly organized and functional NPCs at the intact nuclear envelope (NE) in human cells. UBAP2L localizes to the nuclear pores and facilitates the formation of the Y-complex, an essential scaffold component of the NPC, and its localization to the NE. UBAP2L promotes the interaction of the Y-complex with POM121 and Nup153, the critical upstream factors in a well-defined sequential order of Nups assembly onto NE during interphase. Timely localization of the cytoplasmic Nup transport factor fragile X-related protein 1 (FXR1) to the NE and its interaction with the Y-complex are likewise dependent on UBAP2L. Thus, this NPC biogenesis mechanism integrates the cytoplasmic and the nuclear NPC assembly signals and ensures efficient nuclear transport, adaptation to nutrient stress, and cellular proliferative capacity, highlighting the importance of NPC homeostasis at the intact NE.


Subject(s)
Carrier Proteins , Nuclear Envelope , Nuclear Pore , Humans , Active Transport, Cell Nucleus , HeLa Cells , Homeostasis , Membrane Glycoproteins , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Carrier Proteins/metabolism
10.
Sci Immunol ; 8(90): eadf4699, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38134241

ABSTRACT

Immune cells sense the microenvironment to fine-tune their inflammatory responses. Patients with cryopyrin-associated periodic syndrome (CAPS), caused by mutations in the NLRP3 gene, develop autoinflammation triggered by nonantigenic cues such as from the environment. However, the underlying mechanisms are poorly understood. Here, we uncover that KCNN4, a calcium-activated potassium channel, links PIEZO-mediated mechanotransduction to NLRP3 inflammasome activation. Yoda1, a PIEZO1 agonist, lowered the threshold for NLRP3 inflammasome activation. PIEZO-mediated sensing of stiffness and shear stress increased NLRP3-dependent inflammation. Myeloid-specific deletion of PIEZO1/2 protected mice from gouty arthritis. Mechanistically, activation of PIEZO1 triggers calcium influx, which activates KCNN4 to evoke potassium efflux and promotes NLRP3 inflammasome activation. Activation of PIEZO signaling was sufficient to activate the inflammasome in cells expressing CAPS-causing NLRP3 mutants via KCNN4. Last, pharmacological inhibition of KCNN4 alleviated autoinflammation in cells of patients with CAPS and in mice bearing a CAPS mutation. Thus, PIEZO-dependent mechanical inputs boost inflammation in NLRP3-dependent diseases, including CAPS.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Mechanotransduction, Cellular , Cryopyrin-Associated Periodic Syndromes/genetics , Inflammation , Intermediate-Conductance Calcium-Activated Potassium Channels , Ion Channels/genetics
11.
Nat Metab ; 5(6): 1045-1058, 2023 06.
Article in English | MEDLINE | ID: mdl-37277610

ABSTRACT

Hypothalamic AgRP/NPY neurons are key players in the control of feeding behaviour. Ghrelin, a major orexigenic hormone, activates AgRP/NPY neurons to stimulate food intake and adiposity. However, cell-autonomous ghrelin-dependent signalling mechanisms in AgRP/NPY neurons remain poorly defined. Here we show that calcium/calmodulin-dependent protein kinase ID (CaMK1D), a genetic hot spot in type 2 diabetes, is activated upon ghrelin stimulation and acts in AgRP/NPY neurons to mediate ghrelin-dependent food intake. Global Camk1d-knockout male mice are resistant to ghrelin, gain less body weight and are protected against high-fat-diet-induced obesity. Deletion of Camk1d in AgRP/NPY, but not in POMC, neurons is sufficient to recapitulate above phenotypes. In response to ghrelin, lack of CaMK1D attenuates phosphorylation of CREB and CREB-dependent expression of the orexigenic neuropeptides AgRP/NPY in fibre projections to the paraventricular nucleus (PVN). Hence, CaMK1D links ghrelin action to transcriptional control of orexigenic neuropeptide availability in AgRP neurons.


Subject(s)
Diabetes Mellitus, Type 2 , Ghrelin , Mice , Animals , Male , Ghrelin/metabolism , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Diabetes Mellitus, Type 2/metabolism , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Neurons/metabolism , Obesity/metabolism , Mice, Knockout , Eating , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism
12.
Dev Cell ; 12(6): 887-900, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17543862

ABSTRACT

Faithful cell-cycle progression is tightly controlled by the ubiquitin-proteasome system. Here we identify a human Cullin 3-based E3 ligase (Cul3) which is essential for mitotic division. In a complex with the substrate-specific adaptors KLHL9 and KLHL13, Cul3 is required for correct chromosome alignment in metaphase, proper midzone and midbody formation, and completion of cytokinesis. This Cul3-based E3 ligase removes components of the chromosomal passenger complex from mitotic chromosomes and allows their accumulation on the central spindle during anaphase. Aurora B directly binds to the substrate-recognition domain of KLHL9 and KLHL13 in vitro, and coimmunoprecipitates with the Cul3 complex during mitosis. Moreover, Aurora B is ubiquitylated in a Cul3-dependent manner in vivo, and by reconstituted Cul3/KLHL9/KLHL13 ligase in vitro. We thus propose that the Cul3/KLHL9/KLHL13 E3 ligase controls the dynamic behavior of Aurora B on mitotic chromosomes, and thereby coordinates faithful mitotic progression and completion of cytokinesis.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomes, Human , Cullin Proteins/metabolism , Cytokinesis , Mitosis , Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Aurora Kinase B , Aurora Kinases , Cell Cycle Proteins/genetics , Cullin Proteins/genetics , HeLa Cells , Humans , Protein Serine-Threonine Kinases/genetics , Spindle Apparatus , Ubiquitin/metabolism , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
13.
Proc Natl Acad Sci U S A ; 106(30): 12365-70, 2009 Jul 28.
Article in English | MEDLINE | ID: mdl-19617556

ABSTRACT

Cullin (Cul)-based E3 ubiquitin ligases are activated through the attachment of Nedd8 to the Cul protein. In yeast, Dcn1 (defective in Cul neddylation 1 protein) functions as a scaffold-like Nedd8 E3-ligase by interacting with its Cul substrates and the Nedd8 E2 Ubc12. Human cells express 5 Dcn1-like (DCNL) proteins each containing a C-terminal potentiating neddylation domain but distinct amino-terminal extensions. Although the UBA-containing DCNL1 and DCNL2 are likely functional homologues of yeast Dcn1, DCNL3 also interacts with human Culs and is able to complement the neddylation defect of yeast dcn1Delta cells. DCNL3 down-regulation by RNAi decreases Cul neddylation, and overexpression of a Cul3 mutant deficient in DCNL3 binding interferes with Cul3 function in vivo. Interestingly, DCNL3 accumulates at the plasma membrane through a conserved, lipid-modified motif at the N terminus. Membrane-bound DCNL3 is able to recruit Cul3 to membranes and is functionally important for Cul3 neddylation in vivo. We conclude that DCNL proteins function as nonredundant Cul Nedd8-E3 ligases. Moreover, the diversification of the N termini in mammalian Dcn1 homologues may contribute to substrate specificity by regulating their subcellular localization.


Subject(s)
Cell Membrane/metabolism , Cullin Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Binding Sites , COS Cells , Cell Line , Chlorocebus aethiops , Cullin Proteins/genetics , Fluorescent Antibody Technique , Genetic Complementation Test , HeLa Cells , Humans , Immunoblotting , Immunoprecipitation , Mutation , NEDD8 Protein , Protein Binding , RNA, Small Interfering/genetics , Saccharomyces cerevisiae Proteins/genetics , Transfection , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Ubiquitins/genetics , Ubiquitins/metabolism
14.
Front Cell Dev Biol ; 10: 931115, 2022.
Article in English | MEDLINE | ID: mdl-35794863

ABSTRACT

Ubiquitin Binding Protein 2-like (UBAP2L, also known as NICE-4) is a ubiquitin- and RNA-binding protein, highly conserved in metazoans. Despite its abundance, its functions have only recently started to be characterized. Several studies have demonstrated the crucial involvement of UBAP2L in various cellular processes such as cell cycle regulation, stem cell activity and stress-response signaling. In addition, UBAP2L has recently emerged as a master regulator of growth and proliferation in several human cancers, where it is suggested to display oncogenic properties. Given that this versatile protein is involved in the regulation of multiple and distinct cellular pathways, actively contributing to the maintenance of cell homeostasis and survival, UBAP2L might represent a good candidate for future therapeutic studies. In this review, we discuss the current knowledge and latest advances on elucidating UBAP2L cellular functions, with an aim to highlight the importance of targeting UBAP2L for future therapies.

15.
Commun Biol ; 5(1): 114, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136173

ABSTRACT

Ubiquitylation is one of the most common post-translational modifications (PTMs) of proteins that frequently targets substrates for proteasomal degradation. However it can also result in non-proteolytic events which play important functions in cellular processes such as intracellular signaling, membrane trafficking, DNA repair and cell cycle. Emerging evidence demonstrates that dysfunction of non-proteolytic ubiquitylation is associated with the development of multiple human diseases. In this review, we summarize the current knowledge and the latest concepts on how non-proteolytic ubiquitylation pathways are involved in cellular signaling and in disease-mediating processes. Our review, may advance our understanding of the non-degradative ubiquitylation process.


Subject(s)
DNA Repair , Protein Processing, Post-Translational , Humans , Signal Transduction , Ubiquitination
16.
Sci Adv ; 8(33): eabp9457, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35977011

ABSTRACT

The helicase XPD is known as a key subunit of the DNA repair/transcription factor TFIIH. However, here, we report that XPD, independently to other TFIIH subunits, can localize with the motor kinesin Eg5 to mitotic spindles and the midbodies of human cells. The XPD/Eg5 partnership is promoted upon phosphorylation of Eg5/T926 by the kinase CDK1, and conversely, it is reduced once Eg5/S1033 is phosphorylated by NEK6, a mitotic kinase that also targets XPD at T425. The phosphorylation of XPD does not affect its DNA repair and transcription functions, but it is required for Eg5 localization, checkpoint activation, and chromosome segregation in mitosis. In XPD-mutated cells derived from a patient with xeroderma pigmentosum, the phosphomimetic form XPD/T425D or even the nonphosphorylatable form Eg5/S1033A specifically restores mitotic chromosome segregation errors. These results thus highlight the phospho-dependent mitotic function of XPD and reveal how mitotic defects might contribute to XPD-related disorders.


Subject(s)
DNA Repair , Xeroderma Pigmentosum Group D Protein/metabolism , DNA Helicases/metabolism , Humans , NIMA-Related Kinases/genetics , Phosphorylation , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/metabolism , Xeroderma Pigmentosum Group D Protein/genetics
17.
Front Cell Dev Biol ; 9: 767221, 2021.
Article in English | MEDLINE | ID: mdl-34805174

ABSTRACT

Mitosis ensures genome integrity by mediating precise segregation of the duplicated genetic material. Segregation of subcellular organelles during mitosis also needs to be tightly coordinated in order to warrant their proper inheritance and cellular homeostasis. The inheritance of mitochondria, a powerhouse of the cell, is tightly regulated in order to meet the high energy demand to fuel the mitotic machinery. Mitochondria are highly dynamic organelles, which undergo events of fission, fusion and transport during different cell cycle stages. Importantly, during mitosis several kinases phosphorylate the key mitochondrial factors and drive fragmentation of mitochondria to allow for their efficient distribution and inheritance to two daughter cells. Recent evidence suggests that mitochondrial fission can also actively contribute to the regulation of mitotic progression. This review aims at summarizing established and emerging concepts about the complex regulatory networks which couple crucial mitotic factors and events to mitochondrial dynamics and which could be implicated in human disease.

18.
Front Cell Dev Biol ; 9: 755847, 2021.
Article in English | MEDLINE | ID: mdl-34977012

ABSTRACT

Nuclear pore complexes (NPCs) are embedded in the nuclear envelope (NE) where they ensure the transport of macromolecules between the nucleus and the cytoplasm. NPCs are built from nucleoporins (Nups) through a sequential assembly order taking place at two different stages during the cell cycle of mammalian cells: at the end of mitosis and during interphase. In addition, fragile X-related proteins (FXRPs) can interact with several cytoplasmic Nups and facilitate their localization to the NE during interphase likely through a microtubule-dependent mechanism. In the absence of FXRPs or microtubule-based transport, Nups aberrantly localize to the cytoplasm forming the so-called cytoplasmic nucleoporin granules (CNGs), compromising NPCs' function on protein export. However, it remains unknown if Nup synthesis or degradation mechanisms are linked to the FXRP-Nup pathway and if and how the action of FXRPs on Nups is coordinated with the cell cycle progression. Here, we show that Nup localization defects observed in the absence of FXR1 are independent of active protein translation. CNGs are cleared in an autophagy- and proteasome-independent manner, and their presence is restricted to the early G1 phase of the cell cycle. Our results thus suggest that a pool of cytoplasmic Nups exists that contributes to the NPC assembly specifically during early G1 to ensure NPC homeostasis at a short transition from mitosis to the onset of interphase.

19.
Cell Rep ; 35(7): 109129, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34010649

ABSTRACT

Mitochondria are highly dynamic organelles subjected to fission and fusion events. During mitosis, mitochondrial fission ensures equal distribution of mitochondria to daughter cells. If and how this process can actively drive mitotic progression remains largely unknown. Here, we discover a pathway linking mitochondrial fission to mitotic progression in mammalian cells. The mitochondrial fission factor (MFF), the main mitochondrial receptor for the Dynamin-related protein 1 (DRP1), is directly phosphorylated by Protein Kinase D (PKD) specifically during mitosis. PKD-dependent MFF phosphorylation is required and sufficient for mitochondrial fission in mitotic but not in interphasic cells. Phosphorylation of MFF is crucial for chromosome segregation and promotes cell survival by inhibiting adaptation of the mitotic checkpoint. Thus, PKD/MFF-dependent mitochondrial fission is critical for the maintenance of genome integrity during cell division.


Subject(s)
Mitochondrial Proteins/genetics , Mitosis/physiology , Protein Kinase C/metabolism , Animals , Humans , Mice , Signal Transduction
20.
Cell Rep ; 32(3): 107932, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32698004

ABSTRACT

Cilia and the intraflagellar transport (IFT) proteins involved in ciliogenesis are associated with congenital heart diseases (CHDs). However, the molecular links between cilia, IFT proteins, and cardiogenesis are yet to be established. Using a combination of biochemistry, genetics, and live-imaging methods, we show that IFT complex B proteins (Ift88, Ift54, and Ift20) modulate the Hippo pathway effector YAP1 in zebrafish and mouse. We demonstrate that this interaction is key to restrict the formation of the proepicardium and the myocardium. In cellulo experiments suggest that IFT88 and IFT20 interact with YAP1 in the cytoplasm and functionally modulate its activity, identifying a molecular link between cilia-related proteins and the Hippo pathway. Taken together, our results highlight a noncanonical role for IFT complex B proteins during cardiogenesis and shed light on a mechanism of action for ciliary proteins in YAP1 regulation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Flagella/metabolism , Heart/embryology , Organogenesis , Protein Serine-Threonine Kinases/metabolism , Trans-Activators/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Biological Transport , Bone Morphogenetic Proteins/metabolism , Cilia/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice, Inbred C57BL , Pericardium/metabolism , Protein Binding , Signal Transduction , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL