Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Plant Cell ; 30(11): 2720-2740, 2018 11.
Article in English | MEDLINE | ID: mdl-30373760

ABSTRACT

Rice (Oryza sativa) is an important dietary source of both essential micronutrients and toxic trace elements for humans. The genetic basis underlying the variations in the mineral composition, the ionome, in rice remains largely unknown. Here, we describe a comprehensive study of the genetic architecture of the variation in the rice ionome performed using genome-wide association studies (GWAS) of the concentrations of 17 mineral elements in rice grain from a diverse panel of 529 accessions, each genotyped at ∼6.4 million single nucleotide polymorphism loci. We identified 72 loci associated with natural ionomic variations, 32 that are common across locations and 40 that are common within a single location. We identified candidate genes for 42 loci and provide evidence for the causal nature of three genes, the sodium transporter gene Os-HKT1;5 for sodium, Os-MOLYBDATE TRANSPORTER1;1 for molybdenum, and Grain number, plant height, and heading date7 for nitrogen. Comparison of GWAS data from rice versus Arabidopsis (Arabidopsis thaliana) also identified well-known as well as new candidates with potential for further characterization. Our study provides crucial insights into the genetic basis of ionomic variations in rice and serves as an important foundation for further studies on the genetic and molecular mechanisms controlling the rice ionome.


Subject(s)
Genome-Wide Association Study/methods , Oryza/genetics , Genetic Variation/genetics , Genotype , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
2.
Plant Physiol ; 178(1): 329-344, 2018 09.
Article in English | MEDLINE | ID: mdl-30002257

ABSTRACT

Copper (Cu) is an essential micronutrient for plant growth. However, the molecular mechanisms underlying Cu trafficking and distribution to different organs in rice (Oryza sativa) are poorly understood. Here, we report the function and role of Antioxidant Protein1 (OsATX1), a Cu chaperone in rice. Knocking out OsATX1 resulted in increased Cu concentrations in roots, whereas OsATX1 overexpression reduced root Cu concentrations but increased Cu accumulation in the shoots. At the reproductive stage, the concentrations of Cu in developing tissues, including panicles, upper nodes and internodes, younger leaf blades, and leaf sheaths of the main tiller, were increased significantly in OsATX1-overexpressing plants and decreased in osatx1 mutants compared with the wild type. The osatx1 mutants also showed a higher Cu concentration in older leaves. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that OsATX1 interacts with the rice heavy metal P1B-ATPases HMA4, HMA5, HMA6, and HMA9. These results suggest that OsATX1 may function to deliver Cu to heavy metal P1B-ATPases for Cu trafficking and distribution in order to maintain Cu homeostasis in different rice tissues. In addition, heterologous expression of OsATX1 in the yeast (Saccharomyces cerevisiae) cadmium-sensitive mutant Δycf1 increased the tolerance to Cu and cadmium by decreasing their respective concentrations in the transformed yeast cells. Taken together, our results indicate that OsATX1 plays an important role in facilitating root-to-shoot Cu translocation and the redistribution of Cu from old leaves to developing tissues and seeds in rice.


Subject(s)
Adenosine Triphosphatases/metabolism , Copper/metabolism , Metals, Heavy/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Adenosine Triphosphatases/genetics , Biological Transport , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Mutation , Oryza/genetics , Oryza/growth & development , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Protein Binding
3.
J Exp Bot ; 70(21): 6389-6400, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31494666

ABSTRACT

Excessive cadmium (Cd) accumulation in rice poses a potential threat to human health. Rice varieties vary in their Cd content, which depends mainly on root-to-shoot translocation of Cd. However, cultivars accumulating high Cd in the natural population have not been completely investigated. In this study, we analyzed the variation in Cd accumulation in a diverse panel of 529 rice cultivars. Only a small proportion (11 of 529) showed extremely high root-to-shoot Cd transfer rates, and in seven of these cultivars this was caused by two known OsHMA3 alleles. Using quantitative trait loci mapping, we identified a new OsHMA3 allele that was associated with high Cd accumulation in three of the remaining cultivars. Using heterologous expression in yeast and comparative analysis among different rice cultivars, we observed that this new allele was weak at both the transcriptional and protein levels compared with the functional OsHMA3 genotypes. The weak Cd transport activity was further demonstrated to be caused by a Gly to Arg substitution at position 512. Our study comprehensively analyzed the variation in root-to-shoot Cd translocation rates in cultivated rice and identified a new OsHMA3 allele that caused high Cd accumulation in a few rice cultivars.


Subject(s)
Alleles , Cadmium/metabolism , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Amino Acid Sequence , Biological Transport , Chromosome Segregation , Gene Expression Regulation, Plant , Genetic Linkage , Haplotypes/genetics , Physical Chromosome Mapping , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL