Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Opt Express ; 32(7): 11548-11559, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38570999

ABSTRACT

Active optical metasurfaces provide a platform for dynamic and real-time manipulation of light at subwavelength scales. However, most active metasurfaces are unable to simultaneously possess a wide wavelength tuning range and narrow resonance peaks, thereby limiting further advancements in the field of high-precision sensing or detection. In the paper, we proposed a reprogrammable active metasurface that employs the non-volatile phase change material Ge2Sb2Te5 and demonstrated its excellent performance in on-chip spectrometer. The active metasurfaces support magnetic modes and feature Friedrich-Wintgen quasi bound states in the continuum, capable of achieving multi-resonant near-perfect absorption, a multilevel tuning range, and narrowband performance in the infrared band. Meanwhile, we numerically investigated the coupling phenomenon and the intrinsic relationship between different resonance modes under various structural parameters. Furthermore, using the active metasurfaces as tunable filters and combined with compressive sensing algorithms, we successfully reconstructed various types of spectral signals with an average fidelity rate exceeding 0.99, utilizing only 51 measurements with a single nanostructure. A spectral resolution of 0.5 nm at a center wavelength 2.538 µm is predicted when the crystallization fractions of GST change from 0 to 20%. This work has promising potential in on-site matter inspection and point-of-care (POC) testing.

2.
PLoS One ; 19(6): e0302983, 2024.
Article in English | MEDLINE | ID: mdl-38900781

ABSTRACT

Rice wine, known as yellow wine in China and Japan, possesses considerable nutritional value and holds significant global influence. This study addresses the challenge of preserving rice wine, which is prone to rancidity due to its low alcohol content. Conventional storage techniques employing pottery jars often result in substantial spoilage losses. Through rigorous investigation, this research identifies a polarization phenomenon exhibited by degraded rice wine when subjected to high-frequency microwaves(>60GHz), presenting a pioneering method for detecting spoilage, even within sealed containers. Employing a multi-channel microwave radar apparatus, the study delves into the susceptibility of rice wine to electromagnetic waves across various frequencies, uncovering pronounced polarization traits in deteriorated samples within the E-band microwave spectrum. Furthermore, lab-controlled simulations elucidate a direct correlation between physicochemical alterations and high-frequency Radar Cross Section (RCS) signals during the wine's deterioration process. A novel six-membered Hydrated Cluster hypothesis is proposed, offering insights into the molecular mechanisms underlying this phenomenon. Additionally, dielectric property assessments conducted using vector network analyzers (VNA) reveal noteworthy enhancements in the dielectric constant of deteriorated rice wine, particularly within the high-frequency domain, thereby augmenting detectability. These findings carry implications for refining rice wine preservation techniques and contribute to the advancement of non-destructive testing technologies, enabling the detection of rice wine deterioration or indications thereof, even within sealed vessels.


Subject(s)
Oryza , Wine , Wine/analysis , Oryza/chemistry , Microwaves , Japan , Electromagnetic Phenomena , China
SELECTION OF CITATIONS
SEARCH DETAIL