Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Ecotoxicol Environ Saf ; 161: 662-668, 2018 10.
Article in English | MEDLINE | ID: mdl-29935430

ABSTRACT

Because the extensive use of Cu-based fungicides, the accumulation of Cu in agricultural soil has been widely reported. However, little information is known about the bioavailability of Cu deriving from different fungicides in soil. This paper investigated both the distribution behaviors of Cu from two commonly used fungicides (Bordeaux mixture and copper oxychloride) during the aging process and the toxicological effects of Cu on earthworms. Copper nitrate was selected as a comparison during the aging process. The distribution process of exogenous Cu into different soil fractions involved an initial rapid retention (the first 8 weeks) and a following slow continuous retention. Moreover, Cu mainly moved from exchangeable and carbonate fractions to Fe-Mn oxides-combined fraction during the aging process. The Elovich model fit well with the available Cu aging process, and the transformation rate was in the order of Cu(NO3)2 > Bordeaux mixture > copper oxychloride. On the other hand, the biological responses of earthworms showed that catalase activities and malondialdehyde contents of the copper oxychloride treated earthworms were significantly higher than those of Bordeaux mixture treated earthworms. Also, body Cu loads of earthworms from different Cu compounds spiked soils were in the following order: copper oxychloride > Bordeaux mixture. Thus, the bioavailability of Cu from copper oxychloride in soil was significantly higher than that of Bordeaux mixture, and different Cu compounds should be taken into consideration when studying the bioavailability of Cu-based fungicides in the soil.


Subject(s)
Copper/analysis , Fungicides, Industrial/analysis , Soil Pollutants/analysis , Animals , Biological Availability , Copper/pharmacokinetics , Copper/toxicity , Fungicides, Industrial/pharmacokinetics , Fungicides, Industrial/toxicity , Nitrates/analysis , Oligochaeta/drug effects , Oligochaeta/enzymology , Oligochaeta/metabolism , Soil/chemistry , Soil Pollutants/pharmacokinetics , Soil Pollutants/toxicity
2.
Sci Total Environ ; 834: 155440, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35469870

ABSTRACT

Aging behaviors of metals in the field differ from those in a controlled laboratory environment. Whether aging conditions influence the fates of metals in soil remains unclear. In this study, distributions of cadmium (Cd) and phosphatase activity were compared in soil aggregates (i.e., >2, 1-2, 0.25-1, and <0.25 mm) along a profile (0-5, 5-10, and 10-15 cm) at the end of 500-day aging experiments under both controlled laboratory and field conditions. Cd concentration in the 0-5 cm layer was lower and Cd concentration in the 5-10 cm layer was higher in field-aged soil compared to laboratory-aged soil. 25.26-35.62% of soil Cd was loaded in >2 mm aggregates of field-aged soils, and 58.41-66.95% was in laboratory-aged soils. Higher loadings of Cd in 0.25-1 and <0.25 mm aggregates were found in field-aged soil. A higher proportion of exchangeable Cd fraction (20.93% of total soil Cd) was found in the 0-5 cm layer of field-aged soil than in laboratory-aged soil (17.63%), while the opposite tendency was found in deeper soil layers. Soil phosphatase activities in field-aged soils were 1.13-1.26 times higher than in laboratory-aged soils. Phosphatase loadings in the >2 mm aggregates were lower and loadings in both the 1-2 and 0.25-1 mm aggregates were higher in field-aged soils than in laboratory-aged soils. Furthermore, correlation analysis and principal component analysis indicated that available Cd fractions accounted for most of the variations in phosphatase activities. In summary, the fates of the exogenous metal Cd differed between field and controlled laboratory conditions. To better understand the behaviors of heavy metals in soil, especially in a seasonal freeze-thaw area, further field studies are needed.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/analysis , Metals, Heavy/analysis , Phosphoric Monoester Hydrolases , Soil , Soil Pollutants/analysis
3.
Front Mol Neurosci ; 15: 972297, 2022.
Article in English | MEDLINE | ID: mdl-36776772

ABSTRACT

Precocious puberty (PP) is a common condition among children. According to the pathogenesis and clinical manifestations, PP can be divided into central precocious puberty (CPP, gonadotropin dependent), peripheral precocious puberty (PPP, gonadotropin independent), and incomplete precocious puberty (IPP). Identification of the variations in key metabolites involved in CPP and their underlying biological mechanisms has increased the understanding of the pathological processes of this condition. However, little is known about the role of metabolite variations in the drug treatment of CPP. Moreover, it remains unclear whether the understanding of the crucial metabolites and pathways can help predict disease progression after pharmacological therapy of CPP. In this study, systematic metabolomic analysis was used to examine three groups, namely, healthy control (group N, 30 healthy female children), CPP (group S, 31 female children with CPP), and treatment (group R, 29 female children) groups. A total of 14 pathways (the top two pathways were aminoacyl-tRNA biosynthesis and phenylalanine, tyrosine, and tryptophan biosynthesis) were significantly enriched in children with CPP. In addition, two short peptides (His-Arg-Lys-Glu and Lys-Met-His) were found to play a significant role in CPP. Various metabolites associated with different pathways including amino acids, PE [19:1(9Z)0:0], tumonoic acid I, palmitic amide, and linoleic acid-biotin were investigated in the serum of children in all groups. A total of 45 metabolites were found to interact with a chemical drug [a gonadotropin-releasing hormone (GnRH) analog] and a traditional Chinese medicinal formula (DBYW). This study helps to understand metabolic variations in CPP after drug therapy, and further investigation may help develop individualized treatment approaches for CPP in clinical practice.

4.
Sci Total Environ ; 779: 146442, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-33743456

ABSTRACT

To date, most studies about the aging of metals in soil were based on the controlled laboratory experiments, and few works have attempted to investigate how aging process influences the distribution and bioavailability of metals in soil under the field condition. The purpose of this study was to compare the aging of cadmium (Cd) in soils under the controlled laboratory and the field by monitoring time-dependent soil Cd speciation changes, Cd release kinetics, and Cd bioavailability to plant through the 438-day aging experiments. During the aging process, the proportions of Cd associated with the most weakly bound fraction tended to decrease, with corresponding increases in the more stable binding fractions. After aging, a higher concentration of available Cd was found in the field aging soil (0.74 mg kg-1) than the laboratory aging soil (0.65 mg kg-1). The Elovich equation was the best model to describe the soil available Cd aging process. The constant b in the Elovich equation, which was defined as the transformation rate, was in the order of laboratory aging soil > field aging soil. Moreover, higher Cd release amounts were found for the field aging soil (2.74 mg kg-1) than the laboratory aging soil (2.57 mg kg-1) at the end of aging. Additionally, higher body Cd concentrations were found for the vegetables grown in the field aging soils (1.49 mg kg-1, fresh weight) than those grown in the laboratory aging soils (1.32 mg kg-1, fresh weight). Therefore, this study indicated that the metal distribution process and its bioavailability may be overestimated or underestimated if research data from the laboratory experiments are used to derive soil quality criteria or investigate soil metal bioavailability.


Subject(s)
Cadmium , Soil Pollutants , Biological Availability , Cadmium/analysis , Laboratories , Soil , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL