Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
Add more filters

Publication year range
1.
Cell ; 186(24): 5347-5362.e24, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37963465

ABSTRACT

Trace amine-associated receptor 1 (TAAR1) senses a spectrum of endogenous amine-containing metabolites (EAMs) to mediate diverse psychological functions and is useful for schizophrenia treatment without the side effects of catalepsy. Here, we systematically profiled the signaling properties of TAAR1 activation and present nine structures of TAAR1-Gs/Gq in complex with EAMs, clinical drugs, and synthetic compounds. These structures not only revealed the primary amine recognition pocket (PARP) harboring the conserved acidic D3.32 for conserved amine recognition and "twin" toggle switch for receptor activation but also elucidated that targeting specific residues in the second binding pocket (SBP) allowed modulation of signaling preference. In addition to traditional drug-induced Gs signaling, Gq activation by EAM or synthetic compounds is beneficial to schizophrenia treatment. Our results provided a structural and signaling framework for molecular recognition by TAAR1, which afforded structural templates and signal clues for TAAR1-targeted candidate compounds design.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Humans , Amines/metabolism , Receptors, G-Protein-Coupled/metabolism , Schizophrenia/metabolism
2.
Cell ; 184(4): 943-956.e18, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33571432

ABSTRACT

Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/metabolism , Receptors, Dopamine D1/metabolism , Signal Transduction , Allosteric Regulation , Allosteric Site , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Catechols/metabolism , Cryoelectron Microscopy , Fenoldopam/chemistry , Fenoldopam/pharmacology , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/ultrastructure , HEK293 Cells , Humans , Ligands , Models, Molecular , Protein Multimerization , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/ultrastructure , Receptors, Dopamine D2/metabolism , Structural Homology, Protein
3.
Mol Cell ; 84(3): 570-583.e7, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38215752

ABSTRACT

Adhesion G protein-coupled receptors (aGPCRs) are evolutionarily ancient receptors involved in a variety of physiological and pathophysiological processes. Modulators of aGPCR, particularly antagonists, hold therapeutic promise for diseases like cancer and immune and neurological disorders. Hindered by the inactive state structural information, our understanding of antagonist development and aGPCR activation faces challenges. Here, we report the cryo-electron microscopy structures of human CD97, a prototypical aGPCR that plays crucial roles in immune system, in its inactive apo and G13-bound fully active states. Compared with other family GPCRs, CD97 adopts a compact inactive conformation with a constrained ligand pocket. Activation induces significant conformational changes for both extracellular and intracellular sides, creating larger cavities for Stachel sequence binding and G13 engagement. Integrated with functional and metadynamics analyses, our study provides significant mechanistic insights into the activation and signaling of aGPCRs, paving the way for future drug discovery efforts.


Subject(s)
Antigens, CD , Receptors, G-Protein-Coupled , Signal Transduction , Humans , Cell Adhesion , Cryoelectron Microscopy , Platelet Glycoprotein GPIb-IX Complex , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Antigens, CD/chemistry , Antigens, CD/metabolism
4.
Nature ; 631(8020): 459-466, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776963

ABSTRACT

Bitter taste receptors, particularly TAS2R14, play central roles in discerning a wide array of bitter substances, ranging from dietary components to pharmaceutical agents1,2. TAS2R14 is also widely expressed in extragustatory tissues, suggesting its extra roles in diverse physiological processes and potential therapeutic applications3. Here we present cryogenic electron microscopy structures of TAS2R14 in complex with aristolochic acid, flufenamic acid and compound 28.1, coupling with different G-protein subtypes. Uniquely, a cholesterol molecule is observed occupying what is typically an orthosteric site in class A G-protein-coupled receptors. The three potent agonists bind, individually, to the intracellular pockets, suggesting a distinct activation mechanism for this receptor. Comprehensive structural analysis, combined with mutagenesis and molecular dynamic simulation studies, elucidate the broad-spectrum ligand recognition and activation of the receptor by means of intricate multiple ligand-binding sites. Our study also uncovers the specific coupling modes of TAS2R14 with gustducin and Gi1 proteins. These findings should be instrumental in advancing knowledge of bitter taste perception and its broader implications in sensory biology and drug discovery.


Subject(s)
Aristolochic Acids , Cholesterol , Flufenamic Acid , Receptors, G-Protein-Coupled , Taste , Humans , Aristolochic Acids/metabolism , Aristolochic Acids/chemistry , Aristolochic Acids/pharmacology , Binding Sites/drug effects , Cholesterol/chemistry , Cholesterol/metabolism , Cholesterol/pharmacology , Cryoelectron Microscopy , Flufenamic Acid/chemistry , Flufenamic Acid/metabolism , Flufenamic Acid/pharmacology , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Ligands , Models, Molecular , Molecular Dynamics Simulation , Mutation , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/ultrastructure , Taste/drug effects , Taste/physiology , Transducin/chemistry , Transducin/metabolism
5.
Nature ; 618(7963): 193-200, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225986

ABSTRACT

Odorants are detected as smell in the nasal epithelium of mammals by two G-protein-coupled receptor families, the odorant receptors and the trace amine-associated receptors1,2 (TAARs). TAARs emerged following the divergence of jawed and jawless fish, and comprise a large monophyletic family of receptors that recognize volatile amine odorants to elicit both intraspecific and interspecific innate behaviours such as attraction and aversion3-5. Here we report cryo-electron microscopy structures of mouse TAAR9 (mTAAR9) and mTAAR9-Gs or mTAAR9-Golf trimers in complex with ß-phenylethylamine, N,N-dimethylcyclohexylamine or spermidine. The mTAAR9 structures contain a deep and tight ligand-binding pocket decorated with a conserved D3.32W6.48Y7.43 motif, which is essential for amine odorant recognition. In the mTAAR9 structure, a unique disulfide bond connecting the N terminus to ECL2 is required for agonist-induced receptor activation. We identify key structural motifs of TAAR family members for detecting monoamines and polyamines and the shared sequence of different TAAR members that are responsible for recognition of the same odour chemical. We elucidate the molecular basis of mTAAR9 coupling to Gs and Golf by structural characterization and mutational analysis. Collectively, our results provide a structural basis for odorant detection, receptor activation and Golf coupling of an amine olfactory receptor.


Subject(s)
Biogenic Amines , Odorants , Olfactory Perception , Polyamines , Receptors, Odorant , Animals , Mice , Biogenic Amines/analysis , Biogenic Amines/chemistry , Biogenic Amines/metabolism , Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/ultrastructure , Odorants/analysis , Olfactory Perception/physiology , Polyamines/analysis , Polyamines/chemistry , Polyamines/metabolism , Receptors, Biogenic Amine/chemistry , Receptors, Biogenic Amine/genetics , Receptors, Biogenic Amine/metabolism , Receptors, Biogenic Amine/ultrastructure , Receptors, Odorant/chemistry , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Receptors, Odorant/ultrastructure , Smell/physiology , Spermidine/analysis , Spermidine/chemistry , Spermidine/metabolism
6.
Nature ; 624(7992): 672-681, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37935376

ABSTRACT

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Subject(s)
GTP-Binding Proteins , Receptors, G-Protein-Coupled , Animals , Humans , Mice , Amines/metabolism , Amphetamine/metabolism , Antipsychotic Agents/chemistry , Antipsychotic Agents/metabolism , Binding Sites , Catecholamines/agonists , Catecholamines/chemistry , Catecholamines/metabolism , Cryoelectron Microscopy , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/ultrastructure , Ligands , Molecular Dynamics Simulation , Mutation , Polypharmacology , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/ultrastructure , Species Specificity , Substrate Specificity
7.
Nature ; 604(7907): 763-770, 2022 04.
Article in English | MEDLINE | ID: mdl-35418678

ABSTRACT

Adhesion G-protein-coupled receptors (aGPCRs) are important for organogenesis, neurodevelopment, reproduction and other processes1-6. Many aGPCRs are activated by a conserved internal (tethered) agonist sequence known as the Stachel sequence7-12. Here, we report the cryogenic electron microscopy (cryo-EM) structures of two aGPCRs in complex with Gs: GPR133 and GPR114. The structures indicate that the Stachel sequences of both receptors assume an α-helical-bulge-ß-sheet structure and insert into a binding site formed by the transmembrane domain (TMD). A hydrophobic interaction motif (HIM) within the Stachel sequence mediates most of the intramolecular interactions with the TMD. Combined with the cryo-EM structures, biochemical characterization of the HIM motif provides insight into the cross-reactivity and selectivity of the Stachel sequences. Two interconnected mechanisms, the sensing of Stachel sequences by the conserved 'toggle switch' W6.53 and the constitution of a hydrogen-bond network formed by Q7.49/Y7.49 and the P6.47/V6.47φφG6.50 motif (φ indicates a hydrophobic residue), are important in Stachel sequence-mediated receptor activation and Gs coupling. Notably, this network stabilizes kink formation in TM helices 6 and 7 (TM6 and TM7, respectively). A common Gs-binding interface is observed between the two aGPCRs, and GPR114 has an extended TM7 that forms unique interactions with Gs. Our structures reveal the detailed mechanisms of aGPCR activation by Stachel sequences and their Gs coupling.


Subject(s)
Peptides , Receptors, G-Protein-Coupled , Binding Sites , Cryoelectron Microscopy , Protein Domains , Protein Structure, Secondary , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
8.
Nature ; 604(7907): 771-778, 2022 04.
Article in English | MEDLINE | ID: mdl-35418677

ABSTRACT

Adhesion G protein-coupled receptors (aGPCRs) constitute an evolutionarily ancient family of receptors that often undergo autoproteolysis to produce α and ß subunits1-3. A tethered agonism mediated by the 'Stachel sequence' of the ß subunit has been proposed to have central roles in aGPCR activation4-6. Here we present three cryo-electron microscopy structures of aGPCRs coupled to the Gs heterotrimer. Two of these aGPCRs are activated by tethered Stachel sequences-the ADGRG2-ß-Gs complex and the ADGRG4-ß-Gs complex (in which ß indicates the ß subunit of the aGPCR)-and the other is the full-length ADGRG2 in complex with the exogenous ADGRG2 Stachel-sequence-derived peptide agonist IP15 (ADGRG2(FL)-IP15-Gs). The Stachel sequences of both ADGRG2-ß and ADGRG4-ß assume a U shape and insert deeply into the seven-transmembrane bundles. Constituting the FXφφφXφ motif (in which φ represents a hydrophobic residue), five residues of ADGRG2-ß or ADGRG4-ß extend like fingers to mediate binding to the seven-transmembrane domain and activation of the receptor. The structure of the ADGRG2(FL)-IP15-Gs complex reveals the structural basis for the improved binding affinity of IP15 compared with VPM-p15 and indicates that rational design of peptidic agonists could be achieved by exploiting aGPCR-ß structures. By converting the 'finger residues' to acidic residues, we develop a method to generate peptidic antagonists towards several aGPCRs. Collectively, our study provides structural and biochemical insights into the tethered activation mechanism of aGPCRs.


Subject(s)
Peptides , Receptors, G-Protein-Coupled , Cryoelectron Microscopy , Humans , Peptides/metabolism , Protein Domains , Receptors, G-Protein-Coupled/metabolism
9.
Nature ; 589(7843): 620-626, 2021 01.
Article in English | MEDLINE | ID: mdl-33408414

ABSTRACT

Adhesion G-protein-coupled receptors (GPCRs) are a major family of GPCRs, but limited knowledge of their ligand regulation or structure is available1-3. Here we report that glucocorticoid stress hormones activate adhesion G-protein-coupled receptor G3 (ADGRG3; also known as GPR97)4-6, a prototypical adhesion GPCR. The cryo-electron microscopy structures of GPR97-Go complexes bound to the anti-inflammatory drug beclomethasone or the steroid hormone cortisol revealed that glucocorticoids bind to a pocket within the transmembrane domain. The steroidal core of glucocorticoids is packed against the 'toggle switch' residue W6.53, which senses the binding of a ligand and induces activation of the receptor. Active GPR97 uses a quaternary core and HLY motif to fasten the seven-transmembrane bundle and to mediate G protein coupling. The cytoplasmic side of GPR97 has an open cavity, where all three intracellular loops interact with the Go protein, contributing to the high basal activity of GRP97. Palmitoylation at the cytosolic tail of the Go protein was found to be essential for efficient engagement with GPR97 but is not observed in other solved GPCR complex structures. Our work provides a structural basis for ligand binding to the seven-transmembrane domain of an adhesion GPCR and subsequent G protein coupling.


Subject(s)
Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Glucocorticoids/chemistry , Glucocorticoids/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/ultrastructure , Binding Sites , GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure , Humans , Ligands , Lipoylation , Models, Molecular , Protein Binding , Receptors, G-Protein-Coupled/metabolism
10.
Nature ; 600(7887): 164-169, 2021 12.
Article in English | MEDLINE | ID: mdl-34789875

ABSTRACT

In the clades of animals that diverged from the bony fish, a group of Mas-related G-protein-coupled receptors (MRGPRs) evolved that have an active role in itch and allergic signals1,2. As an MRGPR, MRGPRX2 is known to sense basic secretagogues (agents that promote secretion) and is involved in itch signals and eliciting pseudoallergic reactions3-6. MRGPRX2 has been targeted by drug development efforts to prevent the side effects induced by certain drugs or to treat allergic diseases. Here we report a set of cryo-electron microscopy structures of the MRGPRX2-Gi1 trimer in complex with polycationic compound 48/80 or with inflammatory peptides. The structures of the MRGPRX2-Gi1 complex exhibited shallow, solvent-exposed ligand-binding pockets. We identified key common structural features of MRGPRX2 and describe a consensus motif for peptidic allergens. Beneath the ligand-binding pocket, the unusual kink formation at transmembrane domain 6 (TM6) and the replacement of the general toggle switch from Trp6.48 to Gly6.48 (superscript annotations as per Ballesteros-Weinstein nomenclature) suggest a distinct activation process. We characterized the interfaces of MRGPRX2 and the Gi trimer, and mapped the residues associated with key single-nucleotide polymorphisms on both the ligand and G-protein interfaces of MRGPRX2. Collectively, our results provide a structural basis for the sensing of cationic allergens by MRGPRX2, potentially facilitating the rational design of therapies to prevent unwanted pseudoallergic reactions.


Subject(s)
Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Pruritus/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/chemistry , Receptors, Neuropeptide/metabolism , Allergens/immunology , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Consensus Sequence , Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Humans , Models, Molecular , Nerve Tissue Proteins/immunology , Nerve Tissue Proteins/ultrastructure , Receptors, G-Protein-Coupled/immunology , Receptors, G-Protein-Coupled/ultrastructure , Receptors, Neuropeptide/immunology , Receptors, Neuropeptide/ultrastructure
11.
Nat Chem Biol ; 20(4): 484-492, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37945893

ABSTRACT

GPR101 is an orphan G protein-coupled receptor actively participating in energy homeostasis. Here we report the cryo-electron microscopy structure of GPR101 constitutively coupled to Gs heterotrimer, which reveals unique features of GPR101, including the interaction of extracellular loop 2 within the 7TM bundle, a hydrophobic chain packing-mediated activation mechanism and the structural basis of disease-related mutants. Importantly, a side pocket is identified in GPR101 that facilitates in silico screening to identify four small-molecule agonists, including AA-14. The structure of AA-14-GPR101-Gs provides direct evidence of the AA-14 binding at the side pocket. Functionally, AA-14 partially restores the functions of GH/IGF-1 axis and exhibits several rejuvenating effects in wild-type mice, which are abrogated in Gpr101-deficient mice. In summary, we provide a structural basis for the constitutive activity of GPR101. The structure-facilitated identification of GPR101 agonists and functional analysis suggest that targeting this orphan receptor has rejuvenating potential.


Subject(s)
Receptors, G-Protein-Coupled , Mice , Animals , Cryoelectron Microscopy , Receptors, G-Protein-Coupled/metabolism , Ligands
12.
Nature ; 587(7834): 499-504, 2020 11.
Article in English | MEDLINE | ID: mdl-32698187

ABSTRACT

The G-protein-coupled bile acid receptor (GPBAR) conveys the cross-membrane signalling of a vast variety of bile acids and is a signalling hub in the liver-bile acid-microbiota-metabolism axis1-3. Here we report the cryo-electron microscopy structures of GPBAR-Gs complexes stabilized by either the high-affinity P3954 or the semisynthesized bile acid derivative INT-7771,3 at 3 Å resolution. These structures revealed a large oval pocket that contains several polar groups positioned to accommodate the amphipathic cholic core of bile acids, a fingerprint of key residues to recognize diverse bile acids in the orthosteric site, a putative second bile acid-binding site with allosteric properties and structural features that contribute to bias properties. Moreover, GPBAR undertakes an atypical mode of activation and G protein coupling that features a different set of key residues connecting the ligand-binding pocket to the Gs-coupling site, and a specific interaction motif that is localized in intracellular loop 3. Overall, our study not only reveals unique structural features of GPBAR that are involved in bile acid recognition and allosteric effects, but also suggests the presence of distinct connecting mechanisms between the ligand-binding pocket and the G-protein-binding site in the G-protein-coupled receptor superfamily.


Subject(s)
Bile Acids and Salts/metabolism , Cryoelectron Microscopy , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/ultrastructure , Allosteric Regulation/drug effects , Bile Acids and Salts/chemistry , Binding Sites/drug effects , Cholic Acids/chemistry , Cholic Acids/pharmacology , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/ultrastructure , Humans , Ligands , Models, Molecular , Protein Binding , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Substrate Specificity
13.
Proc Natl Acad Sci U S A ; 120(30): e2216329120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37478163

ABSTRACT

To accomplish concerted physiological reactions, nature has diversified functions of a single hormone at at least two primary levels: 1) Different receptors recognize the same hormone, and 2) different cellular effectors couple to the same hormone-receptor pair [R.P. Xiao, Sci STKE 2001, re15 (2001); L. Hein, J. D. Altman, B.K. Kobilka, Nature 402, 181-184 (1999); Y. Daaka, L. M. Luttrell, R. J. Lefkowitz, Nature 390, 88-91 (1997)]. Not only these questions lie in the heart of hormone actions and receptor signaling but also dissecting mechanisms underlying these questions could offer therapeutic routes for refractory diseases, such as kidney injury (KI) or X-linked nephrogenic diabetes insipidus (NDI). Here, we identified that Gs-biased signaling, but not Gi activation downstream of EP4, showed beneficial effects for both KI and NDI treatments. Notably, by solving Cryo-electron microscope (cryo-EM) structures of EP3-Gi, EP4-Gs, and EP4-Gi in complex with endogenous prostaglandin E2 (PGE2)or two synthetic agonists and comparing with PGE2-EP2-Gs structures, we found that unique primary sequences of prostaglandin E2 receptor (EP) receptors and distinct conformational states of the EP4 ligand pocket govern the Gs/Gi transducer coupling selectivity through different structural propagation paths, especially via TM6 and TM7, to generate selective cytoplasmic structural features. In particular, the orientation of the PGE2 ω-chain and two distinct pockets encompassing agonist L902688 of EP4 were differentiated by their Gs/Gi coupling ability. Further, we identified common and distinct features of cytoplasmic side of EP receptors for Gs/Gi coupling and provide a structural basis for selective and biased agonist design of EP4 with therapeutic potential.


Subject(s)
Dinoprostone , Signal Transduction , Dinoprostone/metabolism , Signal Transduction/physiology , Receptors, Prostaglandin/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Hormones , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP3 Subtype/metabolism
14.
Hepatology ; 79(4): 798-812, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37505213

ABSTRACT

ABSTRACT AND AIM: Cholangiocarcinoma (CCA) is a highly aggressive and lethal cancer that originates from the biliary epithelium. Systemic treatment options for CCA are currently limited, and the first targeted drug of CCA, pemigatinib, emerged in 2020 for CCA treatment by inhibiting FGFR2 phosphorylation. However, the regulatory mechanism of FGFR2 phosphorylation is not fully elucidated. APPROACH AND RESULTS: Here we screened the FGFR2-interacting proteins and showed that protein tyrosine phosphatase (PTP) N9 interacts with FGFR2 and negatively regulates FGFR2 pY656/657 . Using phosphatase activity assays and modeling the FGFR2-PTPN9 complex structure, we identified FGFR2 pY656/657 as a substrate of PTPN9, and found that sec. 14p domain of PTPN9 interacts with FGFR2 through ACAP1 mediation. Coexpression of PTPN9 and ACAP1 indicates a favorable prognosis for CCA. In addition, we identified key amino acids and motifs involved in the sec. 14p-APCP1-FGFR2 interaction, including the "YRETRRKE" motif of sec. 14p, Y471 of PTPN9, as well as the PH and Arf-GAP domain of ACAP1. Moreover, we discovered that the FGFR2 I654V substitution can decrease PTPN9-FGFR2 interaction and thereby reduce the effectiveness of pemigatinib treatment. Using a series of in vitro and in vivo experiments including patient-derived xenografts (PDX), we showed that PTPN9 synergistically enhances pemigatinib effectiveness and suppresses CCA proliferation, migration, and invasion by inhibiting FGFR2 pY656/657 . CONCLUSIONS: Our study identifies PTPN9 as a negative regulator of FGFR2 phosphorylation and a synergistic factor for pemigatinib treatment. The molecular mechanism, oncogenic function, and clinical significance of the PTPN9-ACAP1-FGFR2 complex are revealed, providing more evidence for CCA precision treatment.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Morpholines , Pyrimidines , Pyrroles , Humans , Cholangiocarcinoma/drug therapy , Epithelium , Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic , Receptor, Fibroblast Growth Factor, Type 2 , GTPase-Activating Proteins
15.
Proc Natl Acad Sci U S A ; 119(29): e2117054119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858343

ABSTRACT

The G protein-coupled bile acid receptor (GPBAR) is the membrane receptor for bile acids and a driving force of the liver-bile acid-microbiota-organ axis to regulate metabolism and other pathophysiological processes. Although GPBAR is an important therapeutic target for a spectrum of metabolic and neurodegenerative diseases, its activation has also been found to be linked to carcinogenesis, leading to potential side effects. Here, via functional screening, we found that two specific GPBAR agonists, R399 and INT-777, demonstrated strikingly different regulatory effects on the growth and apoptosis of non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. Further mechanistic investigation showed that R399-induced GPBAR activation displayed an obvious bias for ß-arrestin 1 signaling, thus promoting YAP signaling activation to stimulate cell proliferation. Conversely, INT-777 preferentially activated GPBAR-Gs signaling, thus inactivating YAP to inhibit cell proliferation and induce apoptosis. Phosphorylation of GPBAR by GRK2 at S310/S321/S323/S324 sites contributed to R399-induced GPBAR-ß-arrestin 1 association. The cryoelectron microscopy (cryo-EM) structure of the R399-bound GPBAR-Gs complex enabled us to identify key interaction residues and pivotal conformational changes in GPBAR responsible for the arrestin signaling bias and cancer cell proliferation. In summary, we demonstrate that different agonists can regulate distinct functions of cell growth and apoptosis through biased GPBAR signaling and control of YAP activity in a NSCLC cell model. The delineated mechanism and structural basis may facilitate the rational design of GPBAR-targeting drugs with both metabolic and anticancer benefits.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Cycle Proteins , Lung Neoplasms , Receptors, G-Protein-Coupled , Transcription Factors , Bile Acids and Salts/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Proteins/metabolism , Cholic Acids/pharmacology , Cryoelectron Microscopy , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Transcription Factors/metabolism , beta-Arrestin 1/metabolism
16.
Proc Natl Acad Sci U S A ; 119(15): e2117004119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35394864

ABSTRACT

GPR126 is a member of the adhesion G protein-coupled receptors (aGPCRs) that is essential for the normal development of diverse tissues, and its mutations are implicated in various pathological processes. Here, through screening 34 steroid hormones and their derivatives for cAMP production, we found that progesterone (P4) and 17-hydroxyprogesterone (17OHP) could specifically activate GPR126 and trigger its downstream Gi signaling by binding to the ligand pocket in the seven-transmembrane domain of the C-terminal fragment of GPR126. A detailed mutagenesis screening according to a computational simulated structure model indicated that K1001ECL2 and F1012ECL2 are key residues that specifically recognize 17OHP but not progesterone. Finally, functional analysis revealed that progesterone-triggered GPR126 activation promoted cell growth in vitro and tumorigenesis in vivo, which involved Gi-SRC pathways in a triple-negative breast cancer model. Collectively, our work identified a membrane receptor for progesterone/17OHP and delineated the mechanisms by which GPR126 participated in potential tumor progression in triple-negative breast cancer, which will enrich our understanding of the functions and working mechanisms of both the aGPCR member GPR126 and the steroid hormone progesterone.


Subject(s)
Progesterone , Receptors, G-Protein-Coupled , Receptors, Progesterone , Triple Negative Breast Neoplasms , 17-alpha-Hydroxyprogesterone/metabolism , Cell Line, Tumor , Humans , Progesterone/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
17.
J Am Soc Nephrol ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078711

ABSTRACT

BACKGROUND: Tubular senescence is a major determinant of chronic kidney disease (CKD) and identification of potential therapeutic targets involved in senescent tubular epithelial cells has clinical importance. Lysosomal-associated protein transmembrane 5 (LAPTM5) is a key molecule related to T and B cell receptor expression and inflammation. However, the expression pattern of LAPTM5 in the kidney and the contribution of LAPTM5 to the development of CKD keep unknown. METHODS: LAPTM5-/- mice and tubule specific-LAPTM5 knockout mice were used to examine the role of LAPTM5 in tubular senescence by establishing different experimental mouse CKD models. RESULTS: LAPTM5 expression was significantly induced in the kidney, especially in proximal tubules and distal convoluted tubules, from mice with aristolochic acid nephropathy, bilateral ischemia/reperfusion injury (IRI)-induced CKD or unilateral ureter obstruction (UUO). Tubule-specific deletion of LAPTM5 inhibited senescence of tubular epithelial cells and alleviated tubulointerstitial fibrosis in aged mice. Moreover, LAPTM5 deficiency ameliorated kidney injury and tubular senescence in mice with CKD. Mechanistically, LAPTM5 inhibited ubiquitination of NICD1 by mediating WWP2 lysosomal degradation, then leading to cellular senescence in tubular epithelial cells. Notably, we also observed a higher expression of LAPTM5 in tubules from individuals with CKD and the level of LAPTM5 was correlated with kidney fibrosis and tubular senescence in people with CKD. CONCLUSIONS: LAPTM5 contributed to tubular senescence by regulating WWP2/NICD1 signaling pathway and exacerbated kidney injury during the progression of CKD.

18.
Nat Chem Biol ; 18(11): 1196-1203, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35982227

ABSTRACT

Adhesion G protein-coupled receptors are elusive in terms of their structural information and ligands. Here, we solved the cryogenic-electron microscopy (cryo-EM) structure of apo-ADGRG2, an essential membrane receptor for maintaining male fertility, in complex with a Gs trimer. Whereas the formations of two kinks were determinants of the active state, identification of a potential ligand-binding pocket in ADGRG2 facilitated the screening and identification of dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate and deoxycorticosterone as potential ligands of ADGRG2. The cryo-EM structures of DHEA-ADGRG2-Gs provided interaction details for DHEA within the seven transmembrane domains of ADGRG2. Collectively, our data provide a structural basis for the activation and signaling of ADGRG2, as well as characterization of steroid hormones as ADGRG2 ligands, which might be used as useful tools for further functional studies of the orphan ADGRG2.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Humans , Male , Cryoelectron Microscopy , Dehydroepiandrosterone Sulfate , Desoxycorticosterone , Ligands , Receptors, G-Protein-Coupled/chemistry
19.
Circ Res ; 131(12): 1037-1054, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36354004

ABSTRACT

BACKGROUND: Vascular calcification is closely related to the all-cause mortality of cardiovascular events. Basement membrane protein nidogen-2 is a key component of the vascular extracellular matrix microenvironment and we recently found it is pivotal for the maintenance of contractile phenotype in vascular smooth muscle cells (VSMCs). However, whether nidogen-2 is involved in VSMCs osteochondrogenic transition and vascular calcification remains unclear. METHODS: VSMCs was treated with high-phosphate to study VSMC calcification in vitro. Three different mice models (5/6 nephrectomy-induced chronic renal failure, cholecalciferol-overload, and periadventitially administered with CaCl2) were used to study vascular calcification in vivo. Membrane protein interactome, coimmunoprecipitation, flow cytometric binding assay, surface plasmon resonance, G protein signaling, VSMCs calcium assays were performed to clarify the phenotype and elucidate the molecular mechanisms. RESULTS: Nidogen-2 protein levels were significantly reduced in calcified VSMCs and aortas from mice in different vascular calcification model. Nidogen-2 deficiency exacerbated high-phosphate-induced VSMC calcification, whereas the addition of purified nidogen-2 protein markedly alleviated VSMC calcification in vitro. Nidogen-2-/- mice exhibited aggravated aorta calcification compared to wild-type (WT) mice in response to 5/6 nephrectomy, cholecalciferol-overload, and CaCl2 administration. Further unbiased coimmunoprecipitation and interactome analysis of purified nidogen-2 and membrane protein in VSMCs revealed that nidogen-2 directly binds to LGR4 (leucine-rich repeat G-protein-coupled receptor 4) with KD value 26.77 nM. LGR4 deficiency in VSMCs in vitro or in vivo abolished the protective effect of nidogen-2 on vascular calcification. Of interest, nidogen-2 biased activated LGR4-Gαq-PKCα (protein kinase Cα)-AMPKα1 (AMP-activated protein kinase α1) signaling to counteract VSMCs osteogenic transition and mineralization. CONCLUSIONS: Nidogen-2 is a novel endogenous ligand of LGR4 that biased activated Gαq- PKCα-AMPKα1 signaling and inhibited vascular calcification.


Subject(s)
Membrane Glycoproteins , Muscle, Smooth, Vascular , Receptors, G-Protein-Coupled , Vascular Calcification , Animals , Mice , Calcium Chloride , Cells, Cultured , Cholecalciferol/pharmacology , Cholecalciferol/metabolism , Ligands , Membrane Glycoproteins/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phosphates/adverse effects , Protein Kinase C-alpha/metabolism , Receptors, G-Protein-Coupled/metabolism , Vascular Calcification/prevention & control , Vascular Calcification/genetics
20.
Nutr Metab Cardiovasc Dis ; 34(1): 112-120, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37798237

ABSTRACT

BACKGROUND AND AIM: Stroke incidence rates are rising among young adults. Liver fibrosis has recently been recognized as a risk factor for cardiovascular events and stroke in the general population. It remains unclear whether liver fibrosis influences the prognosis of stroke. We aimed to evaluate the association between liver fibrosis and stroke recurrence in young stroke patients. METHODS AND RESULTS: Young adults with first-ever ischemic stroke were enrolled from a prospective stroke registry and were followed up for stroke recurrence. Liver fibrosis was evaluated by Fibrosis-4 (FIB-4) score and was stratified into three categories. Cox regression analysis was performed to assess the relationship between liver fibrosis and stroke recurrence. Over a median follow-up of 3.1 (1.7-4.6) years, 72 (11.6%) recurrent strokes occurred among 621 patients. According to the FIB-4 score, 73 (11.7%) patients had indeterminate fibrosis, while 11 (1.8%) had advanced fibrosis. Univariate Cox analysis revealed that patients with a high FIB-4 score were more likely to experience stroke recurrence than those with a low FIB-4 score (hazard ratio 3.748, 95% confidence interval 1.359-10.332, P = 0.011). After adjusting for potential confounders in the multivariate analysis, FIB-4 score remained an independent risk factor. CONCLUSIONS: Young stroke patients with advanced liver fibrosis were at a greater risk of stroke recurrence. Evaluating liver fibrosis may provide valuable information for stroke risk stratification, and the FIB-4 score could serve as a useful tool.


Subject(s)
Ischemic Stroke , Stroke , Young Adult , Humans , Follow-Up Studies , Recurrence , Stroke/diagnosis , Stroke/epidemiology , Liver Cirrhosis/diagnosis , Liver Cirrhosis/epidemiology , Risk Factors , Fibrosis
SELECTION OF CITATIONS
SEARCH DETAIL