Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 396
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Stem Cells ; 42(4): 346-359, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38279981

ABSTRACT

BACKGROUND: The use of human umbilical cord mesenchymal stem cells (UC-MSCs) has shown promise in improving the pathophysiological characteristics of rats with chronic obstructive pulmonary disease (COPD). However, more research is needed to understand the exact mechanism behind their therapeutic effects and their impact on lung microbiota. METHODS: To investigate this, rats were randomly assigned to one of 3 groups: Control, COPD + vehicle, and COPD + UC-MSCs group. Lung function changes after UC-MSCs therapy were evaluated weekly for 6 weeks. Additionally, lactate dehydrogenase (LDH), TNF (tumor necrosis factor)-α, IL (interleukin)-6, and IL-1ß level in bronchoalveolar lavage fluid (BALF) were analyzed. Arterial blood gas and weight were recorded. Hematoxylin and eosin (HE) staining was used to examine lung pathology, while changes in the lung microbiota were evaluated through 16S rRNA sequencing. RESULTS: The administration of UC-MSCs in rats led to a progressive amelioration of COPD, as demonstrated by enhanced lung function and reduced inflammatory response. UC-MSCs treatment significantly altered the structure and diversity of the lung microbiota, effectively preventing microbiota dysbiosis. This was achieved by increasing the abundance of Bacteroidetes and reducing the levels of Proteobacteria. Additionally, treatment with UC-MSCs reduced the activation of pathways associated with COPD, including microbial metabolism, ABC transporters, and Quorum sensing. The group of UC-MSCs showed increased metabolic pathways, such as amino acid biosynthesis, purine metabolism, starch and sucrose metabolism, and biosynthesis of secondary metabolites, compared to the COPD group. CONCLUSIONS: The use of UC-MSCs was found to reduce inflammation and improve lung function in rats with COPD. The mechanism may be related to the lung microbiota, as UC-MSCs improved the communities of lung microbiota and regulated dysregulated metabolic pathways.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Pulmonary Disease, Chronic Obstructive , Rats , Humans , Animals , RNA, Ribosomal, 16S , Rats, Sprague-Dawley , Lung/pathology , Pulmonary Disease, Chronic Obstructive/therapy , Pulmonary Disease, Chronic Obstructive/pathology , Tumor Necrosis Factor-alpha , Interleukin-6 , Umbilical Cord
2.
Br J Cancer ; 131(1): 77-89, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796598

ABSTRACT

BACKGROUND: Due to insufficient knowledge about key molecular events, Hepatocellular carcinoma (HCC) lacks effective treatment targets. Spliceosome-related genes were significantly altered in HCC. Oncofetal proteins are ideal tumor therapeutic targets. Screening of differentially expressed Spliceosome-related oncofetal protein in embryonic liver development and HCC helps discover effective therapeutic targets for HCC. METHODS: Differentially expressed spliceosome genes were analysis in fetal liver and HCC through bioinformatics analysis. Small nuclear ribonucleoprotein polypeptide E (SNRPE) expression was detected in fetal liver, adult liver and HCC tissues. The role of SNRPE in HCC was performed multiple assays in vitro and in vivo. SNRPE-regulated alternative splicing was recognized by RNA-Seq and confirmed by multiple assays. RESULTS: We herein identified SNRPE as a crucial oncofetal splicing factor, significantly associated with the adverse prognosis of HCC. SOX2 was identified as the activator for SNRPE reactivation. Efficient knockdown of SNRPE resulted in the complete cessation of HCC tumorigenesis and progression. Mechanistically, SNRPE knockdown reduced FGFR4 mRNA expression by triggering nonsense-mediated RNA decay. A partial inhibition of SNRPE-induced malignant progression of HCC cells was observed upon FGFR4 knockdown. CONCLUSIONS: Our findings highlight SNRPE as a novel oncofetal splicing factor and shed light on the intricate relationship between oncofetal splicing factors, splicing events, and carcinogenesis. Consequently, SNRPE emerges as a potential therapeutic target for HCC treatment. Model of oncofetal SNRPE promotes HCC tumorigenesis by regulating the AS of FGFR4 pre-mRNA.


Subject(s)
Alternative Splicing , Carcinogenesis , Carcinoma, Hepatocellular , Liver Neoplasms , Receptor, Fibroblast Growth Factor, Type 4 , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Animals , Mice , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Prognosis , Mice, Nude
3.
Anal Chem ; 96(3): 1259-1267, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38206997

ABSTRACT

The increasing understanding of the intricate relationship between two crucial gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) in biological actions has generated significant interest. However, comprehensive monitoring of the dynamic fluctuations of endogenous NO and H2S remains a challenge. In this study, we have designed an innovative aggregation-induced reporter SAB-NH-SC with enhanced responsiveness to H2S for visualizing the fluctuations of intracellular NO and H2S. This probe leverages the hydrophilic properties of the pyridinium salt derivative, which can rapidly self-assemble into positively charged nanoparticles under physiological conditions, avoiding the introduction of organic solvents or tedious preparations. Notably, the reporter can repeatedly cycle S-nitrosation and SNO-transnitrosation reactions when successively treated with NO and H2S. Consequently, fluorescence alternation at 751 (H2S) and 639 nm (NO) facilitates the dynamic visualization of the alternating presence of H2S and NO within cells. This dynamic and reversible probe holds immense potential for unraveling the intricate interactions between NO and H2S in a complex network of biological applications.


Subject(s)
Gasotransmitters , Hydrogen Sulfide , Nanoparticles , Nitric Oxide
4.
Anal Chem ; 96(23): 9737-9743, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38825763

ABSTRACT

Various signal molecules mediate complex physiological processes collectively in the Golgi. However, most currently accessible probes are questionable in illuminating the functions of these reactive species in Golgi because of the inability to irradiate these probes only at the desired Golgi location, which compromises specificity and accuracy. In this study, we rationally designed the first photocontrollable and Golgi-targeted fluorescent probe to in situ visualize the Golgi alkaline phosphatase (ALP). The designed probe with natural yellow fluorescence can provide access into Golgi and monitor the exact timing of accumulation in Golgi. On-demand photoactivation at only the desired Golgi location affords a significant emission response to ALP with illuminating red fluorescence at 710 nm. Through the photocontrollable fluorescence responsiveness to ALP, precise spatiotemporal recognition of Golgi ALP fluctuations is successfully performed. With this probe, for the first time, we revealed the Golgi ALP levels during cisplatin-induced acute kidney injury (AKI), which will further facilitate and complement the comprehensive exploration of ALP kinetics during physiological and pathological processes.


Subject(s)
Alkaline Phosphatase , Fluorescent Dyes , Golgi Apparatus , Golgi Apparatus/metabolism , Alkaline Phosphatase/metabolism , Humans , Animals , Fluorescent Dyes/chemistry , HeLa Cells , Mice , Cisplatin/pharmacology
5.
Small ; 20(22): e2309529, 2024 May.
Article in English | MEDLINE | ID: mdl-38100303

ABSTRACT

Carbon monoxide shows great therapeutic potential in anti-cancer. In particular, the construction of multifunctional CO delivery systems can promote the precise delivery of CO and achieve ideal therapeutic effects, but there are still great challenges in design. In this work, a RSS and ROS sequentially activated CO delivery system is developed for boosting NIR imaging-guided on-demand photodynamic therapy. This designed system is composed of a CO releaser (BOD-CO) and a photosensitizer (BOD-I). BOD-CO can be specifically activated by hydrogen sulfide with simultaneous release of CO donor and NIR fluorescence that can identify H2S-rich tumors and guide light therapy, also depleting H2S in the process. Moreover, BOD-I generates 1O2 under long-wavelength light irradiation, enabling both PDT and precise local release of CO via a photooxidation mechanism. Such sequential activation of CO release by RSS and ROS ensured the safety and controllability of CO delivery, and effectively avoided leakage during delivery. Importantly, cytotoxicity and in vivo studies reveal that the release of CO combined with the depletion of endogenous H2S amplified PDT, achieving ideal anticancer results. It is believed that such theranostic nanoplatform can provide a novel strategy for the precise CO delivery and combined therapy involved in gas therapy and PDT.


Subject(s)
Carbon Monoxide , Photochemotherapy , Reactive Oxygen Species , Photochemotherapy/methods , Carbon Monoxide/chemistry , Reactive Oxygen Species/metabolism , Humans , Animals , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Mice , Infrared Rays , Hydrogen Sulfide/chemistry
6.
Eur Radiol ; 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38308680

ABSTRACT

OBJECTIVES: To use three-dimensional real inversion recovery (3D-real IR) MRI to investigate correlations between endolymphatic hydrops (EH) grades or the degree of perilymphatic enhancement (PE) and clinical features of Ménière's disease (MD), as previous findings have been inconsistent. METHODS: A total of 273 consecutive patients with definite unilateral MD were retrospectively enrolled from September 2020 to October 2021. All patients underwent 3D-real IR and 3D-T2WI 6 h after intravenous gadolinium injection. MD-related symptom duration and vertigo frequency were recorded. EH grades were evaluated, the signal intensity ratio (SIR) was measured, and correlations between clinical features and EH, PE were assessed respectively. RESULTS: The study included 123 males and 150 females, with a mean age of 53.0 years. A longer duration of vertigo was associated with higher cochlear EH grades, whereas the opposite was true for the duration of aural fullness. A longer time since vertigo onset was associated with higher vestibular EH grades; the opposite was true for the duration of individual vertigo attacks. The multiple regression analysis revealed that age, tinnitus duration, and vestibular EH were risk factors for SIR. Furthermore, the low-frequency hearing threshold (HT) was a risk factor for cochlear and vestibular EH, and the SIR. CONCLUSION: The EH grade and SIR (an indicator for the quantitative evaluation of PE) were correlated with clinical features and HT of MD; thus, imaging can be a valuable tool in planning individualised treatment. CLINICAL RELEVANCE STATEMENT: This study revealed that the grade of endolymphatic hydrops and degree of perilymphatic enhancement positively correlates with the length of time since onset of clinical symptoms and hearing thresholds in patients with Ménière's disease, facilitating the tailored treatment. KEY POINTS: • Relationships between 3-dimensional real inversion recovery features and clinical symptoms in Ménière's disease are unknown. • Symptom duration and hearing thresholds correlated with endolymphatic hydrops grades and degree of perilymphatic enhancement. • MRI features correlate with MD severity; thus, imaging is valuable for planning tailored treatment.

7.
Chem Rev ; 122(9): 8758-8808, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35254051

ABSTRACT

The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.


Subject(s)
Alloys , Oxides , Catalysis , Catalytic Domain , Metals , Oxidation-Reduction , Oxides/chemistry
8.
Cereb Cortex ; 33(12): 8035-8045, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36935097

ABSTRACT

Evidence highlights that dopamine (DA) system dysregulation and prefrontal cortex (PFC) dysfunction may underlie the pathophysiology of schizophrenia. However, the associations among DA genes, PFC morphometry, and schizophrenia have not yet been fully clarified. Based on the brain gene expression dataset from Allen Human Brain Atlas and structural magnetic resonance imaging data (NDIS = 1727, NREP = 408), we first identified 10 out of 22 PFC subregions whose gray matter volume (GMV) covariance profiles were reliably associated with their DA genes coexpression profiles, then four out of the identified 10 PFC subregions demonstrated abnormally increased GMV covariance with the hippocampus, insula, and medial frontal areas in schizophrenia patients (NCASE = 100; NCONTROL = 102). Moreover, based on a schizophrenia postmortem expression dataset, we found that the DA genes coexpression of schizophrenia was significantly reduced between the middle frontal gyrus and hippocampus, in which 21 DA genes showed significantly unsynchronized expression changes, and the 21 genes' brain expression were enriched in brain activity invoked by working memory, reward, speech production, and episodic memory. Our findings indicate the DA genes selectively regulate the structural covariance of PFC subregions by their coexpression profiles, which may underlie the disrupted GMV covariance and impaired cognitive functions in schizophrenia.


Subject(s)
Dopamine , Gene Expression Regulation , Gray Matter , Prefrontal Cortex , Schizophrenia , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/metabolism , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Schizophrenia/metabolism , Dopamine/metabolism , Gray Matter/diagnostic imaging , Gray Matter/metabolism , Memory, Short-Term , Memory, Episodic , Reward , Speech , Humans , Male , Female , Adolescent , Young Adult , Adult , Datasets as Topic , Magnetic Resonance Imaging
9.
Xenobiotica ; 54(2): 83-94, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38164702

ABSTRACT

Indirubin is the main component of the traditional Chinese medicine Indigo naturalis (IN), a potent agonist of aryl hydrocarbon receptors (AhRs). In China, IN is used to treat psoriasis and ulcerative colitis, and indirubin is used for the treatment of chronic myelogenous leukaemia. However, IN and indirubin have adverse reactions, such as abdominal pain, diarrhoea, and intussusception, and their specific mechanism is unclear.The purpose of our research was to determine the specific mechanism underlying the adverse effects of IN and indirubin. By tracking the modifications in guinea pigs after the intragastric administration of indirubin for 28 days.The results demonstrate that indirubin could accelerate bowel movements and decrease intestinal acetylcholinesterase (AchE) expression. Experiments with NCM460 cells revealed that indirubin significantly reduced the expression of AchE, and the AchE levels were increased after the silencing of AhR and re-exposure to indirubin.This study showed that the inhibition of AchE expression by indirubin plays a key role in the occurrence of adverse reactions to indirubin and that the underlying mechanism is related to AhR-mediated AchE downregulation.


Subject(s)
Acetylcholinesterase , Psoriasis , Guinea Pigs , Animals , Indoles/pharmacology , Indoles/metabolism , Indigo Carmine , Receptors, Aryl Hydrocarbon/metabolism
10.
J Appl Toxicol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39030796

ABSTRACT

Bile acid homeostasis is crucial for the normal physiological functioning of the liver. Disruptions in bile acid profiles are closely linked to the occurrence of cholestatic liver injury. As part of our diagnostic and therapeutic approach, we aimed to investigate the disturbance in bile acid profiles during cholestasis and its correlation with cholestatic liver injury. Before the occurrence of liver injury, alterations in bile acid profiles were detected in both plasma and liver between 8 and 16 h, persisting up to 96 h. TCA, TCDCA, and TUDCA in the plasma, as well as TCA, TUDCA, TCDCA, TDCA, TLCA, and THDCA in the liver, emerged as early sensitive and potential markers for diagnosing ANIT-induced cholestasis at 8-16 h. The distinguishing features of ANIT-induced liver injury were as follows: T-BAs exceeding G-BAs and serum biochemical indicators surpassing free bile acids. Notably, plasma T-BAs, particularly TCA, exhibited higher sensitivity to cholestatic hepatotoxicity compared with serum enzyme activity and liver histopathology. Further investigation revealed that TCA exacerbated ANIT-induced liver injury by elevating liver function enzyme activity, inflammation, and bile duct proliferation and promoting the migration of bile duct epithelial cell. Nevertheless, no morphological changes or alterations in transaminase activity indicative of liver damage were observed in the rats treated with TCA alone. Additionally, there were no changes in bile acid profiles or inflammatory responses under physiological conditions with maintained bile acid homeostasis. In summary, our findings suggest that taurine-conjugated bile acids in both plasma and liver, particularly TCA, can serve as early and sensitive markers for predicting intrahepatic cholestatic drugs and can act as potent exacerbators of cholestatic liver injury progression. However, exogenous TCA does not induce liver injury under physiological conditions where bile acid homeostasis is maintained.

11.
Postgrad Med J ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538569

ABSTRACT

PURPOSE: To investigate the impacts of remimazolam tosilate on gastrointestinal hormones and motility in patients undergoing gastrointestinal endoscopy with sedation. METHODS: A total of 262 American Society of Anesthesiologists Physical Status I or II patients, aged 18-65 years, scheduled for gastrointestinal endoscopy with sedation, were randomly allocated into two groups (n = 131 each): the remimazolam tosilate group (Group R) and the propofol group (Group P). Patients in Group R received 0.2-0.25 mg/Kg remimazolam tosilate intravenously, while those in Group P received 1.5-2.0 mg/kg propofol intravenously. The gastrointestinal endoscopy was performed when the Modified Observer's Assessment of Alertness/Sedation scores were ≤3. The primary endpoints included the endoscopic intestinal peristalsis rating by the endoscopist; serum motilin and gastrin levels at fasting without gastrointestinal preparation (T0), before gastrointestinal endoscopy (T1), and before leaving the Post Anesthesia Care Unit (T2); and the incidences of abdominal distension during Post Anesthesia Care Unit. RESULTS: Compared with Group P, intestinal peristalsis rating was higher in Group R (P < .001); Group R showed increased motilin and gastrin levels at T2 compared with Group P (P < .01). There was a rise in motilin and gastrin levels at T1 and T2 compared with T0 and at T2 compared with T1 in both groups (P < .01). The incidence of abdominal distension was lower in Group R (P < .05). CONCLUSION: Compared with propofol used during gastrointestinal endoscopy with sedation, remimazolam tosilate mildly inhibits the serum motilin and gastrin levels, potentially facilitating the recovery of gastrointestinal motility.

12.
Anal Chem ; 95(38): 14288-14296, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37697825

ABSTRACT

Various signal molecules participate in complex biological processes in mitochondria. However, most currently available probes have problems in elucidating the functions of these active species in mitochondria due to the inability to light up these probes exclusively at the desired mitochondrial location, thereby compromising the specificity and accuracy. In this study, we present an on-demand photoactivation approach to the molecular design of optimized probes for precise spatiotemporal identification of mitochondrial H2S fluctuations. The designed probe with native yellow fluorescence can monitor the process into mitochondria but maintains nonfluorescent response to H2S during cellular delivery, providing the accurate timing of accumulation in mitochondria. On-demand photoactivation exclusively at the desired mitochondrial location affords a significant aggregation-enhanced and emissive response to H2S with lighting up red fluorescence at 690 nm, which is the only way to get such an emissive phenomenon and greatly improves the specificity and accuracy of targeting mitochondrial H2S. By using this photocontrolled fluorescence responsiveness to H2S, precise spatiotemporal identification of mitochondrial H2S fluctuations is successfully performed. Our work could facilitate advances toward interrogating the physiological and pathological consequences of mitochondrial H2S in various biological events.


Subject(s)
Hydrogen Sulfide , Humans , Fluorescent Dyes , HeLa Cells , Mitochondria , Microscopy, Fluorescence
13.
Bioorg Med Chem Lett ; 96: 129495, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37793498

ABSTRACT

The poor water solubility of traditional activatable organic molecular probes usually limits their detection ability in physiological environment. In this work, a positively charged H2S probe was designed, which exhibited a significantly enhanced responsiveness to H2S in the aggregated state due to the increased positive charge density on the aggregate surface. Under physiological conditions, the probe could be activated by H2S with specificity and sensitivity to release near-infrared fluorescence signal. Moreover, endogenous H2S levels in living cells were successfully monitored by using this probe. We expect that this probe can provide a new strategy for the design of activatable probes to break the limitation of poor water solubility of conventional organic molecular probes.


Subject(s)
Fluorescent Dyes , Hydrogen Sulfide , Humans , Molecular Probes , HeLa Cells , Optical Imaging , Water
14.
Org Biomol Chem ; 21(29): 5919-5923, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37435862

ABSTRACT

An H2O2-activated, endoplasmic reticulum-targeted theranostic probe was developed. This designed probe could be activated by H2O2, resulting in increased NIR fluorescence and photothermal signals, thus achieving specific recognition of H2O2 and further photothermal therapy in the endoplasmic reticulum of H2O2-overexpressing cancer cells.


Subject(s)
Nanoparticles , Neoplasms , Humans , Photothermal Therapy , Phototherapy/methods , Hydrogen Peroxide , Theranostic Nanomedicine/methods , Endoplasmic Reticulum , Cell Line, Tumor
15.
Cell Biol Toxicol ; 39(4): 1753-1772, 2023 08.
Article in English | MEDLINE | ID: mdl-36520315

ABSTRACT

Triptolide (TP) exhibits therapeutic potential against multiple diseases. However, its application in clinics is limited by TP-induced hepatoxicity. TP can activate invariant natural killer T (iNKT) cells in the liver, shifting Th1 cytokine bias to Th2 cytokine bias. The damaging role of iNKT cells in TP-induced hepatoxicity has been established, and iNKT cell deficiency can mitigate hepatotoxicity. However, the activation of iNKT cells in vitro by TP requires the presence of antigen-presenting cells. Therefore, we hypothesized that TP could induce dendritic cells (DCs) to activate iNKT cells, thereby leading to hepatotoxicity. The hepatic conventional DCs (cDCs) exhibited immunogenic activities after TP administration, upregulating the expression of CD1d, co-stimulatory molecules, and IL-12. Neutralization with IL-12p40 antibody extenuated TP-induced hepatotoxicity and reduced iNKT cell activation, suggesting that IL-12 could cause liver injury by activating iNKT cells. TP triggered the activation and upregulation of STING signaling pathway and increased endoplasmic reticulum (ER) stress. Downregulation of STING reduced cDC immunogenicity, inhibiting the activation of iNKT cells and hepatic damage. These indicated the regulatory effects of STING pathway on cDCs and iNKT cells, and the important roles it plays in hepatoxicity. ER stress inhibitor, 4-phenylbutyrate (4-PBA), also suppressed iNKT cell activation and liver injury, which might be regulated by the STING signaling pathway. Our results demonstrated the possible mechanisms underlying TP-induced hepatoxicity, where the activation of cDCs and iNKT cells was stimulated by upregulated STING signaling and increased ER stress as a result of TP administration.


Subject(s)
Chemical and Drug Induced Liver Injury , Natural Killer T-Cells , Humans , Natural Killer T-Cells/metabolism , Signal Transduction , Cytokines/metabolism , Interleukin-12/metabolism , Interleukin-12/pharmacology , Endoplasmic Reticulum Stress , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism
16.
Neuroradiology ; 65(9): 1371-1379, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37328652

ABSTRACT

PURPOSE: To determine whether magnetic resonance imaging (MRI) can improve diagnostic accuracy for definite and probable Ménière's disease (MD) based on perilymphatic enhancement (PE) and endolymphatic hydrops (EH). METHODS: 363 patients with unilateral MD (probable MD, n = 75 and definite MD, n = 288) were recruited. A three-dimensional zoomed imaging technique with parallel transmission SPACE real inversion recovery was performed 6 h after intravenous gadolinium injection to investigate the presence of PE and to evaluate the grading and location of EH. PE and EH characteristics were analyzed and compared between the probable and definite MD groups. RESULTS: The cochlear and vestibular EH grading on the affected side was more severe in the definite MD group than that in the probable MD group (P < 0.001). The EH locations within the inner ear on the affected side also differed between the two groups (χ2 = 81.15, P < 0.001). The signal intensity ratio (SIR) on the affected side was significantly higher in the definite MD group than in the probable MD group (t = 2.18, P < 0.05). The assessment of the combination of PE and EH parameters within the inner ear revealed a higher area under the curve (AUC) in the definite MD group (0.82) compared with the AUCs of the parameters assessed alone. CONCLUSION: The assessment of a combination of PE and EH parameters improved the diagnostic accuracy for probable and definite MD, suggesting that MRI findings may be clinically useful in the diagnosis of MD.


Subject(s)
Endolymphatic Hydrops , Meniere Disease , Vestibule, Labyrinth , Humans , Meniere Disease/diagnostic imaging , Endolymphatic Hydrops/diagnostic imaging , Vestibule, Labyrinth/pathology , Injections, Intravenous , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional
17.
J Chem Phys ; 159(3)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37458355

ABSTRACT

Machine learning force fields (MLFFs) have gained popularity in recent years as they provide a cost-effective alternative to ab initio molecular dynamics (MD) simulations. Despite a small error on the test set, MLFFs inherently suffer from generalization and robustness issues during MD simulations. To alleviate these issues, we propose global force metrics and fine-grained metrics from element and conformation aspects to systematically measure MLFFs for every atom and every conformation of molecules. We selected three state-of-the-art MLFFs (ET, NequIP, and ViSNet) and comprehensively evaluated on aspirin, Ac-Ala3-NHMe, and Chignolin MD datasets with the number of atoms ranging from 21 to 166. Driven by the trained MLFFs on these molecules, we performed MD simulations from different initial conformations, analyzed the relationship between the force metrics and the stability of simulation trajectories, and investigated the reason for collapsed simulations. Finally, the performance of MLFFs and the stability of MD simulations can be further improved guided by the proposed force metrics for model training, specifically training MLFF models with these force metrics as loss functions, fine-tuning by reweighting samples in the original dataset, and continued training by recruiting additional unexplored data.

18.
J Sep Sci ; 46(19): e2200793, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37528471

ABSTRACT

Lingyang Qingfei pills (LQP), the renowned traditional Chinese medicine recipe, have been extensively utilized for the therapy of xerostomia, sore throat, bronchiolitis, and pneumonia in clinics. However, its phytochemicals remain equivocal, which severely limits the development of quality control and activity mechanisms. In the current research, a trusted method founded on ultra-high performance liquid chromatography with Quadrupole-Exactive Orbitrap mass spectrometry technique was proposed for the comprehensive screening of in vitro and in vivo chemical compositions of LQP. As a consequence, 239 constituents were preliminarily characterized, 37 of which were accurately confirmed by reference standards. In addition, a total of 208 xenobiotics, containing 71 absorbed prototypes and 137 metabolites, were revealed in rat plasma, bile, urine, and feces, respectively. The metabolic reaction of hydrolysis, hydroxylation, methylation, glycosylation, sulfation, and mixed-mode was detected in the biotransformations of flavonoids, terpenoids, alkaloids, anthraquinones, organic acids, phenylpropanoids, and so forth. And 12 of the metabolites were new compounds. This experiment acted as the first reference for chemical substances and metabolites of LQP, which could provide valuable chemical information for further clarifying pharmacodynamic substances and pharmacokinetic studies.

19.
Xenobiotica ; 53(8-9): 559-571, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37885225

ABSTRACT

Cisplatin is a widely used chemotherapeutic agent to treat solid tumours in clinics. However, cisplatin-induced acute kidney injury (AKI) limits its clinical application. This study investigated the effect of hyperoside (a flavonol glycoside compound) on regulating AKI.The model of cisplatin-induced AKI was established, and hyperoside was preadministered to investigate its effect on improving kidney injury.Hyperoside ameliorated renal pathological damage, reduced the accumulation of SCr, BUN, Kim-1 and indoxyl sulphate in vivo, increased the excretion of indoxyl sulphate into the urine, and upregulated the expression of renal organic anion transporter 1 (Oat1). Moreover, evaluation of rat kidney slices demonstrated that hyperoside promoted the uptake of PAH (p-aminohippurate, the Oat1 substrate), which was confirmed by transient over-expression of OAT1 in HEK-293T cells. Additionally, hyperoside upregulated the mRNA expression of Oat1 upstream regulators hepatocyte nuclear factor-1α (HNF-1α) and pregnane X receptor (PXR).These findings indicated hyperoside could protect against cisplatin-induced AKI by promoting indoxyl sulphate excretion through regulating the expression and function of Oat1, suggesting hyperoside may offer a potential tactic for cisplatin-induced AKI treatment.


Subject(s)
Acute Kidney Injury , Cisplatin , Rats , Animals , Cisplatin/adverse effects , Cisplatin/metabolism , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/metabolism , Indican/toxicity , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Kidney/metabolism
20.
BMC Anesthesiol ; 23(1): 12, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36624368

ABSTRACT

BACKROUND: The supraclavicular plexus block (SCB) and interscalene plexus block (ISB) have the potential to pulmonary function, the duration of the potential remains uncertain. So, we compared the effect of SCB and ISB on pulmonary function, especially the duration time. METHODS: Ninety-six patients were finally allocated to group I and group S. The ISB and the SCB procedures were performed with ultrasound guidance before anesthesia induction. An investigator recorded the diaphragm mobility and respiratory function test indicators before the block (T0) and at 30 min (T30 min), 4 h (T4), 8 h (T8), and 12 h (T12) after the block. The diaphragmatic paralysis rate was calculated for above timepoint. The VAS, the recovery time for the sensory and motor block, and adverse reactions within 24 h of administering the block were also recorded. RESULTS: The recovery times of diaphragm mobility in group I were longer than those in group S. Compared with group I, group S had a significantly lower diaphragmatic paralysis rate during eupnea breathing at T30 min and T8 after the block. Similarly, group S had a significantly lower diaphragmatic paralysis rate at deep breathing at T30 min, T8, and T12 after the block. The recovery times of FEV1 and FVC in group I were longer than those in group S. The other results were not statistically significant. CONCLUSIONS: Ultrasound-guided ISB resulted in a longer periods with a suppressive effect on pulmonary function than SCB. TRIALS REGISTRATION: 17/12/2019, ChiCTR1900028286.


Subject(s)
Brachial Plexus Block , Respiration Disorders , Respiratory Paralysis , Humans , Anesthetics, Local/adverse effects , Respiratory Paralysis/etiology , Ultrasonography, Interventional/methods , Brachial Plexus Block/adverse effects , Brachial Plexus Block/methods , Lung/diagnostic imaging , Respiration Disorders/etiology
SELECTION OF CITATIONS
SEARCH DETAIL