Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Gastroenterology ; 167(2): 264-280, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38417530

ABSTRACT

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is characterized by an immune-suppressive microenvironment, which contributes to tumor progression, metastasis, and immunotherapy resistance. Identification of HCC-intrinsic factors regulating the immunosuppressive microenvironment is urgently needed. Here, we aimed to elucidate the role of SYR-Related High-Mobility Group Box 18 (SOX18) in inducing immunosuppression and to validate novel combination strategies for SOX18-mediated HCC progression and metastasis. METHODS: The role of SOX18 in HCC was investigated in orthotopic allografts and diethylinitrosamine/carbon tetrachloride-induced spontaneous models by using murine cell lines, adeno-associated virus 8, and hepatocyte-specific knockin and knockout mice. The immune cellular composition in the HCC microenvironment was evaluated by flow cytometry and immunofluorescence. RESULTS: SOX18 overexpression promoted the infiltration of tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) while diminishing cytotoxic T cells to facilitate HCC progression and metastasis in cell-derived allografts and chemically induced HCC models. Mechanistically, transforming growth factor-beta 1 (TGF-ß1) upregulated SOX18 expression by activating the Smad2/3 complex. SOX18 transactivated chemokine (C-X-C motif) ligand 12 (CXCL12) and programmed death ligand 1 (PD-L1) to induce the immunosuppressive microenvironment. CXCL12 knockdown significantly attenuated SOX18-induced TAMs and Tregs accumulation and HCC dissemination. Antagonism of chemokine receptor 4 (CXCR4), the cognate receptor of CXCL12, or selective knockout of CXCR4 in TAMs or Tregs likewise abolished SOX18-mediated effects. TGFßR1 inhibitor Vactosertib or CXCR4 inhibitor AMD3100 in combination with anti-PD-L1 dramatically inhibited SOX18-mediated HCC progression and metastasis. CONCLUSIONS: SOX18 promoted the accumulation of immunosuppressive TAMs and Tregs in the microenvironment by transactivating CXCL12 and PD-L1. CXCR4 inhibitor or TGFßR1 inhibitor in synergy with anti-PD-L1 represented a promising combination strategy to suppress HCC progression and metastasis.


Subject(s)
B7-H1 Antigen , Benzylamines , Carcinoma, Hepatocellular , Chemokine CXCL12 , Cyclams , Disease Progression , Liver Neoplasms , Receptors, CXCR4 , SOXF Transcription Factors , T-Lymphocytes, Regulatory , Transforming Growth Factor beta1 , Tumor Microenvironment , Tumor-Associated Macrophages , Up-Regulation , Animals , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , SOXF Transcription Factors/metabolism , SOXF Transcription Factors/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Tumor Microenvironment/immunology , Humans , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Transforming Growth Factor beta1/metabolism , Mice , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Cyclams/pharmacology , Benzylamines/pharmacology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Cell Line, Tumor , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Mice, Knockout , Gene Expression Regulation, Neoplastic , Signal Transduction , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice, Inbred C57BL , Diethylnitrosamine/toxicity , Male
2.
J Am Chem Soc ; 146(12): 8216-8227, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38486429

ABSTRACT

Bioorthogonal reactions provide a powerful tool to manipulate biological processes in their native environment. However, the transition-metal catalysts (TMCs) for bioorthogonal catalysis are limited to low atomic utilization and moderate catalytic efficiency, resulting in unsatisfactory performance in a complex physiological environment. Herein, sulfur-doped Fe single-atom catalysts with atomically dispersed and uniform active sites are fabricated to serve as potent bioorthogonal catalysts (denoted as Fe-SA), which provide a powerful tool for in situ manipulation of cellular biological processes. As a proof of concept, the N6-methyladensoine (m6A) methylation in macrophages is selectively regulated by the mannose-modified Fe-SA nanocatalysts (denoted as Fe-SA@Man NCs) for potent cancer immunotherapy. Particularly, the agonist prodrug of m6A writer METTL3/14 complex protein (pro-MPCH) can be activated in situ by tumor-associated macrophage (TAM)-targeting Fe-SA@Man, which can upregulate METTL3/14 complex protein expression and then reprogram TAMs for tumor killing by hypermethylation of m6A modification. Additionally, we find the NCs exhibit an oxidase (OXD)-like activity that further boosts the upregulation of m6A methylation and the polarization of macrophages via producing reactive oxygen species (ROS). Ultimately, the reprogrammed M1 macrophages can elicit immune responses and inhibit tumor proliferation. Our study not only sheds light on the design of single-atom catalysts for potent bioorthogonal catalysis but also provides new insights into the spatiotemporal modulation of m6A RNA methylation for the treatment of various diseases.


Subject(s)
Adenosine/analogs & derivatives , Immunotherapy , Neoplasms , Humans , RNA Methylation , Catalysis , Methyltransferases
3.
BMC Plant Biol ; 24(1): 114, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365570

ABSTRACT

BACKGROUND: The small YABBY plant-specific transcription factor has a prominent role in regulating plant growth progress and responding to abiotic stress. RESULTS: Here, a total of 16 PvYABBYs from switchgrass (Panicum virgatum L.) were identified and classified into four distinct subgroups. Proteins within the same subgroup exhibited similar conserved motifs and gene structures. Synteny analyses indicated that segmental duplication contributed to the expansion of the YABBY gene family in switchgrass and that complex duplication events occurred in rice, maize, soybean, and sorghum. Promoter regions of PvYABBY genes contained numerous cis-elements related to stress responsiveness and plant hormones. Expression profile analysis indicated higher expression levels of many PvYABBY genes during inflorescence development and seed maturation, with lower expression levels during root growth. Real-time quantitative PCR analysis demonstrated the sensitivity of multiple YABBY genes to PEG, NaCl, ABA, and GA treatments. The overexpression of PvYABBY14 in Arabidopsis resulted in increased root length after treatment with GA and ABA compared to wild-type plants. CONCLUSIONS: Taken together, our study provides the first genome-wide overview of the YABBY transcription factor family, laying the groundwork for understanding the molecular basis and regulatory mechanisms of PvYABBY14 in response to ABA and GA responses in switchgrass.


Subject(s)
Arabidopsis , Panicum , Panicum/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Growth Regulators , Genes, Plant , Stress, Physiological/genetics , Transcription Factors/genetics , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism
4.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-36007240

ABSTRACT

Natural products (NPs) and their derivatives are important resources for drug discovery. There are many in silico target prediction methods that have been reported, however, very few of them distinguish NPs from synthetic molecules. Considering the fact that NPs and synthetic molecules are very different in many characteristics, it is necessary to build specific target prediction models of NPs. Therefore, we collected the activity data of NPs and their derivatives from the public databases and constructed four datasets, including the NP dataset, the NPs and its first-class derivatives dataset, the NPs and all its derivatives and the ChEMBL26 compounds dataset. Conditions, including activity thresholds and input features, were explored to access the performance of eight machine learning methods of target prediction of NPs, including support vector machines (SVM), extreme gradient boosting, random forests, K-nearest neighbor, naive Bayes, feedforward neural networks (FNN), convolutional neural networks and recurrent neural networks. As a result, the NPs and all their derivatives datasets were selected to build the best NP-specific models. Furthermore, the consensus models, as well as the voting models, were additionally applied to improve the prediction performance. More evaluations were made on the external validation set and the results demonstrated that (1) the NP-specific model performed better on the target prediction of NPs than the traditional models training on the whole compounds of ChEMBL26. (2) The consensus model of FNN + SVM possessed the best overall performance, and the voting model can significantly improve recall and specificity.


Subject(s)
Biological Products , Algorithms , Bayes Theorem , Machine Learning , Neural Networks, Computer , Support Vector Machine
5.
Cell Commun Signal ; 22(1): 350, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965548

ABSTRACT

T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment/genetics , Animals , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Molecular Targeted Therapy
6.
Chem Biodivers ; 21(3): e202301754, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38348931

ABSTRACT

Asparagus officinalis has a homologous value in medicine and vegetables. Its immature stem, commonly called asparagus, is a central edible part. Asparagus skin and leaf also contain rich nutrients. However, these parts are often discarded. This study investigated amino acid and mineral elements in immature stem, skinless asparagus, asparagus skin, and leaf. Their quality was further evaluated by chemometrics methods such as principal component analysis and neural network analysis. The results showed amino acid content was high in immature stem and skinless asparagus and low in leaf, whereas the mineral elements were in four parts. Quality evaluation results showed four parts were divided into three grades. Immature stem and skinless asparagus were grouped into cluster 1 with the best quality as high-quality raw materials in food and health-care products. Meanwhile, three AA (Cys, His, Arg) and two mineral elements (Na, Cr) were identified as quality evaluation iconic substances.


Subject(s)
Asparagus Plant , Asparagus Plant/chemistry , Amino Acids , Chemometrics , Minerals , Vegetables/chemistry
7.
Nano Lett ; 23(14): 6424-6432, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37395701

ABSTRACT

Artificial metalloenzymes (ArMs) are gaining much attention in life sciences. However, the function of the present ArMs for disease treatment is still in its infancy, which may impede the possible therapeutic potential. Herein, we construct an antibody engineered ArM by using the Fc region of IgG and bioorthogonal chemistry, which endows the ArM with the capability of manipulating cell-cell communication and bioorthogonal catalysis for tumor immuno- and chemotherapy. Specially, Fc-Pd ArM is modified on the cancer cell surface by metabolic glycoengineering to catalyze the bioorthogonal activation of prodrug for tumor chemotherapy. More importantly, the antibody-based ArM can mediate cell-cell communication between cancer cells and NK cells, activating the ADCC effect for immunotherapy. In vivo antitumor applications suggest that the ArM can not only eliminate primary tumor but also inhibit tumor lung metastasis. Our work provides a new attempt to develop artificial metalloenzymes with cell-cell communication the ability for bioorthogonal catalysis and combination therapy.


Subject(s)
Metalloproteins , Neoplasms , Humans , Killer Cells, Natural , Neoplasms/pathology , Antibodies , Extracellular Space , Metalloproteins/metabolism , Cell Line, Tumor
8.
Angew Chem Int Ed Engl ; : e202411905, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112373

ABSTRACT

Natural killer (NK) cell-based immunotherapy has received much attention in recent years. However, the practical application is still suffering from the decreased function, inadequate infiltration, and immunosuppressive microenvironment in solid tumor. Herein, we construct the light-responsive porphyrin Fe array-armed NK cells (denoted as NK@p-Fe) for cell behavior modulation via bioorthogonal catalysis. By installing cholesterol-modified porphyrin Fe molecules on NK cell surface, it forms a catalytic array with light-harvesting capabilities. This functionality transforms NK cells into cellular factories, capable of catalyzing the production of active agents in a light-controlled manner. The NK@p-Fe can generate active antineoplastic drug doxorubicin through bioorthogonal reactions to enhance the cytotoxic function of NK cells. Beyond drug synthesis, the NK@p-Fe can also bioorthogonally catalyze to produce FDA approved immune agonist, imiquimod (IMQ). The activated immune agonist plays a dual role by inducing DC maturation for NK cells activation and reshaping tumor immunosuppressive microenvironment for NK cells infiltration. This work represents a paradigm for modulation of adoptive cell behaviors to boost cancer immunotherapy by bioorthogonal catalysis.

9.
J Am Chem Soc ; 145(9): 5330-5341, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36815731

ABSTRACT

Personalized tumor vaccines have become a promising modality for cancer immunotherapy. However, in situ personalized tumor vaccines generated from immunogenic cancer cell death (ICD) and adjuvants are mired by toxic side effects and unsatisfactory efficiency. Herein, by functionalizing the reticular structure to optimize the catalytic activity of the materials, a series of biocompatible covalent organic framework (COF)-based catalysts have been designed and screened for establishing a bioorthogonal-activated in situ cancer vaccine in an efficient and safe way. Especially, pro-doxorubicin (pro-DOX) could be bioorthogonally activated in situ by the COF-based Fe(II) catalysts, which elicited ICD and released tumor-associated antigens (TAAs). This in situ prodrug activation strategy could minimize drug side effects and maximize treatment effects. More importantly, the system could also catalytically activate pro-imiquimod (pro-IMQ, a TLR7/8 immune agonist), which served as an adjuvant to amplify the antitumor immunity. Notably, this bioorthogonal-activated in situ cancer vaccine not only facilitated a strong antitumor immune response but also prevented the dose-dependent side effects of chemotherapeutic drugs, including systemic inflammation caused by the random distribution of adjuvants. To the best of our knowledge, it is the first time to devise an efficient catalytic platform for generating an in situ bioorthogonal-activated cancer vaccine, which would provide a paradigm for achieving secure and robust immunotherapy.


Subject(s)
Cancer Vaccines , Metal-Organic Frameworks , Neoplasms , Humans , Cancer Vaccines/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Neoplasms/drug therapy , Imiquimod , Adjuvants, Immunologic , Immunotherapy , Cell Line, Tumor
10.
J Am Chem Soc ; 145(48): 26296-26307, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37987621

ABSTRACT

Immunotherapy of triple-negative breast cancer (TNBC) has an unsatisfactory therapeutic outcome due to an immunologically "cold" microenvironment. Fusobacterium nucleatum (F. nucleatum) was found to be colonized in triple-negative breast tumors and was responsible for the immunosuppressive tumor microenvironment and tumor metastasis. Herein, we constructed a bacteria-derived outer membrane vesicle (OMV)-coated nanoplatform that precisely targeted tumor tissues for dual killing of F. nucleatum and cancer cells, thus transforming intratumor bacteria into immunopotentiators in immunotherapy of TNBC. The as-prepared nanoparticles efficiently induced immunogenic cell death through a Fenton-like reaction, resulting in enhanced immunogenicity. Meanwhile, intratumoral F. nucleatum was killed by metronidazole, resulting in the release of pathogen-associated molecular patterns (PAMPs). PAMPs cooperated with OMVs further facilitated the maturation of dendritic cells and subsequent T-cell infiltration. As a result, the "kill two birds with one stone" strategy warmed up the cold tumor environment, maximized the antitumor immune response, and achieved efficient therapy of TNBC as well as metastasis prevention. Overall, this strategy based on a microecology distinction in tumor and normal tissue as well as microbiome-induced reversal of cold tumors provides new insight into the precise and efficient immune therapy of TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Adjuvants, Immunologic , Pathogen-Associated Molecular Pattern Molecules/metabolism , Pathogen-Associated Molecular Pattern Molecules/therapeutic use , Immunotherapy/methods , Fusobacterium nucleatum/metabolism , Cell Line, Tumor , Tumor Microenvironment
11.
J Hepatol ; 79(1): 109-125, 2023 07.
Article in English | MEDLINE | ID: mdl-36907560

ABSTRACT

BACKGROUND & AIMS: Metastasis remains the major reason for the high mortality of patients with hepatocellular carcinoma (HCC). This study was designed to investigate the role of E-twenty-six-specific sequence variant 4 (ETV4) in promoting HCC metastasis and to explore a new combination therapy strategy for ETV4-mediated HCC metastasis. METHODS: PLC/PRF/5, MHCC97H, Hepa1-6, and H22 cells were used to establish orthotopic HCC models. Clodronate liposomes were used to clear macrophages in C57BL/6 mice. Gr-1 monoclonal antibody was used to clear myeloid-derived suppressor cells (MDSCs) in C57BL/6 mice. Flow cytometry and immunofluorescence were used to detect the changes of key immune cells in the tumour microenvironment. RESULTS: ETV4 expression was positively related to higher tumour-node-metastasis (TNM) stage, poor tumour differentiation, microvascular invasion, and poor prognosis in human HCC. Overexpression of ETV4 in HCC cells transactivated PD-L1 and CCL2 expression, which increased tumour-associated macrophage (TAM) and MDSC infiltration and inhibited CD8+ T-cell accumulation. Knockdown of CCL2 by lentivirus or CCR2 inhibitor CCX872 treatment impaired ETV4-induced TAM and MDSC infiltration and HCC metastasis. Furthermore, FGF19/FGFR4 and HGF/c-MET jointly upregulated ETV4 expression through the ERK1/2 pathway. Additionally, ETV4 upregulated FGFR4 expression, and downregulation of FGFR4 decreased ETV4-enhanced HCC metastasis, which created a FGF19-ETV4-FGFR4 positive feedback loop. Finally, anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib prominently inhibited FGF19-ETV4 signalling-induced HCC metastasis. CONCLUSIONS: ETV4 is a prognostic biomarker, and anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib may be effective strategies to inhibit HCC metastasis. IMPACT AND IMPLICATIONS: Here, we reported that ETV4 increased PD-L1 and chemokine CCL2 expression in HCC cells, which resulted in TAM and MDSC accumulation and CD8+ T-cell inhibition to facilitate HCC metastasis. More importantly, we found that anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib markedly inhibited FGF19-ETV4 signalling-mediated HCC metastasis. This preclinical study will provide a theoretical basis for the development of new combination immunotherapy strategies for patients with HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Humans , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/metabolism , Mice, Inbred C57BL , Signal Transduction , Macrophages/metabolism , Cell Line, Tumor , Tumor Microenvironment , Proto-Oncogene Proteins c-ets/metabolism , Fibroblast Growth Factors/metabolism , Chemokine CCL2 , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptor, Fibroblast Growth Factor, Type 4/metabolism
12.
Chem Biodivers ; 20(9): e202300986, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37559110

ABSTRACT

Asparagus officinalis is a health-care vegetable with homology value of medicine and food. The quality of A. officinalis is greatly different from various cultivars. It is essential to reveal the relationship between the variety and quality. This study investigated six nutritional compositions in ten A. officinalis cultivars, including amino acid, mineral substance, carbohydrate, vitamin C, protein and total sugar. Five chemometrics methods were further employed to evaluate their quality. The results consistently showed that ten varieties were divided into three grades as nutritional composition differences. HuaMiaoF1, JinGuan and FeiCuiMingZhu were grouped into cluster3 with the best quality, and Atlas and Jersey Giant were grouped into cluster1 with the lowest quality. Therefore, HuaMiaoF1, JinGuan and FeiCuiMingZhu can be suggested as good raw materials for medicine, food and health-care products industries. Meanwhile, the comprehensive application of five chemometrics methods was confirmed as a reliable methodology for quality evaluation of A. officinalis.


Subject(s)
Asparagus Plant , Asparagus Plant/chemistry , Functional Food , Ascorbic Acid
13.
Angew Chem Int Ed Engl ; 62(49): e202308396, 2023 12 04.
Article in English | MEDLINE | ID: mdl-37548083

ABSTRACT

Bioorthogonal chemistry is a promising toolbox for dissecting biological processes in the native environment. Recently, bioorthogonal reactions have attracted considerable attention in the medical field for treating diseases, since this approach may lead to improved drug efficacy and reduced side effects via in situ drug synthesis. For precise biomedical applications, it is a prerequisite that the reactions should occur in the right locations and on the appropriate therapeutic targets. In this minireview, we highlight the design and development of targeted bioorthogonal reactions for precise medical treatment. First, we compile recent strategies for achieving target-specific bioorthogonal reactions. Further, we emphasize their application for the precise treatment of different therapeutic targets. Finally, a perspective is provided on the challenges and future directions of this emerging field for safe, efficient, and translatable disease treatment.

14.
Cancer Sci ; 113(10): 3347-3361, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35848884

ABSTRACT

RNA-binding protein (RBP) dysregulation is functionally linked to several human diseases, including neurological disorders, cardiovascular disease, and cancer. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RBPs involved in nucleic acid metabolism. A growing body of studies has shown that the dysregulated hnRNPs play important roles in tumorigenesis. Here, we found that heterogeneous nuclear ribonucleoprotein C (C1/C2) (HNRNPC) had good performance in distinguishing between hepatocellular carcinoma (HCC) and normal liver tissues through bioinformatics analysis. Further investigation revealed that HNRNPC was significantly correlated with multiple malignant characteristics of HCC, including tumor size, microvascular invasion, tumor differentiation, and TNM stage. Patients with HCC with positive HNRNPC expression exhibited decreased overall survival and increased recurrence rate. HNRNPC downregulation inhibited HCC invasion and metastasis. The decreased expression of hypoxia inducible factor 1 subunit alpha (HIF1A) was identified as the molecular mechanism underlying HNRNPC downregulation-inhibited HCC metastasis by RNA sequencing. Mechanistically, HNRNPC downregulation decreased HIF1A expression by destabilizing HIF1A mRNA. HIF1A overexpression rescued the decrease in invasiveness and metastasis of HCC induced by HNRNPC downregulation. Additionally, interleukin (IL)-6/STAT3 signaling upregulated HNRNPC expression in HCC cells, and knockdown of HNRNPC significantly inhibited IL-6/STAT3-enhanced HCC metastasis. Furthermore, anti-IL-6 antibody siltuximab significantly inhibited IL-6-mediated HCC metastasis. In summary, our research revealed the clinical value, functional role, and molecular mechanism of HNRNPC in HCC and showed the potential of HNRNPC as a biomarker for diagnosis, prognosis, and further therapeutic targets for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Down-Regulation , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Humans , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Interleukin-6/metabolism , Liver Neoplasms/pathology , Neoplasm Metastasis , RNA, Messenger , RNA-Binding Proteins/genetics , STAT3 Transcription Factor/metabolism
15.
Hepatology ; 74(6): 3174-3193, 2021 12.
Article in English | MEDLINE | ID: mdl-34288020

ABSTRACT

BACKGROUND AND AIMS: Because of a paucity of effective treatment options, metastasis is still a major cause for HCC-associated mortality. The molecular mechanism of inflammation-induced HCC metastasis is open for study. Here, we characterized the function of solute carrier family 7 member 11 (SLC7A11) in inflammation-related HCC metastasis and probed therapy strategies for this subpopulation of patients. APPROACH AND RESULTS: Elevated expression of SLC7A11 was positively correlated with poor tumor differentiation, and higher tumor-nodule-metastasis stage, and indicated poor prognosis in human HCC. SLC7A11 increased HIF1α expression through reducing α-ketoglutarate (αKG) level by exporting glutamate. SLC7A11 up-regulated programmed death ligand 1 (PD-L1) and colony-stimulating factor 1 (CSF1) expression through αKG-HIF1α cascade. SLC7A11 overexpression in HCC cells promoted intratumoral tumor-associated macrophage (TAM) and myeloid-derived suppressor cell (MDSC) infiltration through the CSF1/colony-stimulating factor 1 receptor (CSF1R) axis, whereas knockdown of CSF1 attenuated SLC7A11-mediated intratumoral TAM and MDSC infiltration and HCC metastasis. Depletion of either TAMs or MDSCs decreased SLC7A11-mediated HCC metastasis. Furthermore, the combination of CSF1R inhibitor BZL945 and anti-PD-L1 antibody blocked SLC7A11-induced HCC metastasis. In addition, IL-1ß up-regulated SLC7A11 expression through the interleukin-1 receptor type 1 (IL-1R1)/extracellular signal-regulated kinase/specificity protein 1 pathway. SLC7A11 knockdown impaired IL-1ß-promoted HCC metastasis. Anakinra, an IL-1R1 antagonist, reversed IL-1ß-promoted HCC metastasis. In human HCC tissues, SLC7A11 expression was positively associated with HIF1α, PD-L1, and CSF1 expression and intratumoral TAM and MDSC infiltration. CONCLUSIONS: IL-1ß-induced SLC7A11 overexpression up-regulated PD-L1 and CSF1 through the αKG/HIF1α axis, which promoted TAM and MDSC infiltration. Interruption of this oncogenic loop may provide a promising therapy strategy for the inhibition of SLC7A11-mediated HCC metastasis.


Subject(s)
Amino Acid Transport System y+/genetics , Carcinoma, Hepatocellular/immunology , Interleukin-1beta/metabolism , Liver Neoplasms/immunology , Amino Acid Transport System y+/metabolism , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor/transplantation , Disease Models, Animal , Follow-Up Studies , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Gene Knockdown Techniques , Hepatectomy , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Ketoglutaric Acids/metabolism , Liver/immunology , Liver/pathology , Liver/surgery , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Liver Neoplasms/therapy , Macrophage Colony-Stimulating Factor/metabolism , Myeloid-Derived Suppressor Cells/immunology , Prognosis , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Up-Regulation/drug effects , Up-Regulation/immunology
16.
Mar Drugs ; 20(2)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35200654

ABSTRACT

Demethylincisterol A3 (Sdy-1), a highly degraded sterol that we previously isolated from Chinese mangrove Rhizophora mucronata endophytic Pestalotiopsis sp. HQD-6, exhibits potent antitumor activity towards a variety of cancer cells. In this study, we further verified that Sdy-1 effectively inhibited the proliferation and migration of human liver (HepG2) and cervical cancer (HeLa) cells in vitro and it can induce cell apoptosis and arrest the cell cycle in the G1-phase. Mechanistically, we demonstrated that Sdy-1 executes its function via inhibition of the Wnt/ß-catenin signaling pathway. Sdy-1 may not inhibit the Wnt signaling pathway through the cascade reaction from upstream to downstream, but directly acts on ß-catenin to reduce its transcription level, thereby reducing the level of ß-catenin protein and further reducing the expression of downstream related proteins. The possible interaction between Sdy-1 and ß-catenin protein was further confirmed by molecular docking studies. In the nude mouse xenograft model, Sdy-1 can also significantly inhibit tumor growth. These results indicated that Sdy-1 is an efficient inhibitor of the Wnt signaling pathway and is a promising antitumor candidate for therapeutic applications.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Sterols/pharmacology , Uterine Cervical Neoplasms/drug therapy , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , HeLa Cells , Hep G2 Cells , Humans , Mice , Mice, Nude , Molecular Docking Simulation , Rhizophoraceae/chemistry , Sterols/isolation & purification , Wnt Signaling Pathway/drug effects , Xenograft Model Antitumor Assays
17.
J Fluoresc ; 31(2): 609-617, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33528737

ABSTRACT

Two-photon fluorescence (TPF) of olive oils is discovered and observed experimentally for the first time. Variations of the single-photon fluorescence (SPF) and TPF with the excitation wavelength are investigated for four different olive oils. The results show that fluorescence of the cosmetic olive oils (COO) is very weak and exhibits only one spectral peak around 490 nm. While for the ordinary edible oils (OEO) whether they are during their shelf life or not, their fluorescence spectra may exhibit multiple peak structures. The short-term natural expiration only slightly weakens TPF of OEO. Moreover, the excitation wavelength affects the OEO spectra considerably in terms of the spectral peak number, the spectral peak position, and spectral shapes. When the excitation wavelength decreases from 700 nm, the whole TPF of the OEO also decreases. Relatively, however, the short wave band will decrease and disappear more quickly. While for the SPF, the long wave band will decrease and disappear first. The optimal excitation wavelengths to make the TPF strongest are around 700 nm and 640 nm for OEOs and COO, respectively. And effects of temperature on SPF and TPF of extra virgin olive oil are also explored. This work may be of significance for its potential applications in TPF detection and two-photon laser.


Subject(s)
Olive Oil/analysis , Photons , Light , Spectrometry, Fluorescence
18.
Entropy (Basel) ; 23(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34441191

ABSTRACT

This study is focused on the propagation behavior and attenuation characteristics of a planar incident shock wave when propagating through an array of perforated plates. Based on a density-based coupled explicit algorithm, combined with a third-order MUSCL scheme and the Roe averaged flux difference splitting method, the Navier-Stokes equations and the realizable k-ε turbulence model equations describing the air flow are numerically solved. The evolution of the dynamic wave and ring vortex systems is effectively captured and analyzed. The influence of incident shock Mach number, perforated-plate porosity, and plate number on the propagation and attenuation of the shock wave was studied by using pressure- and entropy-based attenuation rates. The results indicate that the reflection, diffraction, transmission, and interference behaviors of the leading shock wave and the superimposed effects due to the trailing secondary shock wave are the main reasons that cause the intensity of the leading shock wave to experience a complex process consisting of attenuation, local enhancement, attenuation, enhancement, and attenuation. The reflected shock interactions with transmitted shock induced ring vortices and jets lead to the deformation and local intensification of the shock wave. The formation of nearly steady jets following the array of perforated plates is attributed to the generation of an oscillation chamber for the inside dynamic wave system between two perforated plates. The vorticity diffusion, merging and splitting of vortex cores dissipate the wave energy. Furthermore, the leading transmitted shock wave attenuates more significantly whereas the reflected shock wave from the first plate of the array attenuates less significantly as the shock Mach number increases. The increase in the porosity weakens the suppression effects on the leading shock wave while increases the attenuation rate of the reflected shock wave. The first perforated plate in the array plays a major role in the attenuation of the shock wave.

19.
Cent Eur J Immunol ; 46(1): 10-16, 2021.
Article in English | MEDLINE | ID: mdl-33897279

ABSTRACT

MicroRNAs (miRNAs) critically impact a wide array of eukaryotic developmental and physiologic processes through post-transcriptional gene silencing. In this study, we employed miRNA array and investigated in vitro the miRNA profile of immature dendritic cells (iDCs) derived from monocytes isolated from human venous blood. Our results showed that there were 379 miRNAs which were detectable in both monocytes and iDCs among the 856 miRNAs assayed, of which 155 miRNAs were detectable in monocytes while 224 miRNAs were detectable in iDCs. There were 103 miRNAs differentially expressed which could be relevant to the differentiation of iDCs from human monocytes. Sixty-two out of 103 miRNAs were upregulated whereas 41 miRNAs were downregulated. Of particular interest were the tremendous upregulation of miR122a and the downregulation of miR200c in iDCs. In addition, it was found that the strikingly downregulated miRNAs in iDCs also included miR-335, miR-514, miR-509, miR-31, miR-442b, miR-1, miR-199a, miR-203, miR-363 and miR-489 whereas the upregulation of miR-210, miR-155, miR-126, miR-139, miR-452, miR-19a, miR-25 and miR-181d were remarkable. Our results revealed a profile change of miRNAs when human iDCs were differentiated from monocytes as a result of in vitro stimulation with relevant cytokines.

20.
Cancer Cell Int ; 20: 178, 2020.
Article in English | MEDLINE | ID: mdl-32477008

ABSTRACT

BACKGROUND: The purpose of this study is to perform bioinformatics analysis of autophagy-related genes in gastric cancer, and to construct a multi-gene joint signature for predicting the prognosis of gastric cancer. METHODS: GO and KEGG analysis were applied for differentially expressed autophagy-related genes in gastric cancer, and PPI network was constructed in Cytoscape software. In order to optimize the prognosis evaluation system of gastric cancer, we established a prognosis model integrating autophagy-related genes. We used single factor Cox proportional risk regression analysis to screen genes related to prognosis from 204 autophagy-related genes in The Atlas Cancer Genome (TCGA) gastric cancer cohort. Then, the generated genes were applied to the Least Absolute Shrinkage and Selection Operator (LASSO). Finally, the selected genes were further included in the multivariate Cox proportional hazard regression analysis to establish the prognosis model. According to the median risk score, patients were divided into high-risk group and low-risk group, and survival analysis was conducted to evaluate the prognostic value of risk score. Finally, by combining clinic-pathological features and prognostic gene signatures, a nomogram was established to predict individual survival probability. RESULTS: GO analysis showed that the 28 differently expressed autophagy-related genes was enriched in cell growth, neuron death, and regulation of cell growth. KEGG analysis showed that the 28 differently expressed autophagy-related genes were related to platinum drug resistance, apoptosis and p53 signaling pathway. The risk score was constructed based on 4 genes (GRID2, ATG4D,GABARAPL2, CXCR4), and gastric cancer patients were significantly divided into high-risk and low-risk groups according to overall survival. In multivariate Cox regression analysis, risk score was still an independent prognostic factor (HR = 1.922, 95% CI = 1.573-2.349, P < 0.001). Cumulative curve showed that the survival time of patients with low-risk score was significantly longer than that of patients with high-risk score (P < 0.001). The external data GSE62254 proved that nomograph had a great ability to evaluate the prognosis of individual gastric cancer patients. CONCLUSIONS: This study provides a potential prognostic marker for predicting the prognosis of GC patients and the molecular biology of GC autophagy.

SELECTION OF CITATIONS
SEARCH DETAIL