Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.788
Filter
Add more filters

Publication year range
1.
Cell ; 173(1): 221-233.e12, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29551271

ABSTRACT

Tandem zinc finger (ZF) proteins are the largest and most rapidly diverging family of DNA-binding transcription regulators in mammals. ZFP568 represses a transcript of placental-specific insulin like growth factor 2 (Igf2-P0) in mice. ZFP568 binds a 24-base pair sequence-specific element upstream of Igf2-P0 via the eleven-ZF array. Both DNA and protein conformations deviate from the conventional one finger-three bases recognition, with individual ZFs contacting 2, 3, or 4 bases and recognizing thymine on the opposite strand. These interactions arise from a shortened minor groove caused by an AT-rich stretch, suggesting adaptability of ZF arrays to sequence variations. Despite conservation in mammals, mutations at Igf2 and ZFP568 reduce their binding affinity in chimpanzee and humans. Our studies provide important insights into the evolutionary and structural dynamics of ZF-DNA interactions that play a key role in mammalian development and evolution.


Subject(s)
DNA/metabolism , Nuclear Proteins/metabolism , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , Carrier Proteins/chemistry , Carrier Proteins/classification , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA/chemistry , Humans , Insulin-Like Growth Factor II/chemistry , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Mice , Molecular Dynamics Simulation , Nuclear Proteins/chemistry , Nuclear Proteins/classification , Nuclear Proteins/genetics , Nucleic Acid Conformation , Pan troglodytes , Phylogeny , Polymorphism, Single Nucleotide , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment
2.
Immunity ; 56(9): 2086-2104.e8, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37572655

ABSTRACT

The limited efficacy of immunotherapies against glioblastoma underscores the urgency of better understanding immunity in the central nervous system. We found that treatment with αCTLA-4, but not αPD-1, prolonged survival in a mouse model of mesenchymal-like glioblastoma. This effect was lost upon the depletion of CD4+ T cells but not CD8+ T cells. αCTLA-4 treatment increased frequencies of intratumoral IFNγ-producing CD4+ T cells, and IFNγ blockade negated the therapeutic impact of αCTLA-4. The anti-tumor activity of CD4+ T cells did not require tumor-intrinsic MHC-II expression but rather required conventional dendritic cells as well as MHC-II expression on microglia. CD4+ T cells interacted directly with microglia, promoting IFNγ-dependent microglia activation and phagocytosis via the AXL/MER tyrosine kinase receptors, which were necessary for tumor suppression. Thus, αCTLA-4 blockade in mesenchymal-like glioblastoma promotes a CD4+ T cell-microglia circuit wherein IFNγ triggers microglia activation and phagocytosis and microglia in turn act as antigen-presenting cells fueling the CD4+ T cell response.


Subject(s)
Glioblastoma , Mice , Animals , Glioblastoma/drug therapy , Glioblastoma/metabolism , CTLA-4 Antigen , Th1 Cells , Microglia , CD8-Positive T-Lymphocytes , Phagocytosis , Dendritic Cells , CD4-Positive T-Lymphocytes
3.
Cell ; 165(7): 1621-1631, 2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27315479

ABSTRACT

While the search for an efficacious HIV-1 vaccine remains elusive, emergence of a new generation of virus-neutralizing monoclonal antibodies (mAbs) has re-ignited the field of passive immunization for HIV-1 prevention. However, the plasticity of HIV-1 demands additional improvements to these mAbs to better ensure their clinical utility. Here, we report engineered bispecific antibodies that are the most potent and broad HIV-neutralizing antibodies to date. One bispecific antibody, 10E8V2.0/iMab, neutralized 118 HIV-1 pseudotyped viruses tested with a mean 50% inhibitory concentration (IC50) of 0.002 µg/mL. 10E8V2.0/iMab also potently neutralized 99% of viruses in a second panel of 200 HIV-1 isolates belonging to clade C, the dominant subtype accounting for ∼50% of new infections worldwide. Importantly, 10E8V2.0/iMab reduced virus load substantially in HIV-1-infected humanized mice and also provided complete protection when administered prior to virus challenge. These bispecific antibodies hold promise as novel prophylactic and/or therapeutic agents in the fight against HIV-1.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , HIV Envelope Protein gp160/immunology , HIV-1/immunology , Animals , Antibodies, Bispecific/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , HIV Envelope Protein gp160/chemistry , HIV Infections/prevention & control , HIV Infections/therapy , Humans , Immunization, Passive , Mice
4.
EMBO J ; 43(20): 4522-4541, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39174852

ABSTRACT

Tumor cell heterogeneity defines therapy responsiveness in neuroblastoma (NB), a cancer derived from neural crest cells. NB consists of two primary subtypes: adrenergic and mesenchymal. Adrenergic traits predominate in NB tumors, while mesenchymal features becomes enriched post-chemotherapy or after relapse. The interconversion between these subtypes contributes to NB lineage plasticity, but the underlying mechanisms driving this phenotypic switching remain unclear. Here, we demonstrate that SWI/SNF chromatin remodeling complex ATPases are essential in establishing an mesenchymal gene-permissive chromatin state in adrenergic-type NB, facilitating lineage plasticity. Targeting SWI/SNF ATPases with SMARCA2/4 dual degraders effectively inhibits NB cell proliferation, invasion, and notably, cellular plasticity, thereby preventing chemotherapy resistance. Mechanistically, depletion of SWI/SNF ATPases compacts cis-regulatory elements, diminishes enhancer activity, and displaces core transcription factors (MYCN, HAND2, PHOX2B, and GATA3) from DNA, thereby suppressing transcriptional programs associated with plasticity. These findings underscore the pivotal role of SWI/SNF ATPases in driving intrinsic plasticity and therapy resistance in neuroblastoma, highlighting an epigenetic target for combinational treatments in this cancer.


Subject(s)
Cell Plasticity , Neuroblastoma , Transcription Factors , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , DNA Helicases/metabolism , DNA Helicases/genetics , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Drug Resistance, Neoplasm/genetics , Animals , Nuclear Proteins
5.
Immunity ; 51(2): 381-397.e6, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31350177

ABSTRACT

Regulatory T (Treg) cells are crucial for immune homeostasis, but they also contribute to tumor immune evasion by promoting a suppressive tumor microenvironment (TME). Mice with Treg cell-restricted Neuropilin-1 deficiency show tumor resistance while maintaining peripheral immune homeostasis, thereby providing a controlled system to interrogate the impact of intratumoral Treg cells on the TME. Using this and other genetic models, we showed that Treg cells shaped the transcriptional landscape across multiple tumor-infiltrating immune cell types. Treg cells suppressed CD8+ T cell secretion of interferon-γ (IFNγ), which would otherwise block the activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated fatty acid synthesis in immunosuppressive (M2-like) tumor-associated macrophages (TAMs). Thus, Treg cells indirectly but selectively sustained M2-like TAM metabolic fitness, mitochondrial integrity, and survival. SREBP1 inhibition augmented the efficacy of immune checkpoint blockade, suggesting that targeting Treg cells or their modulation of lipid metabolism in M2-like TAMs could improve cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Macrophages/metabolism , Melanoma/immunology , Neoplasms, Experimental/immunology , Sterol Regulatory Element Binding Protein 1/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Carcinogenesis , Cell Differentiation , Fatty Acids/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Immune Evasion , Interferon-gamma/metabolism , Macrophages/immunology , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropilin-1/genetics , Th2 Cells/immunology , Tumor Microenvironment
6.
PLoS Biol ; 22(4): e3002566, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652717

ABSTRACT

Phage therapy is a therapeutic approach to treat multidrug-resistant (MDR) infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells (AECs) derived from a person with cystic fibrosis (CF), we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.


Subject(s)
Cystic Fibrosis , Cytokines , Epithelial Cells , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/virology , Epithelial Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/immunology , Cytokines/metabolism , Cystic Fibrosis/therapy , Cystic Fibrosis/immunology , Cystic Fibrosis/metabolism , Phage Therapy , Bacteriophages/physiology , Bacteriophages/genetics , Respiratory Mucosa/virology , Respiratory Mucosa/metabolism , Respiratory Mucosa/immunology , Pseudomonas Infections/therapy , Pseudomonas Infections/immunology , Pseudomonas Phages/metabolism , Biofilms
7.
Proc Natl Acad Sci U S A ; 121(1): e2313773120, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38147648

ABSTRACT

Climate change is a new disrupter to global fisheries systems and their governance frameworks. It poses a pressing management challenge, particularly in China, which is renowned as the world's largest fishing country and seafood producer. As climate change continues to intensify in the region and climate awareness grows within the country's national policy, the need to understand China's fisheries' resilience to the escalating climate crisis becomes paramount. In this study, we conduct an interdisciplinary analysis to assess the vulnerability and risk of China's marine capture fisheries in response to climate change. This study employs a spatially explicit, indicator-based approach with a coupled social-ecological framework, focusing on 67 species and 11 coastal regions. By integrating diverse sets of climatic, ecological, economic, societal, and governance indicators and information, we elucidate the factors that could hinder climate adaptation, including a limited understanding of fish early life stages, uncertainty in seafood production, unequal allocation and accessibility of resources, and inadequate consideration of inclusive governance and adaptive management. Our results show that species, which have managed to survive the stress of overfishing, demonstrate a remarkable ability to adapt to climate change. However, collapsing stocks such as large yellow croaker face a high risk due to the synergistic effects of inherent biological traits and external management interventions. We emphasize the imperative to build institutional, scientific, and social capacity to support fisheries adaptation. The scientific insights provided by this study can inform fisheries management decisions and promote the operationalization of climate-resilient fisheries in China and other regions.


Subject(s)
Conservation of Natural Resources , Fisheries , Animals , Climate Change , Social Environment , China , Ecosystem , Fishes
8.
Proc Natl Acad Sci U S A ; 121(45): e2413245121, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39467127

ABSTRACT

Microplastic is globally regarded as an important factor impacting biogeochemical cycles, yet our understanding of such influences is limited by the uncertainties of intricate microbial processes. By multiomics analysis, coupled with soil chemodiversity characterization and microbial carbon use efficiency (CUE), we investigated how microbial responses to microplastics impacted soil carbon cycling in a long-term field experiment. We showed that biodegradable microplastics promoted soil organic carbon accrual by an average of 2.47%, while nondegradable microplastics inhibited it by 17.4%, as a consequence of the virus-bacteria coadaptations to the microplastics disturbance. In the relevant functional pathways, nondegradable microplastics significantly (P < 0.05) enhanced the abundance and transcriptional activity related to complex carbohydrate metabolism, whereas biodegradable microplastics significantly (P < 0.05) promoted functions involved in amino acid metabolism and glycolysis. Accordingly, viral lysis enhanced in nondegradable microplastics treatments to introduce more complex organic compounds to soil dissolved organic matters, thus benefiting the oligotrophs with high carbon metabolic capabilities in exploitation competition. In contrast, biodegradable microplastics enriched viral auxiliary metabolic genes of carbon metabolism through "piggyback-the-winner" strategy, conferring to dominant copiotrophs, enhanced substrate utilization capabilities. These virus-host interactions were also demonstrated in the corresponding soil plastisphere, which would alter microbial resource allocation and metabolism via CUE, affecting carbon storage consequently. Overall, our results underscore the importance of viral-host interactions in understanding the microplastics-dependent carbon storage in the soil ecosystem.


Subject(s)
Carbon , Microplastics , Soil Microbiology , Soil , Microplastics/metabolism , Soil/chemistry , Carbon/metabolism , Carbon Cycle , Soil Pollutants/metabolism , Bacteria/metabolism , Bacteria/genetics
9.
Proc Natl Acad Sci U S A ; 121(28): e2404062121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968109

ABSTRACT

Nutrient sensing and adaptation in the placenta are essential for pregnancy viability and proper fetal growth. Our recent study demonstrated that the placenta adapts to nutrient insufficiency through mechanistic target of rapamycin (mTOR) inhibition-mediated trophoblast differentiation toward syncytiotrophoblasts (STBs), a highly specialized multinucleated trophoblast subtype mediating extensive maternal-fetal interactions. However, the underlying mechanism remains elusive. Here, we unravel the indispensable role of the mTORC1 downstream transcriptional factor TFEB in STB formation both in vitro and in vivo. TFEB deficiency significantly impaired STB differentiation in human trophoblasts and placenta organoids. Consistently, systemic or trophoblast-specific deletion of Tfeb compromised STB formation and placental vascular construction, leading to severe embryonic lethality. Mechanistically, TFEB conferred direct transcriptional activation of the fusogen ERVFRD-1 in human trophoblasts and thereby promoted STB formation, independent of its canonical function as a master regulator of the autophagy-lysosomal pathway. Moreover, we demonstrated that TFEB directed the trophoblast syncytialization response driven by mTOR complex 1 (mTORC1) signaling. TFEB expression positively correlated with the reinforced trophoblast syncytialization in human fetal growth-restricted placentas exhibiting suppressed mTORC1 activity. Our findings substantiate that the TFEB-fusogen axis ensures proper STB formation during placenta development and under nutrient stress, shedding light on TFEB as a mechanistic link between nutrient-sensing machinery and trophoblast differentiation.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cell Differentiation , Mechanistic Target of Rapamycin Complex 1 , Trophoblasts , Trophoblasts/metabolism , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Female , Pregnancy , Mice , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Placenta/metabolism , Signal Transduction , Autophagy/physiology
10.
Genome Res ; 33(2): 197-207, 2023 02.
Article in English | MEDLINE | ID: mdl-36806146

ABSTRACT

The placenta is an organ with extraordinary phenotypic diversity in eutherian mammals. Recent evidence suggests that numerous human placental enhancers are evolved from lineage-specific insertions of endogenous retroviruses (ERVs), yet the transcription factors (TFs) underlying their regulation remain largely elusive. Here, by first focusing on MER41, a primate-specific ERV family previously linked to placenta and innate immunity, we uncover the binding motifs of multiple crucial trophoblast TFs (GATA2/3, MSX2, GRHL2) in addition to innate immunity TFs STAT1 and IRF1. Integration of ChIP-seq data confirms the binding of GATA2/3, MSX2, and their related factors on the majority of MER41-derived enhancers in human trophoblast stem cells (TSCs). MER41-derived enhancers that are constitutively active in human TSCs are distinct from those activated upon interferon stimulation, which is determined by the binding of relevant TFs and their subfamily compositions. We further demonstrate that GATA2/3 and MSX2 have prevalent binding to numerous other ERV families - indicating their broad impact on ERV-derived enhancers. Functionally, the derepression of many syncytiotrophoblast genes after MSX2 knockdown is likely to be mediated by regulatory elements derived from ERVs - suggesting ERVs are also important for mediating transcriptional repression. Overall, this study characterizes the regulation of ERV-derived regulatory elements by GATA2/3, MSX2, and their cofactors in human TSCs, and provides mechanistic insights into the importance of ERVs in human trophoblast regulatory network.


Subject(s)
Endogenous Retroviruses , Animals , Female , Humans , Pregnancy , GATA2 Transcription Factor/genetics , Mammals/genetics , Placenta/physiology , Primates/genetics , Regulatory Sequences, Nucleic Acid , Stem Cells , Trophoblasts
11.
Nature ; 588(7838): 479-484, 2020 12.
Article in English | MEDLINE | ID: mdl-33177714

ABSTRACT

Cholesterol is an essential lipid and its synthesis is nutritionally and energetically costly1,2. In mammals, cholesterol biosynthesis increases after feeding and is inhibited under fasting conditions3. However, the regulatory mechanisms of cholesterol biosynthesis at the fasting-feeding transition remain poorly understood. Here we show that the deubiquitylase ubiquitin-specific peptidase 20 (USP20) stabilizes HMG-CoA reductase (HMGCR), the rate-limiting enzyme in the cholesterol biosynthetic pathway, in the feeding state. The post-prandial increase in insulin and glucose concentration stimulates mTORC1 to phosphorylate USP20 at S132 and S134; USP20 is recruited to the HMGCR complex and antagonizes its degradation. The feeding-induced stabilization of HMGCR is abolished in mice with liver-specific Usp20 deletion and in USP20(S132A/S134A) knock-in mice. Genetic deletion or pharmacological inhibition of USP20 markedly decreases diet-induced body weight gain, reduces lipid levels in the serum and liver, improves insulin sensitivity and increases energy expenditure. These metabolic changes are reversed by expression of the constitutively stable HMGCR(K248R). This study reveals an unexpected regulatory axis from mTORC1 to HMGCR via USP20 phosphorylation and suggests that inhibitors of USP20 could be used to lower cholesterol levels to treat metabolic diseases including hyperlipidaemia, liver steatosis, obesity and diabetes.


Subject(s)
Cholesterol/biosynthesis , Eating/physiology , Hydroxymethylglutaryl CoA Reductases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Cell Line , Glucose/metabolism , Humans , Insulin/metabolism , Liver/metabolism , Male , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Metabolism/genetics , Mice , Mice, Inbred C57BL , Phosphorylation , Phosphoserine/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/deficiency , Ubiquitination , Weight Gain
12.
Nucleic Acids Res ; 52(W1): W126-W131, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38747349

ABSTRACT

Transposable elements (TEs) are abundant in the genomes of various eukaryote organisms. Increasing evidence suggests that TEs can play crucial regulatory roles-usually by creating cis-elements (e.g. enhancers and promoters) bound by distinct transcription factors (TFs). TE-derived cis-elements have gained unprecedented attentions recently, and one key step toward their understanding is to identify the enriched TEs in distinct genomic intervals (e.g. a set of enhancers or TF binding sites) as candidates for further study. Nevertheless, such analysis remains challenging for researchers unfamiliar with TEs or lack strong bioinformatic skills. Here, we present TEENA (Transposable Element ENrichment Analyzer) to streamline TE enrichment analysis in various organisms. It implements an optimized pipeline, hosts the genome/gene/TE annotations of almost one hundred species, and provides multiple parameters to enable its flexibility. Taking genomic interval data as the only user-supplied file, it can automatically retrieve the corresponding annotations and finish a routine analysis in a couple minutes. Multiple case studies demonstrate that it can produce highly reliable results matching previous knowledge. TEENA can be freely accessed at: https://sun-lab.yzu.edu.cn/TEENA. Due to its easy-to-use design, we expect it to facilitate the studies of the regulatory function of TEs in various model and non-model organisms.


Subject(s)
DNA Transposable Elements , Internet , Software , DNA Transposable Elements/genetics , Animals , Molecular Sequence Annotation , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , Genomics/methods
13.
PLoS Pathog ; 19(7): e1011507, 2023 07.
Article in English | MEDLINE | ID: mdl-37440595

ABSTRACT

Pore-forming toxins (PFTs) are effective tools for pathogens infection. By disrupting epithelial barriers and killing immune cells, PFTs promotes the colonization and reproduction of pathogenic microorganisms in their host. In turn, the host triggers defense responses, such as endocytosis, exocytosis, or autophagy. Bacillus thuringiensis (Bt) bacteria produce PFT, known as crystal proteins (Cry) which damage the intestinal cells of insects or nematodes, eventually killing them. In insects, aminopeptidase N (APN) has been shown to act as an important receptor for Cry toxins. Here, using the nematode Caenorhabditis elegans as model, an extensive screening of APN gene family was performed to analyze the potential role of these proteins in the mode of action of Cry5Ba against the nematode. We found that one APN, MNP-1, participate in the toxin defense response, since the mnp-1(ok2434) mutant showed a Cry5Ba hypersensitive phenotype. Gene expression analysis in mnp-1(ok2434) mutant revealed the involvement of two protease genes, F19C6.4 and R03G8.6, that participate in Cry5Ba degradation. Finally, analysis of the transduction pathway involved in F19C6.4 and R03G8.6 expression revealed that upon Cry5Ba exposure, the worms up regulated both protease genes through the activation of the FOXO transcription factor DAF-16, which was translocated into the nucleus. The nuclear location of DAF-16 was found to be dependent on mnp-1 under Cry5Ba treatment. Our work provides evidence of new host responses against PFTs produced by an enteric pathogenic bacterium, resulting in activation of host intestinal proteases that degrade the PFT in the intestine.


Subject(s)
Bacillus thuringiensis , Caenorhabditis elegans Proteins , Animals , Caenorhabditis elegans/microbiology , Peptide Hydrolases/metabolism , Aminopeptidases/metabolism , Endotoxins/metabolism , Caenorhabditis elegans Proteins/metabolism , Hemolysin Proteins/metabolism , Intestines , Endopeptidases/metabolism , Bacterial Proteins/metabolism , Bacillus thuringiensis/metabolism , Forkhead Transcription Factors/metabolism
14.
FASEB J ; 38(7): e23591, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38572579

ABSTRACT

CircRNAs are abnormally expressed in various cancers and play an important role in the occurrence and development of cancers. However, their biological functions and the underlying molecular mechanisms in pancreatic cancer (PC) metastasis are incompletely understood. Differentially expressed circRNAs were identified by second-generation transcriptome sequencing in three pairs of PC tissues and adjacent tissues. The expression and prognostic significance of hsa_circ_0007919 were evaluated by qRT-PCR and Kaplan-Meier survival curves. Gain- and loss-of-function assays were conducted to detect the role of hsa_circ_0007919 in PC metastasis in vitro. A lung metastasis model and IHC experiments were conducted to confirm the effects of hsa_circ_0007919 on tumor metastasis in vivo. Mechanistically, RNA immunoprecipitation and chromatin immunoprecipitation assays were conducted to explore the interplay among hsa_circ_0007919, Sp1, and the THBS1 promoter. hsa_circ_0007919 was significantly upregulated in PC tissues and cells and was correlated with lymph node metastasis, TNM stage, and poor prognosis. Knockdown of hsa_circ_0007919 significantly suppressed the migration and invasion of PC cells in vitro and inhibited tumor metastasis in vivo. However, overexpression of hsa_circ_0007919 exerted the opposite effects. Mechanistically, hsa_circ_0007919 could recruit the transcription factor Sp1 to inhibit THBS1 transcription, thereby facilitating PC metastasis. hsa_circ_0007919 can promote the metastasis of PC by inhibiting THBS1 expression. hsa_circ_0007919 may be a potential therapeutic target in PC.


Subject(s)
MicroRNAs , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neoplasm Invasiveness/genetics , Pancreatic Neoplasms/genetics , RNA, Circular/genetics , RNA, Circular/metabolism
15.
Nature ; 570(7761): 400-404, 2019 06.
Article in English | MEDLINE | ID: mdl-31108498

ABSTRACT

The initiation of bacterial translation involves the tightly regulated joining of the 50S ribosomal subunit to an initiator transfer RNA (fMet-tRNAfMet)-containing 30S ribosomal initiation complex to form a 70S initiation complex, which subsequently matures into a 70S elongation-competent complex. Rapid and accurate formation of the 70S initiation complex is promoted by initiation factors, which must dissociate from the 30S initiation complex before the resulting 70S elongation-competent complex can begin the elongation of translation1. Although comparisons of the structures of the 30S2-5 and 70S4,6-8 initiation complexes have revealed that the ribosome, initiation factors and fMet-tRNAfMet can acquire different conformations in these complexes, the timing of conformational changes during formation of the 70S initiation complex, the structures of any intermediates formed during these rearrangements, and the contributions that these dynamics might make to the mechanism and regulation of initiation remain unknown. Moreover, the absence of a structure of the 70S elongation-competent complex formed via an initiation-factor-catalysed reaction has precluded an understanding of the rearrangements to the ribosome, initiation factors and fMet-tRNAfMet that occur during maturation of a 70S initiation complex into a 70S elongation-competent complex. Here, using time-resolved cryogenic electron microscopy9, we report the near-atomic-resolution view of how a time-ordered series of conformational changes drive and regulate subunit joining, initiation factor dissociation and fMet-tRNAfMet positioning during formation of the 70S elongation-competent complex. Our results demonstrate the power of time-resolved cryogenic electron microscopy to determine how a time-ordered series of conformational changes contribute to the mechanism and regulation of one of the most fundamental processes in biology.


Subject(s)
Cryoelectron Microscopy , Escherichia coli/metabolism , Escherichia coli/ultrastructure , Peptide Chain Initiation, Translational , Ribosomes/metabolism , Ribosomes/ultrastructure , Escherichia coli/chemistry , Peptide Chain Elongation, Translational , Protein Conformation , Ribosome Subunits, Large, Bacterial/metabolism , Ribosome Subunits, Large, Bacterial/ultrastructure , Ribosome Subunits, Small, Bacterial/metabolism , Ribosome Subunits, Small, Bacterial/ultrastructure , Ribosomes/chemistry , Time Factors
16.
Nucleic Acids Res ; 51(10): 4745-4759, 2023 06 09.
Article in English | MEDLINE | ID: mdl-36864754

ABSTRACT

Endogenous retroviruses (ERVs) have been proposed as a driving force for the evolution of the mammalian placenta, however, the contribution of ERVs to placental development and the underlying regulatory mechanism remain largely elusive. A key process of placental development is the formation of multinucleated syncytiotrophoblasts (STBs) in direct contact with maternal blood, through which constitutes the maternal-fetal interface critical for nutrient allocation, hormone production and immunological modulation during pregnancy. We delineate that ERVs profoundly rewire the transcriptional program of trophoblast syncytialization. Here, we first determined the dynamic landscape of bivalent ERV-derived enhancers with dual occupancy of H3K27ac and H3K9me3 in human trophoblast stem cells (hTSCs). We further demonstrated that enhancers overlapping several ERV families tend to exhibit increased H3K27ac and reduced H3K9me3 occupancy in STBs relative to hTSCs. Particularly, bivalent enhancers derived from the Simiiformes-specific MER50 transposons were linked to a cluster of genes important for STB formation. Importantly, deletions of MER50 elements adjacent to several STB genes, including MFSD2A and TNFAIP2, significantly attenuated their expression concomitant to compromised syncytium formation. Together, we propose that ERV-derived enhancers, MER50 specifically, fine-tune the transcriptional networks accounting for human trophoblast syncytialization, which sheds light on a novel ERV-mediated regulatory mechanism underlying placental development.


Subject(s)
Endogenous Retroviruses , Enhancer Elements, Genetic , Placenta , Trophoblasts , Animals , Female , Humans , Pregnancy , Endogenous Retroviruses/genetics , Gene Expression Regulation , Mammals/growth & development , Placenta/cytology , Placenta/physiology , Trophoblasts/physiology
17.
Nucleic Acids Res ; 51(12): 6087-6100, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37140047

ABSTRACT

The Polycomb group (PcG) proteins are fundamental epigenetic regulators that control the repressive state of target genes in multicellular organisms. One of the open questions is defining the mechanisms of PcG recruitment to chromatin. In Drosophila, the crucial role in PcG recruitment is thought to belong to DNA-binding proteins associated with Polycomb response elements (PREs). However, current data suggests that not all PRE-binding factors have been identified. Here, we report the identification of the transcription factor Crooked legs (Crol) as a novel PcG recruiter. Crol is a C2H2-type Zinc Finger protein that directly binds to poly(G)-rich DNA sequences. Mutation of Crol binding sites as well as crol CRISPR/Cas9 knockout diminish the repressive activity of PREs in transgenes. Like other PRE-DNA binding proteins, Crol co-localizes with PcG proteins inside and outside of H3K27me3 domains. Crol knockout impairs the recruitment of the PRC1 subunit Polyhomeotic and the PRE-binding protein Combgap at a subset of sites. The decreased binding of PcG proteins is accompanied by dysregulated transcription of target genes. Overall, our study identified Crol as a new important player in PcG recruitment and epigenetic regulation.


Subject(s)
Drosophila Proteins , Drosophila , Transcription Factors , Animals , Chromatin/genetics , Chromatin/metabolism , DNA-Binding Proteins/genetics , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Transcription Factors/metabolism
18.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35078937

ABSTRACT

Hsp70 and Hsp90 chaperones provide protein quality control to the cytoplasm, endoplasmic reticulum (ER), and mitochondria. Hsp90 activity is often enhanced by cochaperones that drive conformational changes needed for ATP-dependent closure and capture of client proteins. Hsp90 activity is also enhanced when working with Hsp70, but, in this case, the underlying mechanistic explanation is poorly understood. Here we examine the ER-specific Hsp70/Hsp90 paralogs (BiP/Grp94) and discover that BiP itself acts as a cochaperone that accelerates Grp94 closure. The BiP nucleotide binding domain, which interacts with the Grp94 middle domain, is responsible for Grp94 closure acceleration. A client protein initiates a coordinated progression of steps for the BiP/Grp94 system, in which client binding to BiP causes a conformational change that enables BiP to bind to Grp94 and accelerate its ATP-dependent closure. Single-molecule fluorescence resonance energy transfer measurements show that BiP accelerates Grp94 closure by stabilizing a high-energy conformational intermediate that otherwise acts as an energetic barrier to closure. These findings provide an explanation for enhanced activity of BiP and Grp94 when working as a pair, and demonstrate the importance of a high-energy conformational state in controlling the timing of the Grp94 conformational cycle. Given the high conservation of the Hsp70/Hsp90 system, other Hsp70s may also serve dual roles as both chaperones and closure-accelerating cochaperones to their Hsp90 counterparts.


Subject(s)
Endoplasmic Reticulum Chaperone BiP/metabolism , Endoplasmic Reticulum/metabolism , Membrane Glycoproteins/metabolism , Molecular Chaperones/metabolism , Adenosine Diphosphate/metabolism , Animals , Mice , Protein Folding
19.
J Cell Mol Med ; 28(9): e18308, 2024 May.
Article in English | MEDLINE | ID: mdl-38683131

ABSTRACT

Destruction of erythropoiesis process leads to various diseases, including thrombocytopenia, anaemia, and leukaemia. miR-429-CT10 regulation of kinase-like (CRKL) axis involved in development, progression and metastasis of cancers. However, the exact role of miR-429-CRKL axis in leukaemic cell differentiation are still unknown. The current work aimed to uncover the effect of miR-429-CRKL axis on erythropoiesis. In the present study, CRKL upregulation was negatively correlated with miR-429 downregulation in both chronic myeloid leukaemia (CML) patient and CR patient samples. Moreover, CRKL expression level was significantly decreased while miR-429 expression level was increased during the erythroid differentiation of K562 cells following hemin treatment. Functional investigations revealed that overexpression and knockdown of CRKL was remarkably effective in suppressing and promoting hemin-induced erythroid differentiation of K562 cells, whereas, miR-429 exhibited opposite effects to CRKL. Mechanistically, miR-429 regulates erythroid differentiation of K562 cells by downregulating CRKL via selectively targeting CRKL-3'-untranslated region (UTR) through Raf/MEK/ERK pathway. Conversely, CRKII had no effect on erythroid differentiation of K562 cells. Taken together, our data demonstrated that CRKL (but not CRKII) and miR-429 contribute to development, progression and erythropoiesis of CML, miR-429-CRKL axis regulates erythropoiesis of K562 cells via Raf/MEK/ERK pathway, providing novel insights into effective diagnosis and therapy for CML patients.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Differentiation , Erythroid Cells , Hemin , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , MicroRNAs , Proto-Oncogene Proteins c-crk , Humans , 3' Untranslated Regions , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Differentiation/drug effects , Erythroid Cells/metabolism , Erythroid Cells/drug effects , Erythroid Cells/pathology , Erythroid Cells/cytology , Erythropoiesis/genetics , Erythropoiesis/drug effects , Gene Expression Regulation, Leukemic/drug effects , Hemin/pharmacology , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , MAP Kinase Signaling System/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-crk/metabolism , Proto-Oncogene Proteins c-crk/genetics
20.
J Cell Mol Med ; 28(19): e70126, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39384181

ABSTRACT

B-cell acute lymphoblastic leukaemia (B-ALL) is the most prevalent hematologic malignancy in children and a leading cause of mortality. Managing B-ALL remains challenging due to its heterogeneity and relapse risk. This study aimed to delineate the molecular features of paediatric B-ALL and explore the clinical utility of circulating tumour DNA (ctDNA). We analysed 146 patients with paediatric B-ALL who received systemic chemotherapy. The mutational landscape was profiled in bone marrow (BM) and plasma samples using next-generation sequencing. Minimal residual disease (MRD) testing on day 19 of induction therapy evaluated treatment efficacy. RNA sequencing identified gene fusions in 61% of patients, including 37 novel fusions. Specifically, the KMT2A-TRIM29 novel fusion was validated in a boy who responded well to initial therapy but relapsed after 1 year. Elevated mutation counts and maximum variant allele frequency in baseline BM were associated with significantly poorer chemotherapy response (p = 0.0012 and 0.028, respectively). MRD-negative patients exhibited upregulation of immune-related pathways (p < 0.01) and increased CD8+ T cell infiltration (p = 0.047). Baseline plasma ctDNA exhibited high mutational concordance with the paired BM samples and was significantly associated with chemotherapy efficacy. These findings suggest that ctDNA and BM profiling offer promising prognostic insights for paediatric B-ALL management.


Subject(s)
Biomarkers, Tumor , Mutation , Neoplasm, Residual , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Male , Child , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Female , Child, Preschool , Neoplasm, Residual/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/blood , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Adolescent , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Infant , Prognosis , High-Throughput Nucleotide Sequencing/methods , Bone Marrow/pathology , Bone Marrow/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Histone-Lysine N-Methyltransferase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL