Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Neurobiol Dis ; 169: 105737, 2022 07.
Article in English | MEDLINE | ID: mdl-35452786

ABSTRACT

Altered mitochondrial DNA (mtDNA) occurs in neurodegenerative disorders like Alzheimer's disease (AD); how mtDNA synthesis is linked to neurodegeneration is poorly understood. We previously discovered Nutrient-induced Mitochondrial Activity (NiMA), an inter-organelle signaling pathway where nutrient-stimulated lysosomal mTORC1 activity regulates mtDNA replication in neurons by a mechanism sensitive to amyloid-ß oligomers (AßOs), a primary factor in AD pathogenesis (Norambuena et al., 2018). Using 5-ethynyl-2'-deoxyuridine (EdU) incorporation into mtDNA of cultured neurons, along with photoacoustic and mitochondrial metabolic imaging of cultured neurons and mouse brains, we show these effects being mediated by mTORC1-catalyzed T40 phosphorylation of superoxide dismutase 1 (SOD1). Mechanistically, tau, another key factor in AD pathogenesis and other tauopathies, reduced the lysosomal content of the tuberous sclerosis complex (TSC), thereby increasing NiMA and suppressing SOD1 activity and mtDNA synthesis. AßOs inhibited these actions. Dysregulation of mtDNA synthesis was observed in fibroblasts derived from tuberous sclerosis (TS) patients, who lack functional TSC and elevated SOD1 activity was also observed in human AD brain. Together, these findings imply that tau and SOD1 couple nutrient availability to mtDNA replication, linking mitochondrial dysfunction to AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Superoxide Dismutase-1 , Tuberous Sclerosis , Alzheimer Disease/enzymology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Lysosomes/genetics , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mitochondria/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Tuberous Sclerosis/enzymology , Tuberous Sclerosis/genetics
2.
Opt Lett ; 47(8): 1988-1991, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35427318

ABSTRACT

The ability of hemodilution to improve vascular circulatory impairment has been demonstrated. However, the effects of acute hemodilution on cerebral hemodynamics and oxygen metabolism have not been assessed at the microscopic level, due to technical limitations. To fill this void, we have developed a new, to the best of our knowledge, photoacoustic microscopy system, which enables high-speed imaging of blood hemoglobin concentration, oxygenation, flow, and oxygen metabolism in vivo. The system performance was examined in both phantoms and the awake mouse brain. This new technique enabled wide-field (4.5 × 3 mm2) multi-parametric imaging of the mouse cortex at 1 frame/min. Narrowing the field of view to 1.5 × 1.5 mm2 allowed dynamic imaging of the cerebral hemodynamic and metabolic responses to acute hypervolemic hemodilution at 6 frames/min. Quantitative analysis of the hemodilution-induced cerebrovascular responses over time showed rapid increases in the vessel diameter (within 50-210 s) and blood flow (50-210 s), as well as decreases in the hemoglobin concentration (10-480 s) and metabolic rate of oxygen (20-480 s) after the acute hemodilution, followed by a gradual recovery to the baseline levels in 1440 s. Providing comprehensive insights into dynamic changes of the cerebrovascular structure and function in vivo, this technique opens new opportunities for mechanistic studies of acute brain diseases or responses to various stimuli.


Subject(s)
Hemodilution , Microscopy , Animals , Cerebrovascular Circulation , Hemodynamics/physiology , Hemoglobins , Mice , Microscopy/methods , Oxygen/metabolism
3.
Kidney Int ; 100(3): 613-620, 2021 09.
Article in English | MEDLINE | ID: mdl-34224760

ABSTRACT

Microcirculatory changes and oxidative stress have long been associated with acute kidney injury. Despite substantial progress made by two-photon microscopy of microvascular responses to acute kidney injury in rodent models, little is known about the underlying changes in blood oxygen delivery and tissue oxygen metabolism. To fill this gap, we developed a label-free kidney imaging technique based on photoacoustic microscopy, which enables simultaneous quantification of hemoglobin concentration, oxygen saturation of hemoglobin, and blood flow in peritubular capillaries in vivo. Based on these microvascular parameters, microregional oxygen metabolism was quantified. We demonstrated the utility of this technique by studying kidney hemodynamic and oxygen-metabolic responses to acute kidney injury in mice subject to lipopolysaccharide-induced sepsis. Dynamic photoacoustic microscopy of the peritubular capillary function and tissue oxygen metabolism revealed that sepsis induced an acute and significant reduction in peritubular capillary oxygen saturation of hemoglobin, concomitant with a marked reduction in kidney ATP levels and contrasted with nominal changes in peritubular capillary flow and plasma creatinine. Thus, our technique opens new opportunities to study microvascular and metabolic dysfunction in acute and chronic kidney diseases.


Subject(s)
Capillaries , Microscopy , Animals , Kidney , Mice , Microcirculation , Oxygen
4.
Microcirculation ; 27(3): e12598, 2020 04.
Article in English | MEDLINE | ID: mdl-31660674

ABSTRACT

OBJECTIVE: Arteriogenesis is an important mechanism that contributes to restoration of oxygen supply in chronically ischemic tissues, but remains incompletely understood due to technical limitations. This study presents a novel approach for comprehensive assessment of the remodeling pattern in a complex microvascular network containing multiple collateral microvessels. METHODS: We have developed a hardware-software integrated platform for quantitative, longitudinal, and label-free imaging of network-wide hemodynamic changes and arteriogenesis at the single-vessel level. By ligating feeding arteries in the mouse ear, we induced network-wide hemodynamic redistribution and localized arteriogenesis. The utility of this technology was demonstrated by studying the influence of obesity on microvascular arteriogenesis. RESULTS: Simultaneously monitoring the remodeling of competing collateral arterioles revealed a new, inverse relationship between initial vascular resistance and extent of arteriogenesis. Obese mice exhibited similar remodeling responses to lean mice through the first week, including diameter increase and flow upregulation in collateral arterioles. However, these gains were subsequently lost in obese mice. CONCLUSIONS: Capable of label-free, comprehensive, and dynamic quantification of structural and functional changes in the microvascular network in vivo, this platform opens up new opportunities to study the mechanisms of microvascular arteriogenesis, its implications in diseases, and approaches to pharmacologically rectify microvascular dysfunction.


Subject(s)
Angiography , Collateral Circulation , Hemodynamics , Ischemia , Neovascularization, Physiologic , Animals , Arterioles/diagnostic imaging , Arterioles/physiopathology , Female , Ischemia/diagnostic imaging , Ischemia/physiopathology , Mice , Mice, Transgenic
5.
Ann Plast Surg ; 84(6S Suppl 5): S417-S423, 2020 06.
Article in English | MEDLINE | ID: mdl-32040000

ABSTRACT

BACKGROUND: Ideal acellular dermal matrices (ADM) for breast reconstruction exhibit native extracellular matrix (ECM) structure to allow rapid biointegration and appropriate mechanical properties for desired clinical outcomes. In a novel in vivo model of irradiated breast reconstruction, we describe the cellular and vascular ingrowth of Artia, a porcine product chemically prepared to mimic the biomechanics of human ADM, with retained natural ECM structure to encourage cellular ingrowth. METHODS: Utilizing the murine dorsal skinfold model, Artia was implanted into 16 C57bl/6 mice. Eight of the mice received a single dose 35 Gy radiation to the skin, followed by 12 weeks to produce radiation fibrosis and 8 mice served as nonradiated controls. Real-time photoacoustic microscopy of vascular integration and oxygen saturation within the ADM were made over 14 days. At 21 days, vascular ingrowth (CD31), fibroblast scar tissue formation (alpha smooth-muscle actin α-SMA, vimentin), and macrophage function (M2/M1 ratio) were evaluated. Scanning electron microscopy images of Artia were produced to help interpret the potential orientation of cellular and vascular ingrowth. RESULTS: Repeated photoacoustic microscopy imaging demonstrated vascular ingrowth increasing over 14 days, with a commensurate increase in oxygen saturation within both radiated and nonradiated ADM-albeit at an insignificantly lower rate in the radiated group. By day 21, robust CD31 staining was seen that was insignificantly greater in the nonradiated group. Of the fibroblast markers, vimentin expression was significantly greater in the radiated group (P < 0.05). Macrophage lineage phenotype was consistent with remodeling physiology in both radiated and nonradiated groups. Scanning electron microscopy demonstrated transversely organized collagen fibrils with natural porous ECM structure to allow cellular ingrowth. CONCLUSIONS: Artia demonstrates appropriate biointegration, with increased oxygen saturation by 14 days, consistent with the performance of other collagen substrates in this model. Radiation fibrosis resulted in higher vimentin expression yet did not impact macrophage phenotype while only modestly decreasing Artia biointegration suggesting that ADM may have a role in reconstructive efforts in a radiated setting. Taken together with its enhanced biomechanics, this porcine ADM product is well poised to be clinically applicable to breast reconstruction.


Subject(s)
Acellular Dermis , Mammaplasty , Animals , Cicatrix , Extracellular Matrix , Mice , Microscopy , Swine
6.
Opt Lett ; 44(1): 1-4, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30645542

ABSTRACT

We have developed photoacoustic microscopy (PAM) with three-dimensional (3D) micron-level spatial resolution. With multi-angle illumination, PAM images from different view angles can be simultaneously acquired for multi-view deconvolution, without the rotation of imaging targets. A side-by-side comparison of this multi-angle-illumination PAM (MAI-PAM) and conventional PAM, which share the same ultrasonic detector, was performed in phantoms and live mice. The phantom study showed that MAI-PAM achieved a high axial resolution of 3.7 µm, which was 10-fold higher than that of conventional PAM and approached the lateral resolution of 2.7 µm. Furthermore, the in vivo study demonstrated that MAI-PAM was able to image the 3D microvasculature with isotropic spatial resolution.


Subject(s)
Image Processing, Computer-Assisted , Light , Microscopy , Photoacoustic Techniques , Animals , Mice , Phantoms, Imaging
7.
Sensors (Basel) ; 19(18)2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31527505

ABSTRACT

Photoacoustic microscopy (PAM) is an emerging biomedical imaging technology capable of quantitative measurement of the microvascular blood flow by correlation analysis. However, the computational cost is high, limiting its applications. Here, we report a parallel computation design based on graphics processing unit (GPU) for high-speed quantification of blood flow in PAM. Two strategies were utilized to improve the computational efficiency. First, the correlation method in the algorithm was optimized to avoid redundant computation and a parallel computing structure was designed. Second, the parallel design was realized on GPU and optimized by maximizing the utilization of computing resource in GPU. The detailed timings and speedup for each calculation step were given and the MATLAB and C/C++ code versions based on CPU were presented as a comparison. Full performance test shows that a stable speedup of ~80-fold could be achieved with the same calculation accuracy and the computation time could be reduced from minutes to just several seconds with the imaging size ranging from 1 × 1 mm2 to 2 × 2 mm2. Our design accelerates PAM-based blood flow measurement and paves the way for real-time PAM imaging and processing by significantly improving the computational efficiency.


Subject(s)
Imaging, Three-Dimensional , Microscopy , Photoacoustic Techniques , Regional Blood Flow/physiology , Algorithms , Animals , Computer Graphics , Male , Mice
8.
Neuroimage ; 150: 77-87, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28111187

ABSTRACT

A long-standing challenge in optical neuroimaging has been the assessment of hemodynamics and oxygen metabolism in the awake rodent brain at the microscopic level. Here, we report first-of-a-kind head-restrained photoacoustic microscopy (PAM), which enables simultaneous imaging of the cerebrovascular anatomy, total concentration and oxygen saturation of hemoglobin, and blood flow in awake mice. Combining these hemodynamic measurements allows us to derive two key metabolic parameters-oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2). This enabling technology offers the first opportunity to comprehensively and quantitatively characterize the hemodynamic and oxygen-metabolic responses of the mouse brain to isoflurane, a general anesthetic widely used in preclinical research and clinical practice. Side-by-side comparison of the awake and anesthetized brains reveals that isoflurane induces diameter-dependent arterial dilation, elevated blood flow, and reduced OEF in a dose-dependent manner. As a result of the combined effects, CMRO2 is significantly reduced in the anesthetized brain under both normoxia and hypoxia, which suggests a mechanism for anesthetic neuroprotection. The head-restrained functional and metabolic PAM opens a new avenue for basic and translational research on neurovascular coupling without the strong influence of anesthesia and on the neuroprotective effects of various interventions, including but not limited to volatile anesthetics, against cerebral hypoxia and ischemia.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Neuroimaging/methods , Neurovascular Coupling/physiology , Photoacoustic Techniques , Animals , Brain/blood supply , Hemodynamics/physiology , Male , Mice , Microscopy/methods , Wakefulness/physiology
9.
Opt Lett ; 40(6): 910-3, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25768144

ABSTRACT

Capitalizing on the optical absorption of hemoglobin, photoacoustic microscopy (PAM) is uniquely capable of anatomical and functional characterization of the intact microcirculation in vivo. However, PAM of the metabolic rate of oxygen (MRO2) at the microscopic level remains an unmet challenge, mainly due to the inability to simultaneously quantify microvascular diameter, oxygen saturation of hemoglobin (sO2), and blood flow at the same spatial scale. To fill this technical gap, we have developed a multi-parametric PAM platform. By analyzing both the sO2-encoded spectral dependence and the flow-induced temporal decorrelation of photoacoustic signals generated by the raster-scanned mouse ear vasculature, we demonstrated-for the first time-simultaneous wide-field PAM of all three parameters down to the capillary level in vivo.


Subject(s)
Microcirculation , Microscopy/methods , Microvessels/anatomy & histology , Microvessels/physiology , Oxygen/metabolism , Photoacoustic Techniques/methods , Animals , Ear/blood supply , Hemoglobins/metabolism , Mice , Microscopy/instrumentation , Microvessels/metabolism , Phantoms, Imaging , Photoacoustic Techniques/instrumentation
10.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(12): 1651-1660, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37966924

ABSTRACT

Regular exercise improves the cerebrovascular function and has shown considerable therapeutic effects on a wide variety of brain diseases. However, the influence of exercise on different aspects of the cerebrovascular function remains to be comprehensively examined. In this study, we combined awake-brain photoacoustic microscopy (PAM) and a motorized treadmill to assess the effects of both acute exercise stimulation and endurance exercise training on the cerebrovascular function and cerebral oxygen metabolism under both physiological and pathological conditions. Acute exercise stimulation in nondiabetic mice resulted in robust vasodilation, increased cerebral blood flow (CBF), reduced oxygen extraction fraction (OEF), and unchanged cerebral metabolic rate of oxygen (CMRO2)-demonstrating the utility of this experimental setting to evaluate the cerebrovascular reactivity. Also, endurance exercise training for six weeks in diabetic mice reversed the diabetes-induced increases in the resting-state CBF and CMRO2 and maintained a stable OEF and CMRO2 under the acute exercise stimulation-shedding new light on how exercise protects the brain from diabetes-induced small vessel disease. In summary, we established an experimental approach to assess the effects of both acute exercise stimulation and endurance exercise training on the cerebrovascular function and tissue oxygen metabolism at the microscopic level and applied it to study the therapeutic benefits of endurance exercise training in diabetic mice.


Subject(s)
Diabetes Mellitus, Experimental , Microscopy , Animals , Mice , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Brain/diagnostic imaging , Brain/blood supply , Oxygen/metabolism , Cerebrovascular Circulation/physiology
11.
IEEE Trans Med Imaging ; 41(12): 3544-3551, 2022 12.
Article in English | MEDLINE | ID: mdl-35788453

ABSTRACT

Enabling simultaneous and high-resolution quantification of the total concentration of hemoglobin ( [Formula: see text]), oxygen saturation of hemoglobin (sO2), and cerebral blood flow (CBF), multi-parametric photoacoustic microscopy (PAM) has emerged as a promising tool for functional and metabolic imaging of the live mouse brain. However, due to the limited depth of focus imposed by the Gaussian-beam excitation, the quantitative measurements become inaccurate when the imaging object is out of focus. To address this problem, we have developed a hardware-software combined approach by integrating Bessel-beam excitation and conditional generative adversarial network (cGAN)-based deep learning. Side-by-side comparison of the new cGAN-powered Bessel-beam multi-parametric PAM against the conventional Gaussian-beam multi-parametric PAM shows that the new system enables high-resolution, quantitative imaging of [Formula: see text], sO2, and CBF over a depth range of [Formula: see text] in the live mouse brain, with errors 13-58 times lower than those of the conventional system. Better fulfilling the rigid requirement of light focusing for accurate hemodynamic measurements, the deep learning-powered Bessel-beam multi-parametric PAM may find applications in large-field functional recording across the uneven brain surface and beyond (e.g., tumor imaging).


Subject(s)
Brain , Deep Learning , Photoacoustic Techniques , Animals , Mice , Hemoglobins , Microscopy/methods , Photoacoustic Techniques/methods , Spectrum Analysis , Brain/diagnostic imaging
12.
IEEE Trans Med Imaging ; 41(1): 103-120, 2022 01.
Article in English | MEDLINE | ID: mdl-34388091

ABSTRACT

Photoacoustic microscopy (PAM) leverages the optical absorption contrast of blood hemoglobin for high-resolution, multi-parametric imaging of the microvasculature in vivo. However, to quantify the blood flow speed, dense spatial sampling is required to assess blood flow-induced loss of correlation of sequentially acquired A-line signals, resulting in increased laser pulse repetition rate and consequently optical fluence. To address this issue, we have developed a sparse modeling approach for blood flow quantification based on downsampled PAM data. Evaluation of its performance both in vitro and in vivo shows that this sparse modeling method can accurately recover the substantially downsampled data (up to 8 times) for correlation-based blood flow analysis, with a relative error of 12.7 ± 6.1 % across 10 datasets in vitro and 12.7 ± 12.1 % in vivo for data downsampled 8 times. Reconstruction with the proposed method is on par with recovery using compressive sensing, which exhibits an error of 12.0 ± 7.9 % in vitro and 33.86 ± 26.18 % in vivo for data downsampled 8 times. Both methods outperform bicubic interpolation, which shows an error of 15.95 ± 9.85 % in vitro and 110.7 ± 87.1 % in vivo for data downsampled 8 times.


Subject(s)
Microscopy , Photoacoustic Techniques , Lasers , Microvessels , Spectrum Analysis
13.
Biomed Opt Express ; 13(5): 2695-2706, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35774317

ABSTRACT

Cutaneous wounds affect millions of people every year. Vascularization and blood oxygen delivery are critical bottlenecks in wound healing, and understanding the spatiotemporal dynamics of these processes may lead to more effective therapeutic strategies to accelerate wound healing. In this work, we applied multi-parametric photoacoustic microscopy (PAM) to study vascular adaptation and the associated changes in blood oxygen delivery and tissue oxygen metabolism throughout the hemostasis, inflammatory, proliferation, and early remodeling phases of wound healing in mice with skin puncture wounds. Multifaceted changes in the vascular structure, function, and tissue oxygen metabolism were observed during the 14-day monitoring of wound healing. On the entire wound area, significant elevations of the arterial blood flow and tissue oxygen metabolism were observed right after wounding and remained well above the baseline over the 14-day period. On the healing front, biphasic changes in the vascular density and blood flow were observed, both of which peaked on day 1, remained elevated in the first week, and returned to the baselines by day 14. Along with the wound closure and thickening, tissue oxygen metabolism in the healing front remained elevated even after structural and functional changes in the vasculature were stabilized. On the newly formed tissue, significantly higher blood oxygenation, flow, and tissue metabolism were observed compared to those before wounding. Blood oxygenation and flow in the new tissue appeared to be independent of when it was formed, but instead showed noticeable dependence on the phase of wound healing. This PAM study provides new insights into the structural, functional, and metabolic changes associated with vascular adaptation during wound healing and suggests that the timing and target of vascular treatments for wound healing may affect the outcomes.

14.
J Cereb Blood Flow Metab ; 41(10): 2628-2639, 2021 10.
Article in English | MEDLINE | ID: mdl-33899557

ABSTRACT

A widely used cerebrovascular stimulus and common pathophysiologic condition, hypercapnia is of great interest in brain research. However, it remains controversial how hypercapnia affects brain hemodynamics and energy metabolism. By using multi-parametric photoacoustic microscopy, the multifaceted responses of the awake mouse brain to different levels of hypercapnia are investigated. Our results show significant and vessel type-dependent increases of the vessel diameter and blood flow in response to the hypercapnic challenges, along with a decrease in oxygen extraction fraction due to elevated venous blood oxygenation. Interestingly, the increased blood flow and decreased oxygen extraction are not commensurate with each other, which leads to reduced cerebral oxygen metabolism. Further, time-lapse imaging over 2-hour chronic hypercapnic challenges reveals that the structural, functional, and metabolic changes induced by severe hypercapnia (10% CO2) are not only more pronounced but more enduring than those induced by mild hypercapnia (5% CO2), indicating that the extent of brain's compensatory response to chronic hypercapnia is inversely related to the severity of the challenge. Offering quantitative, dynamic, and CO2 level-dependent insights into the hemodynamic and metabolic responses of the brain to hypercapnia, these findings might provide useful guidance to the application of hypercapnia in brain research.


Subject(s)
Brain/physiopathology , Hypercapnia/physiopathology , Microscopy/methods , Oxygen/metabolism , Photoacoustic Techniques/methods , Animals , Hemodynamics , Humans , Male , Mice
15.
J Cereb Blood Flow Metab ; 41(12): 3187-3199, 2021 12.
Article in English | MEDLINE | ID: mdl-34304622

ABSTRACT

Multi-parametric photoacoustic microscopy (PAM) has emerged as a promising new technique for high-resolution quantification of hemodynamics and oxygen metabolism in the mouse brain. In this work, we have extended the scope of multi-parametric PAM to longitudinal, cortex-wide, awake-brain imaging with the use of a long-lifetime (24 weeks), wide-field (5 × 7 mm2), light-weight (2 g), dual-transparency (i.e., light and ultrasound) cranial window. Cerebrovascular responses to the window installation were examined in vivo, showing a complete recovery in 18 days. In the 22-week monitoring after the recovery, no dura thickening, skull regrowth, or changes in cerebrovascular structure and function were observed. The promise of this technique was demonstrated by monitoring vascular and metabolic responses of the awake mouse brain to ischemic stroke throughout the acute, subacute, and chronic stages. Side-by-side comparison of the responses in the ipsilateral (injury) and contralateral (control) cortices shows that despite an early recovery of cerebral blood flow and an increase in microvessel density, a long-lasting deficit in cerebral oxygen metabolism was observed throughout the chronic stage in the injured cortex, part of which proceeded to infarction. This longitudinal, functional-metabolic imaging technique opens new opportunities to study the chronic progression and therapeutic responses of neurovascular diseases.


Subject(s)
Brain/metabolism , Cerebrovascular Circulation , Ischemic Stroke/metabolism , Microscopy , Oxygen/metabolism , Photoacoustic Techniques , Animals , Brain/physiopathology , Ischemic Stroke/physiopathology , Male , Mice
16.
Nephron ; 144(12): 621-625, 2020.
Article in English | MEDLINE | ID: mdl-33147592

ABSTRACT

Understanding and measuring parameters responsible for the pathogenesis of sepsis-induced AKI (SI-AKI) is critical in developing therapies. Blood flow to the kidney is heterogeneous, partly due to the existence of dynamic networks of capillaries in various regions, responding differentially to oxygen demand in cortex versus medulla. High energy demand regions, especially the outer medulla, are susceptible to hypoxia and subject to damage during SI-AKI. Proximal tubule epithelial cells in the cortex and the outer medulla can also undergo metabolic reprogramming during SI-AKI to maintain basal physiological status and to avoid potential damage. Current data on the assessment of renal hemodynamics and oxygen metabolism during sepsis is limited. Preclinical and clinical studies show changes in renal hemodynamics associated with SI-AKI, and in clinical settings, interventions to manage renal hemodynamics seem to help improve disease outcomes in some cases. Lack of proper tools to assess temporospatial changes in peritubular blood flow and tissue oxygen metabolism is a barrier to our ability to understand microcirculatory dynamics and oxygen consumption and their role in the pathogenesis of SI-AKI. Current tools to assess renal oxygenation are limited in their usability as these cannot perform continuous simultaneous measurement of renal hemodynamics and oxygen metabolism. Multi-parametric photo-acoustic microscopy (PAM) is a new tool that can measure real-time changes in microhemodynamics and oxygen metabolism. Use of multi-parametric PAM in combination with advanced intravital imaging techniques has the potential to understand the contribution of microhemodynamic and tissue oxygenation alterations to SI-AKI.


Subject(s)
Acute Kidney Injury/metabolism , Capillaries/metabolism , Oxygen Consumption , Sepsis/metabolism , Acute Kidney Injury/etiology , Animals , Disease Models, Animal , Humans , Iron/metabolism , Sepsis/complications
17.
Neurophotonics ; 6(3): 035012, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31548975

ABSTRACT

Large-scale, high-resolution imaging of cerebral hemodynamics is essential for brain research. Uniquely capable of comprehensive quantification of cerebral hemodynamics and oxygen metabolism in rodents based on the endogenous hemoglobin contrast, multiparametric photoacoustic microscopy (PAM) is ideally suited for this purpose. However, the out-of-focus issue due to the uneven surface of the rodent brain results in inaccurate PAM measurements and presents a significant challenge to cortex-wide multiparametric recording. We report a large-scale, high-resolution, multiparametric PAM system based on real-time surface contour extraction and scanning, which avoids the prescan and offline calculation of the contour map required by previously reported contour-scanning strategies. The performance of this system has been demonstrated in both phantoms and the live mouse brain through a thinned-skull window. Side-by-side comparison shows that the real-time contour scanning not only improves the quality of structural images by addressing the out-of-focus issue but also ensures accurate measurements of the concentration of hemoglobin ( C Hb ), oxygen saturation of hemoglobin ( sO 2 ), and cerebral blood flow (CBF) over the entire mouse cortex. Furthermore, quantitative analysis reveals how the out-of-focus issue impairs the measurements of C Hb , sO 2 , and CBF.

18.
Plast Reconstr Surg ; 143(4): 971-981, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30730495

ABSTRACT

BACKGROUND: Acellular dermal matrices have revolutionized alloplastic breast reconstruction. Furthering our knowledge of their biointegration will allow for improved design of these biomaterials. The ideal acellular dermal matrix for breast reconstruction would provide durable soft-tissue augmentation while undergoing rapid biointegration to promote physiologic elasticity and reduced infectious complications. The inclusion of fenestrations in their design is thought to promote the process of biointegration; however, the mechanisms underlying this theory have not been evaluated. METHODS: Biointegration of standard and fenestrated acellular dermal matrices was assessed with serial photoacoustic microscopic imaging, in a murine dorsal skinfold window chamber model specifically designed to recapitulate the microenvironment of acellular dermal matrix-assisted alloplastic breast reconstruction. Photoacoustic microscopy allows for a serial, real-time, noninvasive assessment of hemoglobin content and oxygen saturation in living tissues, generating high-resolution, three-dimensional maps of the nascent microvasculature within acellular dermal matrices. Confirmatory histologic and immunohistochemical assessments were performed at the terminal time point. RESULTS: Fenestrated acellular dermal matrices demonstrated increased fibroblast and macrophage lineage host cell infiltration, greater mean percentage surface area vascular penetration (21 percent versus 11 percent; p = 0.08), and greater mean oxygen saturation (13.5 percent versus 6.9 percent; p < 0.05) than nonfenestrated matrices by 2 weeks after implantation. By 21 days, host cells had progressed nearly 1 mm within the acellular dermal matrix fenestrations, resulting in significantly more vascularity across the top of the fenestrated matrix (3.8 vessels per high-power field versus 0.07 vessels per high-power field; p < 0.05). CONCLUSIONS: Inclusion of fenestrations in acellular dermal matrices improves the recellularization and revascularization that are crucial to biointegration of these materials. Future studies will investigate the optimal distance between fenestrations.


Subject(s)
Acellular Dermis , Neovascularization, Physiologic , Animals , Biocompatible Materials , Female , Fibroblasts/cytology , Macrophages/cytology , Mammaplasty/methods , Mice , Mice, Inbred C57BL , Microscopy/methods , Models, Animal , Photoacoustic Techniques
19.
Huan Jing Ke Xue ; 39(1): 1-8, 2018 Jan 08.
Article in Zh | MEDLINE | ID: mdl-29965660

ABSTRACT

O3 continuous monitoring data for the Dingling, Guanyuan, Liulihe, and Qianmen sites from 2006-2015 were analyzed to investigate concentration levels, variation trends, temporal variations, and relationships with precursors and meteorological factors. The results showed that the ten year average concentrations of O3 at the Dingling site were the highest at 65.2 µg·m-3, followed by concentrations at Liulihe (53.4 µg·m-3), Guanyuan (49.6 µg·m-3) and Qianmen (40.4 µg·m-3). The O3 concentrations at Dingling showed a decreasing trend[0.5 µg·(m3·a)-1], while O3 concentrations at Guanyuan[0.9 µg·(m3·a)-1], Liulihe[0.3 µg·(m3·a)-1], and Qianmen[0.3 µg·(m3·a)-1] showed an increasing trend. The highest monthly average concentrations appeared during June and August, and the highest frequency occurred in July (17 times) with average concentrations of 99.8 µg·m-3. The lowest monthly average concentrations appeared during November and February, and the highest frequency occurred in January (14 times) with an average concentration of 16.6 µg·m-3. Notably, the time for the peak concentrations of O3 appeared earlier in the day in recent years. The peak concentrations of O3 appeared at 15:00-16:00 during 2013-2015, which was 1-2 hours earlier than previous years. The heavy air pollution of O3 occurred on 11 days at the Dingling site in 2015, which was ten days more than in 2013, indicating O3 pollution in the downwind suburban regions of Beijing in summer became more and more serious. The concentrations of O3 and NO2 at Dingling showed a positive correlation, while the concentrations of O3 and NO2 at the other sites showed a negative correlation, indicating O3 formation in Dingling was sensitive to NO2 chemistry, while O3 formation at the other sites was sensitive to VOC chemistry. The concentrations of O3 showed a positive correlation with temperature and negative correlations with humidity and surface pressure. Temperature had the greatest influence on O3 concentration, followed by surface pressure and humidity. For cases when daily maximum temperature exceeded 30℃ and relative humidity was between 30% and 70%, the probability of the O3 daily maximum 8 h concentration exceeding 200 µg·m-3 was high, indicating the air quality level reached levels for light pollution and moderate pollution.

20.
Sci Rep ; 8(1): 17509, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30504800

ABSTRACT

Capable of mediating efficient transfection and protein production without eliciting innate immune responses, chemically modified mRNA holds great potential to produce paracrine factors at a physiologically beneficial level, in a spatiotemporally controlled manner, and with low toxicity. Although highly promising in cardiovascular medicine and wound healing, effects of this emerging therapeutic on the microvasculature and its bioactivity in disease settings remain poorly understood. Here, we longitudinally and comprehensively characterize microvascular responses to AZD8601, a modified mRNA encoding vascular endothelial growth factor A (VEGF-A), in vivo. Using multi-parametric photoacoustic microscopy, we show that intradermal injection of AZD8601 formulated in a biocompatible vehicle results in pronounced, sustained and dose-dependent vasodilation, blood flow upregulation, and neovessel formation, in striking contrast to those induced by recombinant human VEGF-A protein, a non-translatable variant of AZD8601, and citrate/saline vehicle. Moreover, we evaluate the bioactivity of AZD8601 in a mouse model of diabetic wound healing in vivo. Using a boron nanoparticle-based tissue oxygen sensor, we show that sequential dosing of AZD8601 improves vascularization and tissue oxygenation of the wound bed, leading to accelerated re-epithelialization during the early phase of diabetic wound healing.


Subject(s)
Diabetic Angiopathies/etiology , Diabetic Angiopathies/pathology , Microvessels/metabolism , RNA, Messenger/genetics , Vascular Endothelial Growth Factor A/genetics , Wound Healing/genetics , Animals , Diabetic Angiopathies/diagnostic imaging , Disease Models, Animal , Humans , Mice , Microvessels/drug effects , Myocytes, Smooth Muscle/metabolism , Neovascularization, Pathologic/diagnostic imaging , Neovascularization, Pathologic/genetics , Oxygen Consumption , Time-Lapse Imaging , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL