Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Publication year range
1.
Plant Physiol ; 195(1): 111-134, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38290048

ABSTRACT

It has been almost a century since biologically active gibberellin (GA) was isolated. Here, we give a historical overview of the early efforts in establishing the GA biosynthesis and catabolism pathway, characterizing the enzymes for GA metabolism, and elucidating their corresponding genes. We then highlight more recent studies that have identified the GA receptors and early GA signaling components (DELLA repressors and F-box activators), determined the molecular mechanism of DELLA-mediated transcription reprograming, and revealed how DELLAs integrate multiple signaling pathways to regulate plant vegetative and reproductive development in response to internal and external cues. Finally, we discuss the GA transporters and their roles in GA-mediated plant development.


Subject(s)
Gibberellins , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Signal Transduction , Plant Development/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics
2.
Plant Physiol ; 191(3): 1546-1560, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36740243

ABSTRACT

SPINDLY (SPY) is a novel nucleocytoplasmic protein O-fucosyltransferase that regulates target protein activity or stability via O-fucosylation of specific Ser/Thr residues. Previous genetic studies indicate that AtSPY regulates plant development during vegetative and reproductive growth by modulating gibberellin and cytokinin responses. AtSPY also regulates the circadian clock and plant responses to biotic and abiotic stresses. The pleiotropic phenotypes of spy mutants point to the likely role of AtSPY in regulating key proteins functioning in diverse cellular pathways. However, very few AtSPY targets are known. Here, we identified 88 SPY targets from Arabidopsis (Arabidopsis thaliana) and Nicotiana benthamiana via the purification of O-fucosylated peptides using Aleuria aurantia lectin followed by electron transfer dissociation-MS/MS analysis. Most AtSPY targets were nuclear proteins that function in DNA repair, transcription, RNA splicing, and nucleocytoplasmic transport. Cytoplasmic AtSPY targets were involved in microtubule-mediated cell division/growth and protein folding. A comparison with the published O-linked-N-acetylglucosamine (O-GlcNAc) proteome revealed that 30% of AtSPY targets were also O-GlcNAcylated, indicating that these distinct glycosylations could co-regulate many protein functions. This study unveiled the roles of O-fucosylation in modulating many key nuclear and cytoplasmic proteins and provided a valuable resource for elucidating the regulatory mechanisms involved.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Repressor Proteins/metabolism , Tandem Mass Spectrometry , Arabidopsis/metabolism , Plants/metabolism , Acetylglucosamine/metabolism
3.
Genes Dev ; 30(2): 164-76, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26773002

ABSTRACT

The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Gene Expression Regulation, Plant/genetics , N-Acetylglucosaminyltransferases/metabolism , Signal Transduction/physiology , Acylation , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Gibberellins/metabolism , Mutation , N-Acetylglucosaminyltransferases/genetics , Protein Binding
4.
Plant Cell ; 30(8): 1710-1728, 2018 08.
Article in English | MEDLINE | ID: mdl-30008445

ABSTRACT

Fruit initiation following fertilization in angiosperms is strictly regulated by phytohormones. In tomato (Solanum lycopersicum), auxin and gibberellin (GA) play central roles in promoting fruit initiation. Without fertilization, elevated GA or auxin signaling can induce parthenocarpy (seedless fruit production). The GA-signaling repressor SlDELLA and auxin-signaling components SlIAA9 and SlARF7 repress parthenocarpy, but the underlying mechanism is unknown. Here, we show that SlDELLA and the SlARF7/SlIAA9 complex mediate crosstalk between GA and auxin pathways to regulate fruit initiation. Yeast-two-hybrid and coimmunoprecipitation assays showed that SlARF7 and additional activator SlARFs interact with SlDELLA and SlIAA9 through distinct domains. SlARF7/SlIAA9 and SlDELLA antagonistically modulate the expression of feedback-regulated genes involved in GA and auxin metabolism, whereas SlARF7/SlIAA9 and SlDELLA coregulate the expression of fruit growth-related genes. Analysis of procera (della), SlARF7 RNAi (with downregulated expression of multiple activator SlARFs), and entire (iaa9) single and double mutants indicated that these genes additively affect parthenocarpy, supporting the notion that the SlARFs/SlIAA9 and SlDELLA interaction plays an important role in regulating fruit initiation. Analysis of the GA-deficient mutant gib1 showed that active GA biosynthesis and signaling are required for auxin-induced fruit initiation. Our study reveals how direct crosstalk between auxin- and GA-signaling components is critical for tomato fruit initiation.


Subject(s)
Fruit/metabolism , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Fruit/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Solanum lycopersicum/genetics , Plant Proteins/genetics , Signal Transduction/genetics , Signal Transduction/physiology
5.
Anal Chem ; 91(9): 6345-6352, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30916925

ABSTRACT

Molecular advances have been made in analysis systems for a wide variety of applications ranging from biodiagnostics, biosafety, bioengineering, and biofuel research applications. There are, however, limited practical tools necessary for in situ and accurate detection of nucleic acid targets during field work. New technology is needed to translate these molecular advances from laboratory settings into the real-life practical monitoring realm. The exquisite characteristics (e.g., sensitivity and adaptability) of plasmonic nanosensors have made them attractive candidates for field-ready sensing applications. Herein, we have developed a fiber-based plasmonic sensor capable of direct detection (i.e., no washing steps required) of nucleic acid targets, which can be detected simply by immerging the sensor in the sample solution. This sensor is composed of an optical fiber that is decorated with plasmonic nanoprobes based on silver-coated gold nanostars (AuNS@Ag) to detect target nucleic acids using the surface-enhanced Raman scattering (SERS) sensing mechanism of nanoprobes referred to as inverse molecular sentinels (iMS). These fiber-optrodes can be reused for several detection-regeneration cycles (>6). The usefulness and applicability of the iMS fiber-sensors was tested by detecting target miRNA in extracts from leaves of plants that were induced to have different expression levels of miRNA targets. These fiber-optrodes enable direct detection of miRNA in plant tissue extract without the need for complex assays by simply immersing the fiber in the sample solution. The results indicate the fiber-based sensors developed herein have the potential to be a powerful tool for field and in situ analysis of nucleic acid samples.


Subject(s)
Fiber Optic Technology , MicroRNAs/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , MicroRNAs/genetics , Silver/chemistry , Spectrum Analysis, Raman , Nicotiana/genetics
6.
Nat Chem Biol ; 13(5): 479-485, 2017 05.
Article in English | MEDLINE | ID: mdl-28244988

ABSTRACT

Plant development requires coordination among complex signaling networks to enhance the plant's adaptation to changing environments. DELLAs, transcription regulators originally identified as repressors of phytohormone gibberellin signaling, play a central role in integrating multiple signaling activities via direct protein interactions with key transcription factors. Here, we found that DELLA is mono-O-fucosylated by the novel O-fucosyltransferase SPINDLY (SPY) in Arabidopsis thaliana. O-fucosylation activates DELLA by promoting its interaction with key regulators in brassinosteroid- and light-signaling pathways, including BRASSINAZOLE-RESISTANT1 (BZR1), PHYTOCHROME-INTERACTING-FACTOR3 (PIF3) and PIF4. Moreover, spy mutants displayed elevated responses to gibberellin and brassinosteroid, and increased expression of common target genes of DELLAs, BZR1 and PIFs. Our study revealed that SPY-dependent protein O-fucosylation plays a key role in regulating plant development. This finding may have broader importance because SPY orthologs are conserved in prokaryotes and eukaryotes, thus suggesting that intracellular O-fucosylation may regulate a wide range of biological processes in diverse organisms.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Fucosyltransferases/metabolism , Repressor Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Fucosyltransferases/genetics , Repressor Proteins/genetics
7.
Plant Physiol ; 173(2): 1463-1474, 2017 02.
Article in English | MEDLINE | ID: mdl-28057895

ABSTRACT

PICKLE (PKL) is an ATP-dependent chromodomain-helicase-DNA-binding domain (CHD3) chromatin remodeling enzyme in Arabidopsis (Arabidopsis thaliana). Previous studies showed that PKL promotes embryonic-to-vegetative transition by inhibiting expression of seed-specific genes during seed germination. The pkl mutants display a low penetrance of the "pickle root" phenotype, with a thick and green primary root that retains embryonic characteristics. The penetrance of this pickle root phenotype in pkl is dramatically increased in gibberellin (GA)-deficient conditions. At adult stages, the pkl mutants are semidwarfs with delayed flowering time, which resemble reduced GA-signaling mutants. These findings suggest that PKL may play a positive role in regulating GA signaling. A recent biochemical analysis further showed that PKL and GA signaling repressors DELLAs antagonistically regulate hypocotyl cell elongation genes by direct protein-protein interaction. To elucidate further the role of PKL in GA signaling and plant development, we studied the genetic interaction between PKL and DELLAs using the hextuple mutant containing pkl and della pentuple (dP) mutations. Here, we show that PKL is required for most of GA-promoted developmental processes, including vegetative growth such as hypocotyl, leaf, and inflorescence stem elongation, and phase transitions such as juvenile-to-adult leaf and vegetative-to-reproductive phase. The removal of all DELLA functions (in the dP background) cannot rescue these phenotypes in pkl RNA-sequencing analysis using the ga1 (a GA-deficient mutant), pkl, and the ga1 pkl double mutant further shows that expression of 80% of GA-responsive genes in seedlings is PKL dependent, including genes that function in cell elongation, cell division, and phase transitions. These results indicate that the CHD3 chromatin remodeler PKL is required for regulating gene expression during most of GA-regulated developmental processes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , DNA Helicases/metabolism , Gibberellins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , DNA Helicases/genetics , Gene Expression Regulation, Plant , Germination , Multigene Family , Mutation , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Seeds/genetics , Seeds/growth & development , Signal Transduction
8.
Plant Physiol ; 171(4): 2760-70, 2016 08.
Article in English | MEDLINE | ID: mdl-27255484

ABSTRACT

The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6 AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Gibberellins/biosynthesis , Plant Stems/growth & development , Repressor Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Arabidopsis/anatomy & histology , Arabidopsis/genetics , Ethylenes/metabolism , Gene Expression Regulation, Plant , Models, Biological , Plant Stems/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic
9.
Plant J ; 79(6): 1020-1032, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24961590

ABSTRACT

Gibberellins (GAs) play a critical role in fruit-set and fruit growth. Gibberellin is perceived by its nuclear receptors GA INSENSITIVE DWARF1s (GID1s), which then trigger degradation of downstream repressors DELLAs. To understand the role of the three GA receptor genes (GID1A, GID1B and GID1C) in Arabidopsis during fruit initiation, we have examined their temporal and spatial localization, in combination with analysis of mutant phenotypes. Distinct expression patterns are revealed for each GID1: GID1A is expressed throughout the whole pistil, while GID1B is expressed in ovules, and GID1C is expressed in valves. Functional study of gid1 mutant combinations confirms that GID1A plays a major role during fruit-set and growth, whereas GID1B and GID1C have specific roles in seed development and pod elongation, respectively. Therefore, in ovules, GA perception is mediated by GID1A and GID1B, while GID1A and GID1C are involved in GA perception in valves. To identify tissue-specific interactions between GID1s and DELLAs, we analyzed spatial expression patterns of four DELLA genes that have a role in fruit initiation (GAI, RGA, RGL1 and RGL2). Our data suggest that GID1A can interact with RGA and GAI in all tissues, whereas GID1C-RGL1 and GID1B-RGL2 interactions only occur in valves and ovules, respectively. These results uncover specific functions of each GID1-DELLA in the different GA-dependent processes that occur upon fruit-set. In addition, the distribution of GA receptors in valves along with lack of expression of GA biosynthesis genes in this tissue, strongly suggests transport of GAs from the developing seeds to promote fruit growth.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Flowers/cytology , Flowers/genetics , Flowers/growth & development , Fruit/cytology , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Developmental , Genes, Reporter , Germination , Models, Biological , Mutation , Organ Specificity , Ovule/cytology , Ovule/genetics , Ovule/growth & development , Phenotype , Plants, Genetically Modified , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Recombinant Fusion Proteins , Seeds/cytology , Seeds/genetics , Seeds/growth & development
10.
J Exp Bot ; 66(5): 1463-76, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25588745

ABSTRACT

Gibberellins (GAs) regulate numerous developmental processes in grapevine (Vitis vinifera) such as rachis elongation, fruit set, and fruitlet abscission. The ability of GA to promote berry enlargement has led to its indispensable use in the sternospermocarpic ('seedless') table grape industry worldwide. However, apart from VvGAI1 (VvDELLA1), which regulates internode elongation and fruitfulness, but not berry size of seeded cultivars, little was known about GA signalling in grapevine. We have identified and characterized two additional DELLAs (VvDELLA2 and VvDELLA3), two GA receptors (VvGID1a and VvGID1b), and two GA-specific F-box proteins (VvSLY1a and VvSLY1b), in cv. Thompson seedless. With the exception of VvDELLA3-VvGID1b, all VvDELLAs interacted with the VvGID1s in a GA-dependent manner in yeast two-hybrid assays. Additionally, expression of these grape genes in corresponding Arabidopsis mutants confirmed their functions in planta. Spatiotemporal analysis of VvDELLAs showed that both VvDELLA1 and VvDELLA2 are abundant in most tissues, except in developing fruit where VvDELLA2 is uniquely expressed at high levels, suggesting a key role in fruit development. Our results further suggest that differential organ responses to exogenous GA depend on the levels of VvDELLA proteins and endogenous bioactive GAs. Understanding this interaction will allow better manipulation of GA signalling in grapevine.


Subject(s)
Gibberellins/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Vitis/growth & development , Vitis/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Signal Transduction , Vitis/metabolism
11.
Plant Cell ; 24(1): 66-79, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22253226

ABSTRACT

The gibberellins (GAs) are a group of endogenous compounds that promote the growth of most plant organs, including stem internodes. We show that in tobacco (Nicotiana tabacum) the presence of leaves is essential for the accumulation of bioactive GAs and their immediate precursors in the stem and consequently for normal stem elongation, cambial proliferation, and xylem fiber differentiation. These processes do not occur in the absence of maturing leaves but can be restored by application of C(19)-GAs, identifying the presence of leaves as a requirement for GA signaling in stems and revealing the fundamental role of GAs in secondary growth regulation. The use of reporter genes for GA activity and GA-directed DELLA protein degradation in Arabidopsis thaliana confirms the presence of a mobile signal from leaves to the stem that induces GA signaling.


Subject(s)
Gibberellins/metabolism , Nicotiana/growth & development , Nicotiana/metabolism , Plant Leaves/metabolism , Plant Stems/growth & development , Plant Stems/metabolism , Molecular Sequence Data , Signal Transduction/physiology
12.
Proc Natl Acad Sci U S A ; 109(19): E1192-200, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22529386

ABSTRACT

Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important plant hormones that mediate defense and growth, respectively. Binding of bioactive JA or GA ligands to cognate receptors leads to proteasome-dependent degradation of specific transcriptional repressors (the JAZ or DELLA family of proteins), which, at the resting state, represses cognate transcription factors involved in defense (e.g., MYCs) or growth [e.g. phytochrome interacting factors (PIFs)]. In this study, we found that the coi1 JA receptor mutants of rice (a domesticated monocot crop) and Arabidopsis (a model dicot plant) both exhibit hallmark phenotypes of GA-hypersensitive mutants. JA delays GA-mediated DELLA protein degradation, and the della mutant is less sensitive to JA for growth inhibition. Overexpression of a selected group of JAZ repressors in Arabidopsis plants partially phenocopies GA-associated phenotypes of the coi1 mutant, and JAZ9 inhibits RGA (a DELLA protein) interaction with transcription factor PIF3. Importantly, the pif quadruple (pifq) mutant no longer responds to JA-induced growth inhibition, and overexpression of PIF3 could partially overcome JA-induced growth inhibition. Thus, a molecular cascade involving the COI1-JAZ-DELLA-PIF signaling module, by which angiosperm plants prioritize JA-mediated defense over growth, has been elucidated.


Subject(s)
Cyclopentanes/metabolism , Gibberellins/metabolism , Oxylipins/metabolism , Plants/metabolism , Signal Transduction/physiology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cyclopentanes/pharmacology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Gibberellins/pharmacology , Mutation , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Oxylipins/pharmacology , Plant Development , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/genetics , Protein Binding , Proteolysis/drug effects , RNA Interference , Repressor Proteins/genetics , Repressor Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Seedlings/drug effects , Seedlings/genetics , Seedlings/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Two-Hybrid System Techniques
13.
Sensors (Basel) ; 15(11): 29408-18, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26610504

ABSTRACT

Regular monitoring of blood α-fetoprotein (AFP) and/or carcino-embryonic antigen (CEA) levels is important for the routine screening of liver cancer. However, AFP and CEA have a much lower specificity than des-γ-carboxyprothrombin (DCP) to detect liver cancer. Therefore, the study reported here was designed, to develop a screen-printed DCP immunosensor incorporating zinc oxide nanoparticles, for accurate determination of DCP. The designed immunosensor shows low detection limits for the detection of DCP: 0.440 ng/mL (based on impedance measurement), 0.081 ng/mL (based on real part of impedance measurement) and 0.078 ng/mL (based on imaginary part of impedance measurement), within the range of 3.125 ng/mL to 2000 ng/mL. In addition, there was little interference to DCP determination by molecules such as Na⁺, K⁺, Ca(2+), Cl(-), glucose, urea, and uric acid. It is therefore concluded that the DCP immunosensor developed and reported here is simple, inexpensive and effective, and shows promise in the rapid screening of early-stage liver cancer at home with a point-of-care approach.


Subject(s)
Biomarkers, Tumor/blood , Biomarkers/blood , Biosensing Techniques/methods , Immunologic Techniques/methods , Liver Neoplasms/diagnosis , Metal Nanoparticles/chemistry , Protein Precursors/blood , Animals , Cattle , Equipment Design , Limit of Detection , Linear Models , Models, Biological , Prothrombin , Reproducibility of Results , Serum Albumin, Bovine , Zinc Oxide/chemistry
14.
Nat Chem Biol ; 8(5): 465-70, 2012 Mar 25.
Article in English | MEDLINE | ID: mdl-22446836

ABSTRACT

Using a newly synthesized gibberellin analog containing an acetoxymethyl group (GA(3)-AM) and its binding proteins, we developed an efficient chemically inducible dimerization (CID) system that is completely orthogonal to existing rapamycin-mediated protein dimerization. Combining the two systems should allow applications that have been difficult or impossible with only one CID system. By using both chemical inputs (rapamycin and GA(3)-AM), we designed and synthesized Boolean logic gates in living mammalian cells. These gates produced output signals such as fluorescence and membrane ruffling on a timescale of seconds, substantially faster than earlier intracellular logic gates. The use of two orthogonal dimerization systems in the same cell also allows for finer modulation of protein perturbations than is possible with a single dimerizer.


Subject(s)
Gibberellins/chemistry , Gibberellins/pharmacology , Protein Multimerization/drug effects , Animals , Fluorescence , HeLa Cells , Humans , Mice , NIH 3T3 Cells , Sirolimus/chemistry
15.
Nature ; 456(7221): 459-63, 2008 Nov 27.
Article in English | MEDLINE | ID: mdl-19037309

ABSTRACT

Gibberellins control a range of growth and developmental processes in higher plants and have been widely used in the agricultural industry. By binding to a nuclear receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1), gibberellins regulate gene expression by promoting degradation of the transcriptional regulator DELLA proteins, including GIBBERELLIN INSENSITIVE (GAI). The precise manner in which GID1 discriminates and becomes activated by bioactive gibberellins for specific binding to DELLA proteins remains unclear. Here we present the crystal structure of a ternary complex of Arabidopsis thaliana GID1A, a bioactive gibberellin and the amino-terminal DELLA domain of GAI. In this complex, GID1A occludes gibberellin in a deep binding pocket covered by its N-terminal helical switch region, which in turn interacts with the DELLA domain containing DELLA, VHYNP and LExLE motifs. Our results establish a structural model of a plant hormone receptor that is distinct from the mechanism of the hormone perception and effector recognition of the known auxin receptors.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/chemistry , Gibberellins/pharmacology , Plant Growth Regulators/pharmacology , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Amino Acid Motifs , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Circular Dichroism , Crystallography, X-Ray , Gibberellins/metabolism , Models, Biological , Models, Molecular , Plant Growth Regulators/metabolism , Protein Binding , Protein Structure, Tertiary/drug effects , Receptors, Cell Surface/genetics , Substrate Specificity
16.
Proc Natl Acad Sci U S A ; 108(5): 2160-5, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21245327

ABSTRACT

The diterpenoid phytohormone gibberellin (GA) controls diverse developmental processes throughout the plant life cycle. DELLA proteins are master growth repressors that function immediately downstream of the GA receptor to inhibit GA signaling. By doing so, DELLAs also play pivotal roles as integrators of internal developmental signals from multiple hormone pathways and external cues. DELLAs are likely nuclear transcriptional regulators, which interact with other transcription factors to modulate expression of GA-responsive genes. DELLAs are also involved in maintaining GA homeostasis through feedback up-regulating expression of GA biosynthesis and receptor genes. However, the molecular mechanisms by which DELLAs restrict growth and development are largely unknown. This study reveals an important step of the mechanism. Previous microarray studies identified scarecrow-like 3 (SCL3) as a direct target gene of DELLA in Arabidopsis seedlings. SCL3 expression is induced by DELLA and repressed by GA. Unexpectedly, a scl3 null mutant displays reduced GA responses and elevated expression of GA biosynthesis genes during seed germination and seedling growth, indicating that SCL3 functions as a positive regulator of GA signaling. SCL3 seems to act as an attenuator of DELLA proteins. Transient expression, ChIP, and co-IP studies show that SCL3 autoregulates its own transcription by directly interacting with DELLA. Our data further show that SCL3 and DELLA antagonize each other in controlling both downstream GA responses and upstream GA biosynthetic genes. This work is beginning to shed light on how this complex regulatory network achieves GA homeostasis and controls GA-mediated growth and development in the plant.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/growth & development , Gibberellins/metabolism , Signal Transduction/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Epistasis, Genetic , Mutation , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
17.
Biosens Bioelectron ; 261: 116471, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38878695

ABSTRACT

The intracellular developmental processes in plants, particularly concerning lignin polymer formation and biomass production are regulated by microRNAs (miRNAs). MiRNAs including miR397b are important for developing efficient and cost-effective biofuels. However, traditional methods of monitoring miRNA expression, like PCR, are time-consuming, require sample extraction, and lack spatial and temporal resolution, especially in real-world conditions. We present a novel approach using plasmonics nanosensing to monitor miRNA activity within living plant cells without sample extraction. Plasmonic biosensors using surface-enhanced Raman scattering (SERS) detection offer high sensitivity and precise molecular information. We used the Inverse Molecular Sentinel (iMS) biosensor on unique silver-coated gold nanorods (AuNR@Ag) with a high-aspect ratio to penetrate plant cell walls for detecting miR397b within intact living plant cells. MiR397b overexpression has shown promise in reducing lignin content. Thus, monitoring miR397b is essential for cost-effective biofuel generation. This study demonstrates the infiltration of nanorod iMS biosensors and detection of non-native miRNA 397b within plant cells for the first time. The investigation successfully demonstrates the localization of nanorod iMS biosensors through TEM and XRF-based elemental mapping for miRNA detection within plant cells of Nicotiana benthamiana. The study integrates shifted-excitation Raman difference spectroscopy (SERDS) to decrease background interference and enhance target signal extraction. In vivo SERDS testing confirms the dynamic detection of miR397b in Arabidopsis thaliana leaves after infiltration with iMS nanorods and miR397b target. This proof-of-concept study is an important stepping stone towards spatially resolved, intracellular miRNA mapping to monitor biomarkers and biological pathways for developing efficient renewable biofuel sources.


Subject(s)
Biosensing Techniques , Gold , MicroRNAs , Nanotubes , Spectrum Analysis, Raman , Nanotubes/chemistry , Biosensing Techniques/methods , MicroRNAs/genetics , MicroRNAs/analysis , Gold/chemistry , Spectrum Analysis, Raman/methods , Nicotiana/genetics , Nicotiana/chemistry , Silver/chemistry , Biomarkers , Lignin/chemistry
18.
Sensors (Basel) ; 13(10): 14161-74, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24152934

ABSTRACT

The purpose of this study was to develop novel nanoscale biosensors using titania nanotubes (TNTs) made by anodization. Titania nanotubes were produced on pure titanium sheets by anodization at room temperature. In this research, the electrolyte composition ethylene glycol 250 mL/NH4F 1.5 g/DI water 20 mL was found to produce the best titania nanotubes array films for application in amperometric biosensors. The amperometric results exhibit an excellent linearity for uric acid (UA) concentrations in the range between 2 and 14 mg/dL, with 23.3 (µA·cm-2)·(mg/dL)-1 UA sensitivity, and a correlation coefficient of 0.993. The glucose biosensor presented a good linear relationship in the lower glucose concentration range between 50 and 125 mg/dL, and the corresponding sensitivity was approximately 249.6 (µA·cm-2)·(100 mg/dL)-1 glucose, with a correlation coefficient of 0.973.


Subject(s)
Biosensing Techniques/instrumentation , Conductometry/instrumentation , Electrodes , Glucose/analysis , Metal Nanoparticles/chemistry , Titanium/chemistry , Uric Acid/analysis , Equipment Design , Equipment Failure Analysis , Metal Nanoparticles/ultrastructure , Reproducibility of Results , Sensitivity and Specificity , Transducers
19.
Nat Plants ; 9(5): 706-719, 2023 05.
Article in English | MEDLINE | ID: mdl-37037878

ABSTRACT

In flowering plants, auxin produced in seeds after fertilization promotes fruit initiation. The application of auxin to unpollinated ovaries can also induce parthenocarpy (seedless fruit production). Previous studies have shown that auxin signalling components SlIAA9 and SlARF7 (a class A AUXIN RESPONSE FACTOR (ARF)) are key repressors of fruit initiation in tomato (Solanum lycopersicum). A similar repressive role of class A ARFs in fruit set has also been observed in other plant species. However, evidence is lacking for a role of any class A ARF in promoting fruit development as predicted in the current auxin signalling model. Here we generated higher-order tomato mutants of four class A SlARFs (SlARF5, SlARF7, SlARF8A and SlARF8B) and uncovered their precise combinatorial roles that lead to suppressing and promoting fruit development. All four class A SlARFs together with SlIAA9 inhibited fruit initiation but promoted subsequent fruit growth. Transgenic tomato lines expressing truncated SlARF8A/8B lacking the IAA9-interacting PB1 domain displayed strong parthenocarpy, further confirming the promoting role of SlARF8A/8B in fruit growth. Altering the doses of these four SlARFs led to biphasic fruit growth responses, showing their versatile dual roles as both negative and positive regulators. RNA-seq and chromatin immunoprecipitation-quantitative PCR analyses further identified SlARF8A/8B target genes, including those encoding MADS-BOX transcription factors (AG1, MADS2 and AGL6) that are key repressors of fruit set. These results support the idea that SlIAA9/SlARFs directly regulate the transcription of these MADS-BOX genes to inhibit fruit set. Our study reveals the previously unknown dual function of four class A SlARFs in tomato fruit development and illuminates the complex combinatorial effects of multiple ARFs in controlling auxin-mediated fruit set and fruit growth.


Subject(s)
Indoleacetic Acids , Solanum lycopersicum , Solanum lycopersicum/genetics , Fruit , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant
20.
Nat Plants ; 9(8): 1291-1305, 2023 08.
Article in English | MEDLINE | ID: mdl-37537399

ABSTRACT

The DELLA genes, also known as 'Green Revolution' genes, encode conserved master growth regulators that control plant development in response to internal and environmental cues. Functioning as nuclear-localized transcription regulators, DELLAs modulate expression of target genes via direct protein-protein interaction of their carboxy-terminal GRAS domain with hundreds of transcription factors (TFs) and epigenetic regulators. However, the molecular mechanism of DELLA-mediated transcription reprogramming remains unclear. Here by characterizing new missense alleles of an Arabidopsis DELLA, repressor of ga1-3 (RGA), and co-immunoprecipitation assays, we show that RGA binds histone H2A via the PFYRE subdomain within its GRAS domain to form a TF-RGA-H2A complex at the target chromatin. Chromatin immunoprecipitation followed by sequencing analysis further shows that this activity is essential for RGA association with its target chromatin globally. Our results indicate that, although DELLAs are recruited to target promoters by binding to TFs via the LHR1 subdomain, DELLA-H2A interaction via the PFYRE subdomain is necessary to stabilize the TF-DELLA-H2A complex at the target chromatin. This study provides insights into the two distinct key modular functions in DELLA for its genome-wide transcription regulation in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Gibberellins/metabolism , Histones/genetics , Histones/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Chromatin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL