Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Nature ; 632(8024): 313-319, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885695

ABSTRACT

Oligosaccharides have myriad functions throughout biological processes1,2. Chemical synthesis of these structurally complex molecules facilitates investigation of their functions. With a dense concentration of stereocentres and hydroxyl groups, oligosaccharide assembly through O-glycosylation requires simultaneous control of site, stereo- and chemoselectivities3,4. Chemists have traditionally relied on protecting group manipulations for this purpose5-8, adding considerable synthetic work. Here we report a glycosylation platform that enables selective coupling between unprotected or minimally protected donor and acceptor sugars, producing 1,2-cis-O-glycosides in a catalyst-controlled, site-selective manner. Radical-based activation9 of allyl glycosyl sulfones forms glycosyl bromides. A designed aminoboronic acid catalyst brings this reactive intermediate close to an acceptor through a network of non-covalent hydrogen bonding and reversible covalent B-O bonding interactions, allowing precise glycosyl transfer. The site of glycosylation can be switched with different aminoboronic acid catalysts by affecting their interaction modes with substrates. The method accommodates a wide range of sugar types, amenable to the preparation of naturally occurring sugar chains and pentasaccharides containing 11 free hydroxyls. Experimental and computational studies provide insights into the origin of selectivity outcomes.


Subject(s)
Glycosides , Oligosaccharides , Boronic Acids/chemistry , Bromides/chemistry , Catalysis , Glycosides/chemistry , Glycosides/chemical synthesis , Glycosylation , Hydrogen Bonding , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Sulfones/chemistry
2.
Chem Rev ; 123(16): 9940-9981, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37561162

ABSTRACT

A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Polymers
3.
J Org Chem ; 89(16): 11173-11182, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39072554

ABSTRACT

Although the concerted [3 + 2] mechanism of osmium-catalyzed asymmetric dihydroxylation has been generally accepted, the unusual nonlinear Hammett relationship induced by amine-type ligands remains unexplained. To understand this, we carried out a density functional theory (DFT) study for the osmylation of substituted styrenes by the following: OsO4, OsO4-pyridine, OsO4-4-cyanopyridine, OsO4-4-pyrrolidinopyridine, and OsO4-quinuclidine. Calculations using the M06 functional successfully reproduce the experimentally observed nonlinear relationships. The transition states exhibit considerable singlet-diradical character, which causes the nonlinear Hammett relationship. Regardless of the presence or absence of an amine-type ligand, an electron donation from styrene to OsO4 is observed, indicating no mechanistic change. Calculations indicate that the electronic interaction between the amine-type ligand and styrene also influences the reaction rate.

4.
J Org Chem ; 89(7): 5060-5068, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38525894

ABSTRACT

Radical cyclization has been demonstrated to be an efficient method to access functionalized heterocycles from easily accessible raw materials. Described herein is the development of a photocatalytic proton-coupled electron transfer (PCET) strategy for the synthesis of isoquinoline-1,3-diones using readily prepared naphthalimide (NI)-based organic photocatalysts. The process features free metal-complex photocatalysts, acids, and mild reaction conditions. This mild radical cyclization protocol has a broad substrate scope and can be effectively applied to a variety of medicinally relevant substrates. Furthermore, control experiments were conducted to elucidate the mechanism of this visible light-induced methodology.

5.
Org Biomol Chem ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292510

ABSTRACT

Recently, several studies on the chemical synthesis of brevianamide A (BA) were reported. In particular, a highly efficient and remarkably selective synthetic strategy was reported by Lawrence's group. However, a unified mechanistic understanding of these results is still lacking. We have carried out a DFT study and proposed a unified mechanism to understand these experimental results. Starting from intermediate 2, the most favorable reaction sequence is a fast tautomerization, followed by a σ-migration of the base moiety, and a final inverse-electron demanding Diels-Alder reaction, resulting in the formation of the BA product stereoselectively. This reaction mechanism can also be applied to understand the biosynthesis of BA that involves enzymatic catalysis.

6.
Molecules ; 29(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38675603

ABSTRACT

Due to boron's metalloid properties, aromatic boron reagents are prevalent synthetic intermediates. The direct borylation of aryl C-H bonds for producing aromatic boron compounds offers an appealing, one-step solution. Despite significant advances in this field, achieving regioselective aryl C-H bond borylation using simple and readily available starting materials still remains a challenge. In this work, we attempted to enhance the reactivity of the electron-donor-acceptor (EDA) complex by selecting different bases to replace the organic base (NEt3) used in our previous research. To our delight, when using NH4HCO3 as the base, we have achieved a mild visible-light-mediated aromatic C-H bond borylation reaction with exceptional regioselectivity (rr > 40:1 to single isomers). Compared with our previous borylation methodologies, this protocol provides a more efficient and broader scope for aryl C-H bond borylation through the use of N-Bromosuccinimide. The protocol's good functional-group tolerance and excellent regioselectivity enable the functionalization of a variety of biologically relevant compounds and novel cascade transformations. Mechanistic experiments and theoretical calculations conducted in this study have indicated that, for certain arenes, the aryl C-H bond borylation might proceed through a new reaction mechanism, which involves the formation of a novel transient EDA complex.

7.
Angew Chem Int Ed Engl ; : e202409332, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38887822

ABSTRACT

Described herein is a dirhodium(II)-catalyzed silylation of propargyl esters with hydrosilanes, using tertiary amines as axial ligands. By adopting this strategy, a range of versatile and useful allenylsilanes can be achieved with good yields. This reaction not only represents a SN2'-type silylation of the propargyl derivatives bearing a terminal alkyne moiety to synthesize allenylsilanes from simple hydrosilanes, but also represents a new application of dirhodium(II) complexes in catalytic transformation of carbon-carbon triple bond. The highly functionalized allenylsilanes that are produced can be transformed into a series of synthetically useful organic molecules. In this reaction, an intriguing ON-OFF effect of the amine ligand was observed. The reaction almost did not occur (OFF) without addition of Lewis base amine ligand. However, the reaction took place smoothly (ON) after addition of only catalytic amount of amine ligand. Detailed mechanistic studies and density functional theory (DFT) calculations indicate that the reactivity can be delicately improved by the use of tertiary amine. The fine-tuning effect of the tertiary amine is crucial in the formation of the Rh-Si species via a concerted metalation deprotonation (CMD) mechanism and facilitating ß-oxygen elimination.

8.
Ann Surg Oncol ; 30(5): 2757-2764, 2023 May.
Article in English | MEDLINE | ID: mdl-36774436

ABSTRACT

BACKGROUND: Our study aimed to compare the short-term outcomes between robot-assisted segmentectomy (RAS) and video-assisted segmentectomy (VAS) for small pulmonary nodules. METHODS: The study included of 299 segmentectomies (132 RAS and 167 VAS procedures) for small pulmonary nodules between June 2018 and November 2021. The patients were divided into two groups: the RAS group and the VAS group. Propensity score-matching (PSM) analysis was performed to minimize bias. A logistic regression model was performed to identify the independent risk factors associated with complications. RESULTS: Before PSM, the following clinical variables were not balanced: age (P = 0.004), tumor size (P < 0.001), forced expiratory volume for 1 s (FEV1), and FEV1 percentage (P < 0.001). The patients with RAS had a shorter operative time (P = 0.014), less blood loss, a shorter postoperative hospital stay, less use of strong opioids, less drainage on postoperative day 1, and less postoperative total drainage, but more cost (all P < 0.001). Conversion to open surgery was performed for two patients in the VAS group but none in the RAS group. After PSM, 53 pairs were successfully matched. The data again suggested that the patients with RAS had less blood loss, a shorter postoperative hospital stay, and less use of strong opioids, but more cost (all P < 0.001). The operation time also was shorter in the RAS group, with a borderline statistically significant P value (0.053). CONCLUSIONS: In our study, RAS had better short-term outcomes than VAS, indicating a safer and more efficient technique than VAS.


Subject(s)
Multiple Pulmonary Nodules , Robotics , Humans , Pneumonectomy/methods , Propensity Score , Mastectomy, Segmental , Thoracic Surgery, Video-Assisted/adverse effects , Retrospective Studies
9.
BMC Surg ; 23(1): 330, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891506

ABSTRACT

BACKGROUND: Both video-assisted thoracoscopic surgery (VATS) thymectomy and robot-assisted thoracoscopic surgery (RATS) thymectomy have been suggested as technically sound approaches for early-stage thymic epithelial tumors. However, the choice of VATS or RATS thymectomy for large and advanced thymic epithelial tumors remains controversial. In this study, the perioperative outcomes of VATS and RATS thymectomy were compared in patients with large thymic epithelial tumors (size ≥5.0 cm). METHODS: A total of 113 patients with large thymic epithelial tumors who underwent minimally invasive surgery were included. Sixty-three patients underwent RATS, and 50 patients underwent VATS. Patient characteristics and perioperative variables were compared. RESULTS: Compared with the VATS group, the RATS group experienced a shorter operation time (median: 110 min vs.130 min; P < 0.001) and less blood loss (30.00 ml vs. 100.00 ml, P < 0.001). No patients in the RATS group needed conversion to open surgery, but in the VATS series, five patients required conversion to open procedures (0% vs. 14.29%, P = 0.054). The rate of concomitant resection in the RATS group was similar to that in the VATS group (11.43% vs. 5.71%; P = 0.673). There was no significant difference between the two groups in the duration of chest tube (P = 0.587), postoperative complications (P = 1.000), and the duration of postoperative hospital stay (P = 0.141). CONCLUSION: For large thymic epithelial tumors, RATS thymectomy can be performed safely and effectively in a radical fashion. Due to the advanced optics and precise instrument control, concomitant resections can be easily achieved in larger thymic epithelial tumors using the robotic approach.


Subject(s)
Neoplasms, Glandular and Epithelial , Robotics , Thymus Neoplasms , Humans , Thymectomy/methods , Thoracic Surgery, Video-Assisted/methods , Retrospective Studies , Thymus Neoplasms/surgery , Thymus Neoplasms/pathology , Neoplasms, Glandular and Epithelial/surgery
10.
Angew Chem Int Ed Engl ; 62(33): e202303075, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37202371

ABSTRACT

A highly enantioselective catalytic system for exo-Diels-Alder reactions was developed based on the newly discovered bispyrrolidine diboronates (BPDB). Activated by various Lewis or Brønsted acids, BPDB can catalyze highly stereoselective asymmetric exo-Diels-Alder reactions of monocarbonyl-based dienophiles. When 1,2-dicarbonyl-based dienophiles are used, the catalyst can sterically distinguish between the two binding sites, which leads to highly regioselective asymmetric Diels-Alder reactions. BPDB can be prepared as crystalline solids on a large scale and are stable under ambient condition. Single-crystal X-ray analysis of the structure for acid-activated BPDB indicated that its activation involves cleavage of a labile B←N bond.

11.
J Am Chem Soc ; 144(47): 21800-21807, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36383694

ABSTRACT

Palladium-catalyzed carbonylation reactions are efficient methods for synthesizing valuable molecules. However, realizing a carbonylation with excellent yield and chemo-, regio-, and enantioselectivities by classical low-valent palladium catalysis is highly challenging. Herein, we describe an enantioselective carbonylation reaction using a high-valent palladium catalysis strategy and employing a chiral sulfoxide phosphine (SOP) ligand. This double aminocarbonylation reaction begins with the formation of a carbamoylpalladium(II) species, which undergoes enantioselective oxidative addition with a cyclic diaryliodonium salt to generate a palladium(IV) intermediate, followed by a second CO insertion and reductive elimination. The mechanism has been illustrated with experimental and computational studies.


Subject(s)
Palladium , Sulfoxides , Stereoisomerism , Catalysis , Ligands
12.
Cancer ; 128(4): 708-718, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35076939

ABSTRACT

BACKGROUND: Circulating tumor DNA (ctDNA) has emerged as a noninvasive biomarker for dynamically monitoring tumors. However, published data on perioperative ctDNA in patients with operable non-small cell lung cancer (NSCLC) are currently limited. METHODS: This prospective study recruited 123 patients with resectable stage I to IIIA NSCLC. Preoperative and postoperative plasma samples and tumor tissue samples were subjected to next-generation sequencing with a panel of 425 cancer-related genes. Peripheral blood samples were collected before surgery, postoperatively within 1 month, and every 3 to 6 months for up to 3 years. RESULTS: After 4 exclusions, 119 eligible patients were enrolled from June 2016 to February 2019. Presurgical ctDNA was detectable in 29 of 117 patients (24.8%) and was associated with inferior recurrence-free survival (RFS; hazard ratio [HR], 2.42; 95% CI, 1.11-5.27; P = .022) and inferior overall survival (OS; HR, 5.54; 95% CI, 1.01-30.35; P = .026). Similarly, ctDNA was detected in 12 of 116 first postsurgical samples (10.3%) and was associated with shorter RFS (HR, 3.04; 95% CI, 1.22-7.58; P = .012). During surveillance after surgery, longitudinal ctDNA-positive patients (37 of 119; 31.1%) had significantly shorter RFS (HR, 3.46; 95% CI, 1.59-7.55; P < .001) and significantly shorter OS (HR, 9.99; 95% CI, 1.17-85.78; P = .010) in comparison with longitudinal ctDNA-negative patients. Serial ctDNA detection preceded radiologic disease recurrence by a median lead time of 8.71 months. CONCLUSIONS: These results suggest that perioperative ctDNA analyses can predict recurrence and survival, and serial ctDNA analyses can identify disease recurrence/metastasis earlier than routine radiologic imaging in patients with resectable NSCLC. LAY SUMMARY: The utility of serial circulating tumor DNA (ctDNA) monitoring for predicting disease recurrence and survival for early-stage non-small cell lung cancer (NSCLC) has not been well characterized. The detection of ctDNA before and after surgery is associated with the identification of a high risk of disease recurrence and long-term patient outcomes for resectable NSCLC. Perioperative ctDNA analyses identify disease recurrence earlier than routine radiologic imaging. ctDNA analyses can detect minimal residual disease for resectable NSCLC and thus can facilitate early intervention.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/surgery , Circulating Tumor DNA/blood , Humans , Lung Neoplasms/blood , Lung Neoplasms/surgery , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/pathology , Prognosis , Prospective Studies
13.
J Org Chem ; 87(16): 10958-10966, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35901268

ABSTRACT

Controlling the number of C-H bond activation is a long-standing challenge in organic synthesis. Recently, Yu's group demonstrated that in Pd-catalyzed alanine's arylation, pyridine-type ligands favor a mono-C-H bond activation, while quinoline-type ligands favor a di-C-H bond activation. To disclose the underlying principles, a theoretical study (density functional theory (DFT)) has been carried out. Our study indicates that a mono-ligand model, which is generally adopted in the community, does not reproduce the experimentally observed mono-/di-selectivity, while a bi-ligand model can rationalize the experimental observations well, including the observed diastereoselectivity in diarylation. The electron-rich pyridine-type ligands with less steric congestion can promote the C-H bond activation reaction of alanine derivatives. The quinoline-type ligands have a better π back-donation interaction with the metal, which makes a more active C-H bond activation than the pyridine-type ligands for this reaction. This bi-ligand model, which is a necessity, allows the understanding and future design of a dual ligand effect in C-H bond activation.


Subject(s)
Palladium , Quinolines , Alanine , Catalysis , Ligands , Palladium/chemistry , Pyridines
14.
Molecules ; 27(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35335205

ABSTRACT

Although hypochlorous acid (HOCl) solution has become a popular electrophilic reagent for industrial uses, the question of which molecule (HOCl or Cl2) undergoes electrophilic addition with olefins remains a controversial issue in some literature and textbooks, and this problem has been largely underexplored in theoretical studies. In this work, we computationally studied the electrophilic addition mechanism of olefins using three experimentally predicted effective electrophilic chlorinating agents, i.e., HOCl, Cl2, and Cl2O molecules. Our results demonstrate that Cl2 and Cl2O are the main electrophilic agents in HOCl solution, whereas the HOCl molecule cannot be the electrophile since the energy barrier when directly adding HOCl molecule to olefins is too high to overcome and the "anti-Markovnikov" regioselectivity for tri-substituted olefin is not consistent with experiments. Notably, the HOCl molecule prefers to form oxonium ion intermediate with a double bond, rather than the generally believed chlorium ion intermediate. This work could benefit mechanistic studies of critical biological and chemical processes with HOCl solution and may be used to update textbooks.


Subject(s)
Hypochlorous Acid , Hypochlorous Acid/chemistry
15.
J Am Chem Soc ; 143(33): 13195-13204, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34374531

ABSTRACT

Addition of halomethyl radicals to form bioactive molecules has recently become an efficient strategy. The reaction has a bottleneck, however, which is the effective and selective generation of the proper halomethyl •CHnX3-n radical by combining CHnX4-n with a carbon radical. Understanding the reactivity and selectivity of carbon radicals in the hydrogen atom transfer (HAT) and halogen atom transfer (XAT) reactions of CHnX4-n is key to the development of such an attractive method. With the help of the emerging data-driven strategy, DFT calculations were used to explore various correlations. For selectivity, the relative energy barriers between HAT and XAT reactions (ΔG⧧H - ΔG⧧X) correlate reasonably well with the three parameters ΔGH, ΔGX, and IP, and the correlation studies reveal that the calculated IPinver and the experimental ΔBDE can be used to conveniently predict the selectivity. Predicted selectivities are consistent with experimental determinations. This work not only provides a possibility for selecting carbon radicals with the known or easily obtained physicochemical data but also demonstrates that the informatic workflow such as generating data and identifying correlations has potential applications in mining reaction rules.

16.
J Comput Chem ; 42(7): 470-474, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33306842

ABSTRACT

To understand the effect of f-functions in predicting the right reaction mechanism for hypervalent iodine reagents, we adopt the Ahlrichs basis set family def2-SVP and def2-TZVP to revisit the potential energy surfaces of IBX-mediated oxidation and Togni I's isomerisation. Our results further prove that f-functions (in either Pople, Dunning, or Ahlrichs basis set series) are indispensable to predict the correct rate-determining step of hypervalent iodine reagents. The f-functions have a significant impact on the predicted reaction barriers for processes involving the IX (X = O, OH, CF3 , etc.) bond cleavage and formation, for example, in the reductive elimination step or the hypervalent twist step. We furthermore explore two hypervalent twist modes that account for the different influences of f-functions for IBX and Togni I. Our findings may be helpful for theoretical chemists to appropriately study the reaction mechanism of hypervalent iodine reagents.

17.
Phys Chem Chem Phys ; 23(11): 6758-6762, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33711091

ABSTRACT

Since hypervalent twist followed by reductive elimination is a general reaction pattern for hypervalent iodine reagents, mechanistic studies about the hypervalent twist step could provide significant guidance for experiments. Previous studies have shown that there are two types of hypervalent twist models, i.e. apical twist and equatorial twist. We applied both hypervalent twist models to explain the isomerization mechanism of two important electrophilic trifluoromethylating reagents, Togni I and Togni II. Up to now, there are less detailed studies about the different hypervalent twist modes between both reagents. Here, we successfully identified Togni II's isomerization pathway via equatorial twist, and suggested that different hypervalent twist models should be considered to predict the right mechanisms of reactions with hypervalent iodine reagents participating. This study will also be helpful to design new Togni type reagents with higher intrinsic reactivity and stability by avoiding the formation of acyclic by-products.

18.
Molecules ; 26(13)2021 Jul 04.
Article in English | MEDLINE | ID: mdl-34279422

ABSTRACT

A computational study on the origin of the activating effect for Pd-catalyzed directed C-H activation by the concerted metalation-deprotonation (CMD) mechanism is conducted. DFT calculations indicate that strong acids can make Pd catalysts coordinate with directing groups (DGs) of the substrates more strongly and lower the C-H activation energy barrier. For the CMD mechanism, the electrophilicity of the Pd center and the basicity of the corresponding acid ligand for deprotonating the C-H bond are vital to the overall C-H activation energy barrier. Furthermore, this rule might disclose the role of some additives for C-H activation.

19.
Biochem Biophys Res Commun ; 513(4): 958-966, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31003766

ABSTRACT

Immunosuppression is currently a vital pathophysiological characteristic and core problem of sepsis. Apoptosis of T lymphocyte contribute to immunosuppression by decreasing immune effector cells. A report has recently revealed the potential regulatory role of exosomal miRNAs derived from plasma of septic patients on immune system, but the underlying mechanism is unclear. We discovered the antiapoptotic effect of circulating exosomes derived from plasma of septic patients (Sepsis-Exos) on T lymphocytes and further investigated the molecular mechanism. Next-generation sequencing (NGS) indicated that sepsis induces prominent change of exosomal miRNA expression profile, including the overexpressed hsa-miR-7-5p. Gene Bad, which is in the cGMP-PKG signaling pathway, was negatively regulated by hsa-miR-7-5p by dual luciferase reporter assay. Sepsis-Exos were demonstrated to downregulate the mRNA and protein levels of proapoptotic gene Bad, active Caspase-3 and Bax, while upregulate that of antiapoptotic gene Bcl-2 via hsa-miR-7-5p, thus inhibited apoptosis of T lymphocytes induced by lipopolysaccharide (LPS) in vitro. Furthermore, Sepsis-Exos was verified to inhibit T lymphocytes apoptosis during sepsis in vivo, reducing mortality rate of septic model mice. In conclusion, we provide evidence that Sepsis-Exos participate in ameliorating apoptosis of T lymphocytes by directly suppressing Bad via hsa-miR-7-5p.


Subject(s)
Apoptosis/drug effects , Exosomes/physiology , MicroRNAs/metabolism , Sepsis/pathology , T-Lymphocytes/pathology , bcl-Associated Death Protein/metabolism , Animals , Down-Regulation , Exosomes/genetics , Gene Expression Regulation , Immune Tolerance , Mice , Sepsis/blood
SELECTION OF CITATIONS
SEARCH DETAIL