Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Nature ; 621(7980): 857-867, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37730992

ABSTRACT

Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans1,2, but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-CreERT2::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-CreERT2::CFTRL/L). By comparing these models with cystic fibrosis ferrets3,4, we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity-leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-CreERT2::CFTRL/L ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl- and HCO3-. Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets.


Subject(s)
Cystic Fibrosis , Disease Models, Animal , Ferrets , Lung , Transgenes , Animals , Humans , Animals, Genetically Modified , Cell Lineage , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Ferrets/genetics , Ferrets/physiology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Lung/cytology , Lung/metabolism , Lung/pathology , Trachea/cytology , Transgenes/genetics
2.
Nature ; 556(7701): 370-375, 2018 04.
Article in English | MEDLINE | ID: mdl-29643508

ABSTRACT

The human cerebral cortex is distinguished by its large size and abundant gyrification, or folding. However, the evolutionary mechanisms that drive cortical size and structure are unknown. Although genes that are essential for cortical developmental expansion have been identified from the genetics of human primary microcephaly (a disorder associated with reduced brain size and intellectual disability) 1 , studies of these genes in mice, which have a smooth cortex that is one thousand times smaller than the cortex of humans, have provided limited insight. Mutations in abnormal spindle-like microcephaly-associated (ASPM), the most common recessive microcephaly gene, reduce cortical volume by at least 50% in humans2-4, but have little effect on the brains of mice5-9; this probably reflects evolutionarily divergent functions of ASPM10,11. Here we used genome editing to create a germline knockout of Aspm in the ferret (Mustela putorius furo), a species with a larger, gyrified cortex and greater neural progenitor cell diversity12-14 than mice, and closer protein sequence homology to the human ASPM protein. Aspm knockout ferrets exhibit severe microcephaly (25-40% decreases in brain weight), reflecting reduced cortical surface area without significant change in cortical thickness, as has been found in human patients3,4, suggesting that loss of 'cortical units' has occurred. The cortex of fetal Aspm knockout ferrets displays a very large premature displacement of ventricular radial glial cells to the outer subventricular zone, where many resemble outer radial glia, a subtype of neural progenitor cells that are essentially absent in mice and have been implicated in cerebral cortical expansion in primates12-16. These data suggest an evolutionary mechanism by which ASPM regulates cortical expansion by controlling the affinity of ventricular radial glial cells for the ventricular surface, thus modulating the ratio of ventricular radial glial cells, the most undifferentiated cell type, to outer radial glia, a more differentiated progenitor.


Subject(s)
Biological Evolution , Cerebral Cortex/anatomy & histology , Cerebral Cortex/metabolism , Ferrets , Gene Deletion , Microcephaly/genetics , Microcephaly/pathology , Nerve Tissue Proteins/deficiency , Amino Acid Sequence , Animals , Calmodulin-Binding Proteins/deficiency , Calmodulin-Binding Proteins/metabolism , Centrosome/metabolism , Cerebral Cortex/pathology , Disease Models, Animal , Female , Ferrets/anatomy & histology , Ferrets/genetics , Gene Editing , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Germ-Line Mutation , Humans , Male , Mice , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Organ Size , Transcription, Genetic
3.
Clin Sci (Lond) ; 136(24): 1773-1791, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36416119

ABSTRACT

Persons with cystic fibrosis (CF) exhibit a unique alteration of fatty acid composition, marked especially among polyunsaturates by relative deficiency of linoleic acid and excess of Mead acid. Relative deficiency of docosahexaenoic acid is variably found. However, the initial development of these abnormalities is not understood. We examined fatty acid composition in young CF ferrets and pigs, finding abnormalities from the day of birth onward including relative deficiency of linoleic acid in both species. Fatty acid composition abnormalities were present in both liver and serum phospholipids of newborn CF piglets even prior to feeding, including reduced linoleic acid and increased Mead acid. Serum fatty acid composition evolved over the first weeks of life in both non-CF and CF ferrets, though differences between CF and non-CF persisted. Although red blood cell phospholipid fatty acid composition was normal in newborn animals, it became perturbed in juvenile CF ferrets including relative deficiencies of linoleic and docosahexaenoic acids and excess of Mead acid. In summary, fatty acid composition abnormalities in CF pigs and ferrets exist from a young age including at birth independent of feeding and overlap extensively with the abnormalities found in humans with CF. That the abnormalities exist prior to feeding implies that dietary measures alone will not address the mechanisms of imbalance.


Subject(s)
Cystic Fibrosis , Humans , Animals , Swine , Fatty Acids , Ferrets , Phospholipids , Docosahexaenoic Acids , Linoleic Acids
4.
Pancreatology ; 21(5): 839-847, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33994067

ABSTRACT

BACKGROUND: /Objectives: The pathogenesis of hyperglycemia during acute pancreatitis (AP) remains unknown due to inaccessibility of human tissues and lack of animal models. We aimed to develop an animal model to study the mechanisms of hyperglycemia and impaired glucose tolerance in AP. METHODS: We injected ferrets with intraperitoneal cerulein (50 µg/kg, 9 hourly injections) or saline. Blood samples were collected for glucose (0, 4, 8, 12, 24h); TNF-α, IL-6 (6h); amylase, lipase, insulin, glucagon, pancreatic polypeptide (PP), glucagon-like peptide-1 (GLP-1), and gastric inhibitory polypeptide (GIP) (24h). Animals underwent oral glucose tolerance test (OGTT), mixed meal tolerance test (MMTT) at 24h or 3 months, followed by harvesting pancreas for histopathology and immunostaining. RESULTS: Cerulein-injected ferrets exhibited mild pancreatic edema, neutrophil infiltration, and elevations in serum amylase, lipase, TNF-α, IL-6, consistent with AP. Plasma glucose was significantly higher in ferrets with AP at all time points. Plasma glucagon, GLP-1 and PP were significantly higher in cerulein-injected animals, while plasma insulin was significantly lower compared to controls. OGTT and MMTT showed abnormal glycemic responses with higher area under the curve. The hypoglycemic response to insulin injection was completely lost, suggestive of insulin resistance. OGTT showed low plasma insulin; MMTT confirmed low insulin and GIP; abnormal OGTT and MMTT responses returned to normal 3 months after cerulein injection. CONCLUSIONS: Acute cerulein injection causes mild acute pancreatitis in ferrets and hyperglycemia related to transient islet cell dysfunction and insulin resistance. The ferret cerulein model may contribute to the understanding of hyperglycemia in acute pancreatitis.


Subject(s)
Hyperglycemia , Insulin Resistance , Pancreatitis , Acute Disease , Amylases , Animals , Blood Glucose , Ceruletide/toxicity , Ferrets , Gastric Inhibitory Polypeptide , Glucagon , Glucagon-Like Peptide 1 , Humans , Insulin , Interleukin-6 , Lipase , Pancreatitis/chemically induced , Pancreatitis/veterinary , Tumor Necrosis Factor-alpha
5.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L671-L683, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32073882

ABSTRACT

Ferrets are an attractive mammalian model for several diseases, especially those affecting the lungs, liver, brain, and kidneys. Many chronic human diseases have been difficult to model in rodents due to differences in size and cellular anatomy. This is particularly the case for the lung, where ferrets provide an attractive mammalian model of both acute and chronic lung diseases, such as influenza, cystic fibrosis, A1A emphysema, and obliterative bronchiolitis, closely recapitulating disease pathogenesis, as it occurs in humans. As such, ferrets have the potential to be a valuable preclinical model for the evaluation of cell-based therapies for lung regeneration and, likely, for other tissues. Induced pluripotent stem cells (iPSCs) provide a great option for provision of enough autologous cells to make patient-specific cell therapies a reality. Unfortunately, they have not been successfully created from ferrets. In this study, we demonstrate the generation of ferret iPSCs that reflect the primed pluripotent state of human iPSCs. Ferret fetal fibroblasts were reprogrammed and acquired core features of pluripotency, having the capacity for self-renewal, multilineage differentiation, and a high-level expression of the core pluripotency genes and pathways at both the transcriptional and protein level. In conclusion, we have generated ferret pluripotent stem cells that provide an opportunity for advancing our capacity to evaluate autologous cell engraftment in ferrets.


Subject(s)
Ferrets/physiology , Induced Pluripotent Stem Cells/cytology , Animals , Cell Differentiation/physiology , Cells, Cultured , Cellular Reprogramming/physiology , Female , Fibroblasts/cytology , Humans , Male
6.
Am J Pathol ; 188(4): 876-890, 2018 04.
Article in English | MEDLINE | ID: mdl-29366680

ABSTRACT

In cystic fibrosis (CF), there is early destruction of the exocrine pancreas, and this results in a unique form of diabetes that affects approximately half of adult CF individuals. An animal model of cystic fibrosis-related diabetes has been developed in the ferret, which progresses through phases of glycemic abnormalities because of islet remodeling during and after exocrine destruction. Herein, we quantified the pancreatic histopathological changes that occur during these phases. There was an increase in percentage ductal, fat, and islet area in CF ferrets over time compared with age-matched wild-type controls. We also quantified islet size, shape, islet cell composition, cell proliferation (Ki-67), and expression of remodeling markers (matrix metalloprotease-7, desmin, and α-smooth muscle actin). Pancreatic ducts were dilated with scattered proliferating cells and were surrounded by activated stellate cells, indicative of tissue remodeling. The timing of islet and duct proliferation, stellate cell activation, and matrix remodeling coincided with the previously published stages of glycemic crisis and inflammation. This mapping of remodeling events in the CF ferret pancreas provides insights into early changes that control glycemic intolerance and subsequent recovery during the evolution of CF pancreatic disease.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Ferrets/metabolism , Gene Knockout Techniques , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Adipose Tissue/pathology , Aging/pathology , Animals , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Humans , Hyperplasia , Ki-67 Antigen/metabolism , Matrix Metalloproteinase 7/metabolism , Models, Biological , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/pathology , Up-Regulation/genetics
7.
Am J Respir Crit Care Med ; 197(10): 1308-1318, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29327941

ABSTRACT

RATIONALE: Classical interpretation of cystic fibrosis (CF) lung disease pathogenesis suggests that infection initiates disease progression, leading to an exuberant inflammatory response, excessive mucus, and ultimately bronchiectasis. Although symptomatic antibiotic treatment controls lung infections early in disease, lifelong bacterial residence typically ensues. Processes that control the establishment of persistent bacteria in the CF lung, and the contribution of noninfectious components to disease pathogenesis, are poorly understood. OBJECTIVES: To evaluate whether continuous antibiotic therapy protects the CF lung from disease using a ferret model that rapidly acquires lethal bacterial lung infections in the absence of antibiotics. METHODS: CFTR (cystic fibrosis transmembrane conductance regulator)-knockout ferrets were treated with three antibiotics from birth to several years of age and lung disease was followed by quantitative computed tomography, BAL, and histopathology. Lung disease was compared with CFTR-knockout ferrets treated symptomatically with antibiotics. MEASUREMENTS AND MAIN RESULTS: Bronchiectasis was quantified from computed tomography images. BAL was evaluated for cellular differential and features of inflammatory cellular activation, bacteria, fungi, and quantitative proteomics. Semiquantitative histopathology was compared across experimental groups. We demonstrate that lifelong antibiotics can protect the CF ferret lung from infections for several years. Surprisingly, CF animals still developed hallmarks of structural bronchiectasis, neutrophil-mediated inflammation, and mucus accumulation, despite the lack of infection. Quantitative proteomics of BAL from CF and non-CF pairs demonstrated a mucoinflammatory signature in the CF lung dominated by Muc5B and neutrophil chemoattractants and products. CONCLUSIONS: These findings implicate mucoinflammatory processes in the CF lung as pathogenic in the absence of clinically apparent bacterial and fungal infections.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Infections/microbiology , Inflammation/microbiology , Lung Diseases/microbiology , Lung/microbiology , Lung/physiopathology , Respiratory Tract Infections/microbiology , Animals , Disease Models, Animal , Ferrets/microbiology , Infections/physiopathology , Inflammation/physiopathology , Lung Diseases/physiopathology , Respiratory Tract Infections/physiopathology
8.
Am J Respir Crit Care Med ; 194(8): 974-980, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27447840

ABSTRACT

RATIONALE: In cystic fibrosis, abnormal glucose tolerance is associated with decreased lung function and worsened outcomes. Translational evidence indicates that abnormal glucose tolerance may begin in early life. OBJECTIVES: To determine whether very young children with cystic fibrosis have increased abnormal glucose tolerance prevalence compared with control subjects. The secondary objective was to compare area under the curve for glucose and insulin in children with cystic fibrosis with control subjects. METHODS: This is a prospective multicenter study in children ages 3 months to 5 years with and without cystic fibrosis. MEASUREMENTS AND MAIN RESULTS: Oral glucose tolerance testing with glucose, insulin, and C-peptide was sampled at 0, 10, 30, 60, 90, and 120 minutes. Twenty-three children with cystic fibrosis and nine control subjects had complete data. All control subjects had normal glucose tolerance. Nine of 23 subjects with cystic fibrosis had abnormal glucose tolerance (39%; P = 0.03). Of those, two met criteria for cystic fibrosis-related diabetes, two indeterminate glycemia, and six impaired glucose tolerance. Children with cystic fibrosis failed to exhibit the normal increase in area under the curve insulin with age observed in control subjects (P < 0.01), despite increased area under the curve glucose (P = 0.02). CONCLUSIONS: Abnormal glucose tolerance is notably prevalent among young children with cystic fibrosis. Children with cystic fibrosis lack the normal increase in insulin secretion that occurs in early childhood despite increased glucose. These findings demonstrate that glycemic abnormalities begin very early in cystic fibrosis, possibly because of insufficient insulin secretion.


Subject(s)
Cystic Fibrosis/metabolism , Glucose Tolerance Test , Blood Glucose/analysis , C-Peptide/blood , Case-Control Studies , Child, Preschool , Female , Humans , Infant , Insulin/blood , Male , Prospective Studies
9.
Am J Respir Cell Mol Biol ; 52(6): 683-94, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25317669

ABSTRACT

Mucociliary clearance (MCC) and submucosal glands are major components of airway innate immunity that have impaired function in cystic fibrosis (CF). Although both of these defense systems develop postnatally in the ferret, the lungs of newborn ferrets remain sterile in the presence of a functioning cystic fibrosis transmembrane conductance regulator gene. We evaluated several components of airway innate immunity and inflammation in the early CF ferret lung. At birth, the rates of MCC did not differ between CF and non-CF animals, but the height of the airway surface liquid was significantly reduced in CF newborn ferrets. CF ferrets had impaired MCC after 7 days of age, despite normal rates of ciliogenesis. Only non-CF ferrets eradicated Pseudomonas directly introduced into the lung after birth, whereas both genotypes could eradicate Staphylococcus. CF bronchoalveolar lavage fluid (BALF) had significantly lower antimicrobial activity selectively against Pseudomonas than non-CF BALF, which was insensitive to changes in pH and bicarbonate. Liquid chromatography-tandem mass spectrometry and cytokine analysis of BALF from sterile Caesarean-sectioned and nonsterile naturally born animals demonstrated CF-associated disturbances in IL-8, TNF-α, and IL-ß, and pathways that control immunity and inflammation, including the complement system, macrophage functions, mammalian target of rapamycin signaling, and eukaryotic initiation factor 2 signaling. Interestingly, during the birth transition, IL-8 was selectively induced in CF BALF, despite no genotypic difference in bacterial load shortly after birth. These results suggest that newborn CF ferrets have defects in both innate immunity and inflammatory signaling that may be important in the early onset and progression of lung disease in these animals.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/immunology , Animals , Animals, Newborn , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cytokines/metabolism , Ferrets , Gene Knockout Techniques , Immunity, Innate , Inflammation Mediators/metabolism , Mucociliary Clearance , Proteome/metabolism , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/immunology , Trachea/pathology
10.
Am J Pathol ; 184(5): 1309-22, 2014 May.
Article in English | MEDLINE | ID: mdl-24637292

ABSTRACT

Cystic fibrosis (CF) is a multiorgan disease caused by loss of a functional cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel in many epithelia of the body. Here we report the pathology observed in the gastrointestinal organs of juvenile to adult CFTR-knockout ferrets. CF gastrointestinal manifestations included gastric ulceration, intestinal bacterial overgrowth with villous atrophy, and rectal prolapse. Metagenomic phylogenetic analysis of fecal microbiota by deep sequencing revealed considerable genotype-independent microbial diversity between animals, with the majority of taxa overlapping between CF and non-CF pairs. CF hepatic manifestations were variable, but included steatosis, necrosis, biliary hyperplasia, and biliary fibrosis. Gallbladder cystic mucosal hyperplasia was commonly found in 67% of CF animals. The majority of CF animals (85%) had pancreatic abnormalities, including extensive fibrosis, loss of exocrine pancreas, and islet disorganization. Interestingly, 2 of 13 CF animals retained predominantly normal pancreatic histology (84% to 94%) at time of death. Fecal elastase-1 levels from these CF animals were similar to non-CF controls, whereas all other CF animals evaluated were pancreatic insufficient (<2 µg elastase-1 per gram of feces). These findings suggest that genetic factors likely influence the extent of exocrine pancreas disease in CF ferrets and have implications for the etiology of pancreatic sufficiency in CF patients. In summary, these studies demonstrate that the CF ferret model develops gastrointestinal pathology similar to CF patients.


Subject(s)
Aging/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Gastrointestinal Tract/pathology , Gene Knockout Techniques , Animals , Atrophy , Bacteria/growth & development , Cystic Fibrosis/microbiology , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Ferrets , Gastrointestinal Tract/abnormalities , Humans , Mucus/metabolism , Organ Specificity
11.
PLoS Genet ; 8(10): e1002966, 2012.
Article in English | MEDLINE | ID: mdl-23055939

ABSTRACT

Sensory hair cells are essential for hearing and balance. Their development from epithelial precursors has been extensively characterized with respect to transcriptional regulation, but not in terms of posttranscriptional influences. Here we report on the identification and functional characterization of an alternative-splicing regulator whose inactivation is responsible for defective hair-cell development, deafness, and impaired balance in the spontaneous mutant Bronx waltzer (bv) mouse. We used positional cloning and transgenic rescue to locate the bv mutation to the splicing factor-encoding gene Ser/Arg repetitive matrix 4 (Srrm4). Transcriptome-wide analysis of pre-mRNA splicing in the sensory patches of embryonic inner ears revealed that specific alternative exons were skipped at abnormally high rates in the bv mice. Minigene experiments in a heterologous expression system confirmed that these skipped exons require Srrm4 for inclusion into the mature mRNA. Sequence analysis and mutagenesis experiments showed that the affected transcripts share a novel motif that is necessary for the Srrm4-dependent alternative splicing. Functional annotations and protein-protein interaction data indicated that the encoded proteins cluster in the secretion and neurotransmission pathways. In addition, the splicing of a few transcriptional regulators was found to be Srrm4 dependent, and several of the genes known to be targeted by these regulators were expressed at reduced levels in the bv mice. Although Srrm4 expression was detected in neural tissues as well as hair cells, analyses of the bv mouse cerebellum and neocortex failed to detect splicing defects. Our data suggest that Srrm4 function is critical in the hearing and balance organs, but not in all neural tissues. Srrm4 is the first alternative-splicing regulator to be associated with hearing, and the analysis of bv mice provides exon-level insights into hair-cell development.


Subject(s)
Alternative Splicing , Deafness/genetics , Mutation , Nerve Tissue Proteins/genetics , Animals , Base Sequence , Cell Line , Cerebellum/metabolism , Cluster Analysis , Disease Models, Animal , Gene Order , Hair Cells, Auditory, Inner/metabolism , Humans , Mice , Molecular Sequence Data , Nucleotide Motifs , Phenotype , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , Transcriptome , Transgenes
12.
Am J Respir Cell Mol Biol ; 50(3): 502-12, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24074402

ABSTRACT

Chronic bacterial lung infections in cystic fibrosis (CF) are caused by defects in the CF transmembrane conductance regulator chloride channel. Previously, we described that newborn CF transmembrane conductance regulator-knockout ferrets rapidly develop lung infections within the first week of life. Here, we report a more slowly progressing lung bacterial colonization phenotype observed in juvenile to adult CF ferrets reared on a layered antibiotic regimen. Even on antibiotics, CF ferrets were still very susceptible to bacterial lung infection. The severity of lung histopathology ranged from mild to severe, and variably included mucus obstruction of the airways and submucosal glands, air trapping, atelectasis, bronchopneumonia, and interstitial pneumonia. In all CF lungs, significant numbers of bacteria were detected and impaired tracheal mucociliary clearance was observed. Although Streptococcus, Staphylococcus, and Enterococcus were observed most frequently in the lungs of CF animals, each animal displayed a predominant bacterial species that accounted for over 50% of the culturable bacteria, with no one bacterial taxon predominating in all animals. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry fingerprinting was used to quantify lung bacteria in 10 CF animals and demonstrated Streptococcus, Staphylococcus, Enterococcus, or Escherichia as the most abundant genera. Interestingly, there was significant overlap in the types of bacteria observed in the lung and intestine of a given CF animal, including bacterial taxa unique to the lung and gut of each CF animal analyzed. These findings demonstrate that CF ferrets develop lung disease during the juvenile and adult stages that is similar to patients with CF, and suggest that enteric bacterial flora may seed the lung of CF ferrets.


Subject(s)
Bacterial Translocation , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Cystic Fibrosis/microbiology , Ferrets/metabolism , Intestines/microbiology , Lung/microbiology , Respiratory Tract Infections/microbiology , Age Factors , Animals , Animals, Genetically Modified , Anti-Bacterial Agents/administration & dosage , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/physiopathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Disease Models, Animal , Disease Progression , Ferrets/genetics , Genetic Predisposition to Disease , Intestines/drug effects , Lung/drug effects , Lung/metabolism , Lung/physiopathology , Mucociliary Clearance , Phenotype , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/genetics , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/physiopathology
13.
Am J Physiol Lung Cell Mol Physiol ; 306(7): L645-60, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24487391

ABSTRACT

Tracheobronchial submucosal glands (SMGs) are derived from one or more multipotent glandular stem cells that coalesce to form a placode in surface airway epithelium (SAE). Wnt/ß-catenin-dependent induction of lymphoid enhancer factor (Lef-1) gene expression during placode formation is an early event required for SMG morphogenesis. We discovered that Sox2 expression is repressed as Lef-1 is induced within airway SMG placodes. Deletion of Lef-1 did not activate Sox2 expression in SMG placodes, demonstrating that Lef-1 activation does not directly inhibit Sox2 expression. Repression of Sox2 protein in SMG placodes occurred posttranscriptionally, since the activity of its endogenous promoter remained unchanged in SMG placodes. Thus we hypothesized that Sox2 transcriptionally represses Lef-1 expression in the SAE and that suppression of Sox2 in SMG placodes activates Wnt/ß-catenin-dependent induction of Lef-1 during SMG morphogenesis. Consistent with this hypothesis, transcriptional reporter assays, ChIP analyses, and DNA-protein binding studies revealed a functional Sox2 DNA binding site in the Lef-1 promoter that is required for suppressing ß-catenin-dependent transcription. In polarized primary airway epithelium, Wnt induction enhanced Lef-1 expression while also inhibiting Sox2 expression. Conditional deletion of Sox2 also enhanced Lef-1 expression in polarized primary airway epithelium, but this induction was significantly augmented by Wnt stimulation. Our findings provide the first evidence that Sox2 acts as a repressor to directly modulate Wnt-responsive transcription of the Lef-1 gene promoter. These studies support a model whereby Wnt signals and Sox2 dynamically regulate the expression of Lef-1 in airway epithelia and potentially also during SMG development.


Subject(s)
Lymphoid Enhancer-Binding Factor 1/biosynthesis , Respiratory System/growth & development , SOXB1 Transcription Factors/physiology , Acute Lung Injury/physiopathology , Animals , Animals, Newborn , Humans , Mice , Mice, Transgenic , Promoter Regions, Genetic/physiology , Wnt Proteins/physiology , beta Catenin/physiology
14.
Int J Biol Macromol ; 274(Pt 1): 133050, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880451

ABSTRACT

Practical employment of silicon (Si) electrodes in lithium-ion batteries (LIBs) is limited due to the severe volume changes suffered during charging-discharging process, causing serious capacity fading. Here, a composite polymer (CP-10) containing sodium carboxymethyl cellulose (CMC-Na) and poly-lysine (PL) is proposed for the binder of Si-based anodes, and a multifunctional strategy of "in-situ crosslinking" is achieved to alleviate the severe capacity degradation effectively. A cross-linked three-dimensional (3D) network is established through the strong hydrogen bonding interaction and reversible electrostatic interactions within CP-10, offering favorable mechanical tolerance for the extreme volume expansion of Si. Moreover, hydrogen bonding interaction along with ion-dipole interaction formed between CP-10 and Si surface enhance the bonding capability of Si-based anodes, promoting the maintenance of anodes' integrity. Consequently, over 800 cycles are achieved for the Si@CP-10 at 0.5C while maintaining a fixed discharge specific capacity of 1000 mAh g-1. Moreover, the Si/C@CP-10 can stably operate over 500 cycles with a capacity retention of 77.12 % at 1C. The prolonged cycling lifetime of Si/C and Si anodes suggests great potential for this strategy in promoting the implementation of high-capacity LIBs.


Subject(s)
Carboxymethylcellulose Sodium , Electrodes , Polylysine , Silicon , Carboxymethylcellulose Sodium/chemistry , Silicon/chemistry , Polylysine/chemistry , Electric Power Supplies , Cross-Linking Reagents/chemistry , Lithium/chemistry
15.
J Colloid Interface Sci ; 660: 647-656, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38266346

ABSTRACT

Although lithium-sulfur (Li-S) batteries have attracted a great deal of attention due to their ultrahigh energy density, the significant dissolution and shuttle of polysulfides, coupled with the unstable electrode structure, result in a substantial decline in capacity, thereby hindering their practical application in rapidly advancing energy storage systems. In this work, we prepare an environmentally friendly binder (LA-GA) that possesses self-healing abilities and high adhesion by combining dynamic disulfide (SS) bonds with abundant polar functional groups. Significantly, the self-healing capability provided by SS bonds facilitates the repair of cracks resulting from cathode volume expansion. Simultaneously, the polar functional groups (carboxyl and pyrogallol) not only enhance adhesion, preserving cathode integrity, but also effectively participate in lithium polysulfide adsorption, thereby inhibiting the shuttle effect. As a result, sulfur cathodes incorporating the LA-GA binder demonstrate favorable cycling stability, with a high capacity retention of 81.9 % when tested at 0.2C for 100 cycles. Additionally, the long-term cycling performance is satisfactory, showing a small capacity decline rate of 0.0469 % per cycle over 700 cycles at 1.0C.

16.
JCI Insight ; 9(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646935

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with F508del being the most prevalent mutation. The combination of CFTR modulators (potentiator and correctors) has provided benefit to CF patients carrying the F508del mutation; however, the safety and effectiveness of in utero combination modulator therapy remains unclear. We created a F508del ferret model to test whether ivacaftor/lumacaftor (VX-770/VX-809) therapy can rescue in utero and postnatal pathologies associated with CF. Using primary intestinal organoids and air-liquid interface cultures of airway epithelia, we demonstrate that the F508del mutation in ferret CFTR results in a severe folding and trafficking defect, which can be partially restored by treatment with CFTR modulators. In utero treatment of pregnant jills with ivacaftor/lumacaftor prevented meconium ileus at birth in F508del kits and sustained postnatal treatment of CF offspring improved survival and partially protected from pancreatic insufficiency. Withdrawal of ivacaftor/lumacaftor treatment from juvenile CF ferrets reestablished pancreatic and lung diseases, with altered pulmonary mechanics. These findings suggest that in utero intervention with a combination of CFTR modulators may provide therapeutic benefits to individuals with F508del. This CFTR-F508del ferret model may be useful for testing therapies using clinically translatable endpoints.


Subject(s)
Aminophenols , Aminopyridines , Benzodioxoles , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Ferrets , Quinolones , Animals , Female , Pregnancy , Aminophenols/therapeutic use , Aminophenols/pharmacology , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Benzodioxoles/therapeutic use , Benzodioxoles/pharmacology , Chloride Channel Agonists/therapeutic use , Chloride Channel Agonists/pharmacology , Cystic Fibrosis/genetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Disease Models, Animal , Drug Combinations , Mutation , Quinolones/pharmacology , Quinolones/therapeutic use
17.
Am J Respir Cell Mol Biol ; 49(5): 837-44, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23782101

ABSTRACT

Cystic fibrosis (CF) is a life-shortening, recessive, multiorgan genetic disorder caused by the loss of CF transmembrane conductance regulator (CFTR) chloride channel function found in many types of epithelia. Animal models that recapitulate the human disease phenotype are critical to understanding pathophysiology in CF and developing therapies. CFTR knockout ferrets manifest many of the phenotypes observed in the human disease, including lung infections, pancreatic disease and diabetes, liver disease, malnutrition, and meconium ileus. In the present study, we have characterized abnormalities in the bioelectric properties of the trachea, stomach, intestine, and gallbladder of newborn CF ferrets. Short-circuit current (ISC) analysis of CF and wild-type (WT) tracheas revealed the following similarities and differences: (1) amiloride-sensitive sodium currents were similar between genotypes; (2) responses to 4,4'-diisothiocyano-2,2'-stilbene disulphonic acid were 3.3-fold greater in CF animals, suggesting elevated baseline chloride transport through non-CFTR channels in a subset of CF animals; and (3) a lack of 3-isobutyl-1-methylxanthine (IBMX)/forskolin-stimulated and N-(2-Naphthalenyl)-((3,5-dibromo-2,4-dihydroxyphenyl)methylene)glycine hydrazide (GlyH-101)-inhibited currents in CF animals due to the lack of CFTR. CFTR mRNA was present throughout all levels of the WT ferret and IBMX/forskolin-inducible ISC was only observed in WT animals. However, despite the lack of CFTR function in the knockout ferret, the luminal pH of the CF ferret gallbladder, stomach, and intestines was not significantly changed relative to WT. The WT stomach and gallbladder exhibited significantly enhanced IBMX/forskolin ISC responses and inhibition by GlyH-101 relative to CF samples. These findings demonstrate that multiple organs affected by disease in the CF ferret have bioelectric abnormalities consistent with the lack of cAMP-mediated chloride transport.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Cystic Fibrosis/metabolism , Epithelial Cells/metabolism , Ferrets/genetics , Gallbladder/metabolism , Gastric Mucosa/metabolism , Intestinal Mucosa/metabolism , Respiratory Mucosa/metabolism , Adenylyl Cyclases/metabolism , Animals , Animals, Genetically Modified , Animals, Newborn , Chlorides/metabolism , Cyclic AMP/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Disease Models, Animal , Electric Impedance , Enzyme Activation , Enzyme Activators/pharmacology , Epithelial Cells/drug effects , Gallbladder/drug effects , Gastric Mucosa/drug effects , Gene Knockout Techniques , Genotype , Hydrogen-Ion Concentration , Intestinal Mucosa/drug effects , Ion Transport , Membrane Potentials , Membrane Transport Modulators/pharmacology , Phenotype , Phosphodiesterase Inhibitors/pharmacology , Respiratory Mucosa/drug effects , Sodium/metabolism
18.
Hum Gene Ther ; 33(19-20): 1023-1036, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35686451

ABSTRACT

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), a chronic disease that affects multiple organs, including the lung. We developed a CF ferret model of a scarless G551→D substitution in CFTR (CFTRG551D-KI), enabling approaches to correct this gating mutation in CF airways via gene editing. Homology-directed repair (HDR) was tested in Cas9-expressing CF airway basal cells (Cas9-GKI) from this model, as well as reporter basal cells (Y66S-Cas9-GKI) that express an integrated nonfluorescent Y66S-EGFP (enhanced green fluorescent protein) mutant gene to facilitate rapid assessment of HDR by the restoration of fluorescence. Recombinant adeno-associated virus (rAAV) vectors were used to deliver two DNA templates and sgRNAs for dual-gene editing at the EGFP and CFTR genes, followed by fluorescence-activated cell sorting of EGFPY66S-corrected cells. When gene-edited airway basal cells were polarized at an air-liquid interface, unsorted and EGFPY66S-corrected sorted populations gave rise to 26.0% and 70.4% CFTR-mediated Cl- transport of that observed in non-CF cultures, respectively. The consequences of gene editing at the CFTRG551D locus by HDR and nonhomologous end joining (NHEJ) were assessed by targeted gene next-generation sequencing (NGS) against a specific amplicon. NGS revealed HDR corrections of 3.1% of G551 sequences in the unsorted population of rAAV-infected cells, and 18.4% in the EGFPY66S-corrected cells. However, the largest proportion of sequences had indels surrounding the CRISPR (clustered regularly interspaced short palindromic repeats) cut site, demonstrating that NHEJ was the dominant repair pathway. This approach to simultaneously coedit at two genomic loci using rAAV may have utility as a model system for optimizing gene-editing efficiencies in proliferating airway basal cells through the modulation of DNA repair pathways in favor of HDR.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Ferrets/genetics , Ferrets/metabolism , Genetic Vectors/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis/therapy , Mutation , Lung/metabolism , DNA
19.
Adv Redox Res ; 52022 Jul.
Article in English | MEDLINE | ID: mdl-35903252

ABSTRACT

Cystic fibrosis-related diabetes (CFRD) is one the most common comorbidities in cystic fibrosis (CF). Pancreatic oxidative stress has been postulated in the pathogenesis of CFRD, but no studies have been done to show an association. The main obstacle is the lack of suitable animal models and no immediate availability of pancreas tissue in humans. In the CF porcine model, we found increased pancreatic total glutathione (GSH), glutathione disulfide (GSSG), 3-nitrotyrosine- and 4-hydroxynonenal-modified proteins, and decreased copper zinc superoxide dismutase (CuZnSOD) activity, all indicative of oxidative stress. CF pig pancreas demonstrated increased DHE oxidation (as a surrogate marker of superoxide) in situ compared to non-CF and this was inhibited by a SOD-mimetic (GC4401). Catalase and glutathione peroxidase activities were not different between CF and non-CF pancreas. Isolated CF pig islets had significantly increased DHE oxidation, peroxide production, reduced insulin secretion in response to high glucose and diminished secretory index compared to non-CF islets. Acute treatment with apocynin or an SOD mimetic failed to restore insulin secretion. These results are consistent with the hypothesis that CF pig pancreas is under significant oxidative stress as a result of increased O2 ●- and peroxides combined with reduced antioxidant defenses against reactive oxygen species (ROS). We speculate that insulin secretory defects in CF may be due to oxidative stress.

20.
JCI Insight ; 7(5)2022 03 08.
Article in English | MEDLINE | ID: mdl-35104244

ABSTRACT

Alpha-1 antitrypsin deficiency (AATD) is the most common genetic cause and risk factor for chronic obstructive pulmonary disease, but the field lacks a large-animal model that allows for longitudinal assessment of pulmonary function. We hypothesized that ferrets would model human AATD-related lung and hepatic disease. AAT-knockout (AAT-KO) and PiZZ (E342K, the most common mutation in humans) ferrets were generated and compared with matched controls using custom-designed flexiVent modules to perform pulmonary function tests, quantitative computed tomography (QCT), bronchoalveolar lavage (BAL) proteomics, and alveolar morphometry. Complete loss of AAT (AAT-KO) led to increased pulmonary compliance and expiratory airflow limitation, consistent with obstructive lung disease. QCT and morphometry confirmed emphysema and airspace enlargement, respectively. Pathway analysis of BAL proteomics data revealed inflammatory lung disease and impaired cellular migration. The PiZ mutation resulted in altered AAT protein folding in the liver, hepatic injury, and reduced plasma concentrations of AAT, and PiZZ ferrets developed obstructive lung disease. In summary, AAT-KO and PiZZ ferrets model the progressive obstructive pulmonary disease seen in AAT-deficient patients and may serve as a platform for preclinical testing of therapeutics including gene therapy.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , alpha 1-Antitrypsin Deficiency , Animals , Ferrets , Humans , Lung/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , alpha 1-Antitrypsin Deficiency/complications , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/therapy
SELECTION OF CITATIONS
SEARCH DETAIL