Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Anal Chem ; 96(4): 1576-1586, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38190499

ABSTRACT

Tuberculosis (TB), characterized by high mortality and low diagnosis, is caused by a single pathogen, Mycobacterium tuberculosis (Mtb). Imaging tools that can be used to track Mtb without pre-labeling and to diagnose live Mtb in clinical samples can shorten the gap between bench and clinic, fuel the development of novel anti-TB drugs, strengthen TB prevention, and improve patient treatment. In this study, we report an unprecedented novel nitroreductase-responsive cyanine-based fluorescent probe (Cy3-NO2-tre) that rapidly and specifically labels Mtb and detects it in clinical samples. Cy3-NO2-tre generated fluorescence after activation by a specific nitroreductase, Rv3368c, which is conserved in the Mycobacteriaceae. Cy3-NO2-tre effectively imaged mycobacteria within infected host cells, tracked the infection process, and visualized Mycobacterium smegmatis being endocytosed by macrophages. Cy3-NO2-tre also detected Mtb in the sputum of patients with TB and exhibited excellent photostability. Furthermore, the Cy3-NO2-tre/auramine O percentage change within 7 ± 2 days post drug treatment in the sputum of inpatients was closely correlated with the reexamination results of the chest computed tomography, strongly demonstrating the clinical application of Cy3-NO2-tre as a prognostic indicator in monitoring the therapeutic efficacy of anti-TB drugs in the early patient care stage.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Nitrogen Dioxide , Tuberculosis/diagnostic imaging , Tuberculosis/drug therapy , Antitubercular Agents/pharmacology , Mycobacterium smegmatis , Sputum/microbiology
2.
Anal Chem ; 95(38): 14421-14429, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37695215

ABSTRACT

Real-time monitoring of early antitumor efficacy is one of the key issues in realizing high-efficiency and more precise tumor treatment. As a highly specific event in the early stage of apoptosis, the release of cytochrome c may act as a key biomarker for monitoring cell apoptosis. However, achieving real-time monitoring of the cytochrome c release in vivo remains a challenge. Herein, we report a novel integrated nanosystem named DFeK nanoparticle (DFeK NP) to achieve a favorable collaboration of inducing tumor cell apoptosis and monitoring early therapeutic efficacy, which combined the cytochrome c-activated DNA nanoprobe cApt-App with pro-apoptotic peptide [KLAKLAK]2 and ferrous ions. [KLAKLAK]2 can target the mitochondria to disrupt the mitochondrial membrane together with reactive oxygen species produced by ferrous ions via the Fenton reaction to promote mitochondrial damage. Then, cytochrome c is released from damaged mitochondria to trigger apoptosis, further activating the cApt-App probe from the fluorescence "off" state to the "on" state. The cytochrome c-specific "off-to-on" transition was successfully applied in fluorescence imaging of cytochrome c in vivo and thus achieved real-time early therapeutic efficacy monitoring. Collectively, this work presents a valuable integrated tool for tumor inhibition and therapeutic efficacy evaluation to realize more precise and more effective tumor treatment.


Subject(s)
Apoptosis , Cytochromes c , Cell Death , Iron , Ions
3.
Hereditas ; 159(1): 5, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35045867

ABSTRACT

PURPOSE: To explore the role and effects of the single-nucleotide polymorphisms (SNPs) of the two functionally related indoleamine 2,3-dioxygenase (IDO) isoforms on IDO activity in the Chinese Han ethnic population. METHODS: A total of 151 consecutive patients of Chinese Han ethnicity (99 men and 52 women; average age 51.92 ± 18.26 years) with pulmonary TB admitted to Beijing Chest Hospital between July 2016 and February 2017 were enrolled in the study. The serum levels of tryptophan (Trp) and its metabolites, IDO1 and IDO2 mRNA levels, and the relationship of IDO1 and IDO2 SNPs with the serum Kyn/Trp ratio in TB patients and healthy controls were examined by LC/ESI-MS/MS analysis. Genomic DNA was isolated from whole blood, and the PCR products were sequenced and analyzed. RESULTS: In Chinese Han participants, only IDO2 had SNPs R248W and Y359X that affected IDO activity, as determined by the serum Kyn/Trp ratio. IDO1 and IDO2 mRNA levels were inversely related in TB patients and healthy controls. CONCLUSIONS: IDO2 SNPs and the opposite expression pattern of IDO1 and IDO2 affected IDO activity in Chinese Han TB patients.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase , Tuberculosis , Adult , Aged , Female , Humans , Male , Middle Aged , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Polymorphism, Single Nucleotide , Protein Isoforms , Tandem Mass Spectrometry
4.
Am J Hematol ; 95(12): 1542-1552, 2020 12.
Article in English | MEDLINE | ID: mdl-32871029

ABSTRACT

We conducted a prospective, multicenter, randomized, controlled clinical trial to compare the efficacy and safety of high-dose dexamethasone (HD-DXM) plus recombinant human thrombopoietin (rhTPO), vs HD-DXM alone in newly diagnosed adult immune thrombocytopenia (ITP) patients. Enrolled patients were randomly assigned to receive DXM plus rhTPO or DXM monotherapy. Another 4-day course of DXM was repeated if response was not achieved by day 10 in both arms. One hundred patients in the HD-DXM plus rhTPO arm and 96 patients in the HD-DXM monotherapy arm were included in the full analysis set. So, HD-DXM plus rhTPO resulted in a higher incidence of initial response (89.0% vs 66.7%, P < .001) and complete response (CR, 75.0% vs 42.7%, P < .001) compared with HD-DXM monotherapy. Response rate at 6 months was also higher in the HD-DXM plus rhTPO arm than that in the HD-DXM monotherapy arm (51.0% vs 36.5%, P = .02; sustained CR: 46.0% vs 32.3%, P = .043). Throughout the follow-up period, the overall duration of response was greater in the HD-DXM plus rhTPO arm compared to the HD-DXM monotherapy arm (P = .04), as estimated by the Kaplan-Meier analysis. The study drugs were generally well tolerated. In conclusion, the combination of HD-DXM with rhTPO significantly improved the initial response and yielded favorable SR in newly diagnosed ITP patients, thus could be further validated as a frontline treatment for ITP. This study is registered as clinicaltrials.gov identifier: NCT01734044.


Subject(s)
Dexamethasone/administration & dosage , Purpura, Thrombocytopenic, Idiopathic , Thrombopoietin/administration & dosage , Adult , Aged , Dexamethasone/adverse effects , Disease-Free Survival , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Prospective Studies , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/mortality , Survival Rate , Thrombopoietin/adverse effects
5.
BMC Infect Dis ; 19(1): 619, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31299908

ABSTRACT

BACKGROUND: About 10% latent tuberculosis infections (LTBI) would progress to active tuberculosis (TB), if left prophylactic therapy. Tuberculin skin test (TST) is the most widely used method for LTBI screening in the school of China. However, for college students, the association between TST reaction size and active TB risk was unclear. METHODS: We conducted a retrospective study to assess whether the TST reaction size would predict active TB during the next two years after TST screening for college students. Multivariable Cox regression was performed to identify the size of TST reaction and other factors associated with active TB risk. RESULTS: A total of 67292 college students in Beijing, China were included in this study; 8021 (11.92%) individuals were TST positive (≥10 mm), and 3879 (5.76%) of them were strong TST positive (≥15 mm). During the two years of follow-up, 26 active TB cases were reported in 134575 person-years with an incidence rate of 19.32 (95% CI: 12.61-28.32) per 100000 person-years. The adjusted hazard ratios (HR) (95% CI) were 1.094 (0.247~4.846), 3.644 (1.188~11.179), 6.832 (2.436~19.163) and 9.768 (2.203~43.315) of cohorts with the TST reaction size intervals 5~9, 10~14, 15~20 and ≥ 20 mm, respectively, compared to cohort with interval 0~4 mm. Besides, the adjusted HR (95% CI) was 3.593 (1.354~9.537) of males compared to females. CONCLUSIONS: This study indicated that the risk of active TB increased in college students when the TST reaction size was ≥10 mm, and males had a higher risk compared to females.


Subject(s)
Tuberculosis/diagnosis , Adult , China/epidemiology , Female , Humans , Incidence , Male , Proportional Hazards Models , Retrospective Studies , Risk Factors , Students , Tuberculin Test , Tuberculosis/epidemiology , Young Adult
6.
BMC Genomics ; 19(1): 640, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30157763

ABSTRACT

BACKGROUND: In the current scenario, the drug-resistant tuberculosis is a significant challenge in the control of tuberculosis worldwide. In order to investigate the in vivo evolution of drug-resistant M. tuberculosis, the present study envisaged sequencing of the draft genomes of 18 serial isolates from four pre-extensively drug-resistant (pre-XDR) tuberculosis patients for continuous genetic alterations. RESULTS: All of the isolates harbored single nucleotide polymorphisms (SNPs) ranging from 1303 to 1309 with M. tuberculosis H37Rv as the reference. SNPs ranged from 0 to 12 within patients. The evolution rates were higher than the reported SNPs of 0.5 in the four patients. All the isolates exhibited mutations at sites of known drug targets, while some contained mutations in uncertain drug targets including folC, proZ, and pyrG. The compensatory substitutions for rescuing these deleterious mutations during evolution were only found in RpoC I491T in one patient. Many loci with microheterogeneity showed transient mutations in different isolates. Ninety three SNPs exhibited significant association with refractory pre-XDR TB isolates. CONCLUSIONS: Our results showed evolutionary changes in the serial genetic characteristics of the pre-XDR TB patients due to accumulation of the fixed drug-resistant related mutations, and the transient mutations under continuous antibiotics pressure over several years.


Subject(s)
Evolution, Molecular , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/physiology , Tuberculosis, Multidrug-Resistant/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Genotype , Humans , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/drug effects , Polymorphism, Single Nucleotide , Time Factors
7.
Ann Clin Microbiol Antimicrob ; 16(1): 67, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28974222

ABSTRACT

Tuberculosis (TB) is considered as one of the most serious threats to public health in many parts of the world. The threat is even more severe in the developing countries where there is a lack of advanced medical amenities and contemporary anti-TB drugs. In such situations, dosage optimization of existing medication regimens seems to be the only viable option. Therapeutic drug monitoring study results suggest that high-dose treatment regimens can compensate the low serum concentration of anti-TB drugs and shorten the therapy duration. The article presents a critical review on the possible changes that occur in the host and the pathogen upon the administration of standard and high-dose regimens. Some of the most common factors that are responsible for low anti-TB drug concentrations in the serum are differences in hosts' body weight, metabolic processing of the drug, malabsorption and/or drug-drug interaction. Furthermore, failure to reach the cavitary pulmonary and extrapulmonary tissues also contributes to the therapeutic inefficiency of the drugs. In such conditions, administration of higher doses can help in compensating the pathogenic outcomes of enhancement of the pathogen's physical barriers, efflux pumps and genetic mutations. The present article also presents a summary of the recorded treatment outcomes of clinical trials that were conducted to test the efficacy of administration of high dose of anti-tuberculosis drugs. This review will help physicians across the globe to understand the underlying pathophysiological changes (including side effects) that dictate the clinical outcomes in patients administered with standard and/or high dose anti-TB drugs.


Subject(s)
Antitubercular Agents/administration & dosage , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Biofilms/drug effects , Biofilms/growth & development , Body Weight , Cell Wall/drug effects , Drug Delivery Systems , Drug Interactions , Humans , Metabolism/drug effects , Mutation , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Nutritional Status , Obesity , Serum , Treatment Failure , Treatment Outcome , Tuberculosis/physiopathology
8.
Crit Rev Microbiol ; 42(5): 738-58, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26089025

ABSTRACT

The method of genotyping by variable number tandem repeats (VNTRs) facilitates the epidemiological studies of different Mycobacterium species worldwide. Until now, the VNTR method is not fully understood, for example, its discovery, function and classification. The inconsistent nomenclature and terminology of VNTR is especially confusing. In this review, we first describe in detail the VNTRs in Mycobacterium tuberculosis (M. tuberculosis), as this pathogen resulted in more deaths than any other microbial pathogen as well as for which extensive studies of VNTRs were carried out, and then we outline the recent progress of the VNTR-related epidemiological research in several other Mycobacterium species, such as M. abscessus, M. africanum, M. avium, M. bovis, M. canettii, M. caprae, M. intracellulare, M. leprae, M. marinum, M. microti, M. pinnipedii and M. ulcerans from different countries and regions. This article is aimed mainly at the practical notes of VNTR to help the scientists in better understanding and performing this method.


Subject(s)
Bacterial Typing Techniques/methods , Minisatellite Repeats , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/microbiology , Animals , Genotype , Humans , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/metabolism
9.
Crit Rev Microbiol ; 41(3): 399-410, 2015.
Article in English | MEDLINE | ID: mdl-24433008

ABSTRACT

The pathogen, Mycobacterium tuberculosis (M. tuberculosis) is a well-evolved, organized pathogen that has developed drug resistance, specifically multidrug resistance (MDR) and extensive drug resistance (XDR). This review primarily summarizes the mechanisms of drug resistance by M. tuberculosis according to the traditional Chinese view. The traditional Chinese view of drug resistance includes: the physical barrier of the cell wall; mutations relating to current anti-TB agents; drug efflux pumps; and drug stress, including the SOS response systems, the mismatch repair systems and the toxin-antitoxin systems. In addition, this review addresses the integrated systems biology of genomics, transcriptomics, proteomics, metabolomics and interactomics. Development of the various levels of systems biology has enabled determination of the anatomy of bacteria. Finally, the current review proposes that further investigation regarding the population of individuals with a high drug metabolic speed is vital to further understand drug resistance in M. tuberculosis.


Subject(s)
Antitubercular Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Mycobacterium tuberculosis/drug effects , Transcriptome/genetics , Tuberculosis, Pulmonary/drug therapy , Biological Transport/physiology , Cell Wall/drug effects , China , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , SOS Response, Genetics/genetics , Systems Biology , Tuberculosis, Pulmonary/microbiology
10.
J Clin Microbiol ; 52(5): 1540-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24574296

ABSTRACT

Rapid and accurate detection of multidrug resistance (MDR) in Mycobacterium tuberculosis is essential to improve treatment outcomes and reduce global transmission but remains a challenge. Rifampin (RIF) resistance is a reliable marker of MDR tuberculosis (TB) since by far the majority of RIF-resistant strains are also isoniazid (INH) resistant. We have developed a rapid, sensitive, and specific method for detecting the most common mutations associated with RIF resistance, in the RIF resistance determining region (RRDR) of rpoB, using a cocktail of six padlock probes and rolling circle amplification (RCA). We used this method to test 46 stored M. tuberculosis clinical isolates with known RIF susceptibility profiles (18 RIF resistant, 28 susceptible), a standard susceptible strain (H37Rv, ATCC 27294) and 78 M. tuberculosis culture-positive clinical (sputum) samples, 59 of which grew RIF-resistant strains. All stored clinical isolates were correctly categorized, by the padlock probe/RCA method, as RIF susceptible or resistant; the sensitivity and specificity of the method, for direct detection of phenotypically RIF-resistant M. tuberculosis in clinical specimens, were 96.6 and 89.5%, respectively. This method is rapid, simple, and inexpensive and has the potential for high-throughput routine screening of clinical specimens for MDR M. tuberculosis, particularly in high prevalence settings with limited resources.


Subject(s)
Bacterial Proteins/genetics , Mutation/genetics , Mycobacterium tuberculosis/genetics , Nucleic Acid Amplification Techniques/methods , Antitubercular Agents/pharmacology , DNA, Bacterial/genetics , DNA-Directed RNA Polymerases , Drug Resistance, Multiple, Bacterial/genetics , Humans , Isoniazid/pharmacology , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/drug effects , Rifampin/pharmacology , Sensitivity and Specificity , Sputum/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/genetics
11.
Microbes Infect ; 26(4): 105332, 2024.
Article in English | MEDLINE | ID: mdl-38537770

ABSTRACT

BACKGROUND: Little knowledge of antigen existence in the pulmonary tuberculosis (PTB) patient serum impeded its development in antigen detection technology, despite its considerable potential. METHODS: Human ligand proteins and their adsorbent Mycobacterium tuberculosis (M.tb) proteins in the serum of PTB patients were identified using human protein chip (HuProt™) and LC-MS/MS, successively. The monoclonal antibody of ligand proteins, C5orf24, and polyclonal antibody of 9 M.tb proteins were prepared on mice and rabbits which were used to develop a novel enzyme-linked ligand-sorbent assay (ELLSA). The 412 volunteers were divided into the PTB group (n = 250) and the healthy control (n = 162). The PTB group was further divided into ATB (n = 131), LTBI (n = 18), Clinical diagnosis (n = 18), and Suspected (n = 73). All samples were tested by ELLSA to evaluate the diagnostic performance of ELLSA in PTB patients. RESULTS: Nine ligand proteins specific to PTB patients were identified on chips, with Chromosome 5 Open Reading Frame 24 (C5orf24) and kinocilin (KNCN) showing significantly higher signals. Proteomic analysis of the C5orf24-and KNCN-adsorbent protein complexes revealed 10 and 10 of the M.tb proteins, respectively. According to the composition reference of standard, the ELLSA based on C5orf24 ligand demonstrated a higher sensitivity of 69.6% and specificity of 90.18% in ATB patients and had a sensitivity of 64.22% in bacterial negative pulmonary tuberculosis, whereas the sensitivity of MGIT 960 and Xpert M.tb/RIF were 0%, respectively. CONCLUSIONS: M.tb proteins in serum can be enriched by ligand proteins and detected by ELLSA which proved to have excellent diagnostic performance for PTB.


Subject(s)
Antigens, Bacterial , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/blood , Humans , Retrospective Studies , Mycobacterium tuberculosis/immunology , Female , Adult , Cross-Sectional Studies , Animals , Middle Aged , Antigens, Bacterial/immunology , Male , Rabbits , Mice , Sensitivity and Specificity , Enzyme-Linked Immunosorbent Assay/methods , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Ligands , Young Adult , Proteomics/methods , Aged , Tandem Mass Spectrometry , Chromatography, Liquid
12.
CNS Neurosci Ther ; 30(3): e14677, 2024 03.
Article in English | MEDLINE | ID: mdl-38497529

ABSTRACT

BACKGROUND: Exosomes are vesicles secreted by all types of mammalian cells. They are characterized by a double-layered lipid membrane structure. They serve as carriers for a plethora of signal molecules, including DNA, RNA, proteins, and lipids. Their unique capability of effortlessly crossing the blood-brain barrier underscores their critical role in the progression of various neurological disorders. This includes, but is not limited to, diseases such as Alzheimer's, Parkinson's, and ischemic stroke. Establishing stable and mature methods for isolating exosomes is a prerequisite for the study of exosomes and their biomedical significance. The extraction technologies of exosomes include differential centrifugation, density gradient centrifugation, size exclusion chromatography, ultrafiltration, polymer coprecipitation, immunoaffinity capture, microfluidic, and so forth. Each extraction technology has its own advantages and disadvantages, and the extraction standards of exosomes have not been unified internationally. AIMS: This review aimed to showcase the recent advancements in exosome isolation techniques and thoroughly compare the advantages and disadvantages of different methods. Furthermore, the significant research progress made in using exosomes for diagnosing and treating central nervous system (CNS) diseases has been emphasized. CONCLUSION: The varying isolation methods result in differences in the concentration, purity, and size of exosomes. The efficient separation of exosomes facilitates their widespread application, particularly in the diagnosis and treatment of CNS diseases.


Subject(s)
Central Nervous System Diseases , Exosomes , Humans , Exosomes/metabolism , Proteins/metabolism , Central Nervous System Diseases/therapy , Central Nervous System Diseases/metabolism
13.
Microbes Infect ; 26(1-2): 105239, 2024.
Article in English | MEDLINE | ID: mdl-37863312

ABSTRACT

Oxidative stress and iron metabolism are essential for Mycobacterium tuberculosis (M.tb) survival in host cells. The efflux pump Rv1258c belongs to the major facilitator superfamily (MFS) and can actively pump drugs to promote certain drug resistance in M.tb. In this study, we compared H37RvΔRv1258c with wild-type (WT) M.tb H37Rv. The qRT-PCR results suggested that Rv1258c is potentially involved in the iron metabolic pathway by regulating the expression of ESX-3, which is required for iron uptake. Protein-Protein Affinity Predictor (PPA-Pred2) and the artificial intelligence program AlphaFold 2 were used for prediction and showed that Rv1258c has direct interactions with PPE4 and EccD3 but weak interactions with EccB3. This was further determined via protein-protein interaction analysis of the yeast two-hybrid expression system. By comparing mutant H37RvΔRv1258c strains with WT strains, we discovered that the absence of Rv1258c led to elevated intracellular H+ potential and NAD+/NADH ratios in M.tb, thereby resulting in oxidative stress. We hypothesize that the efflux pump Rv1258c not only has the function of regulating drug resistance in M.tb but also has a novel function in activating oxidative stress and regulating ESX-3-associated iron metabolism in M.tb.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Iron/metabolism , Artificial Intelligence , Oxidative Stress , Metabolic Networks and Pathways , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
14.
Dalton Trans ; 52(44): 16085-16102, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37814810

ABSTRACT

Metal-organic frameworks (MOFs) have received extensive attention in tumor therapy because of their advantages, including large specific surface area, regular pore size, adjustable shape, and facile functionalization. MOFs are porous materials formed by the coordination bonding of metal clusters and organic ligands. This review summarized the most recent advancements in tumor treatment based on nMOFs. First, we discuss the classification of MOFs, which primarily include the series of isoreticular MOF (IRMOF), zeolitic imidazolate framework (ZIF), coordination pillared-layer (CPL), Materials of Institute Lavoisier (MIL), porous coordination network (PCN), University of Oslo (UiO) and Biological metal-organic frameworks (BioMOFs). Then, we discuss the use of nMOFs in antitumor therapy, including drug delivery strategies, photodynamic therapy (PDT), photothermal therapy (PTT), and combination therapy. Finally, the obstacles and opportunities in nMOFs are discussed.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Photochemotherapy , Humans , Phototherapy , Drug Delivery Systems , Neoplasms/drug therapy
15.
RSC Adv ; 13(3): 1727-1737, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36712647

ABSTRACT

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that poses a serious global public health threat. Due to the high incidence of adverse reactions associated with conventional treatment regimens, there is an urgent need for better alternative therapies. CpG oligodeoxynucleotides (CpG ODNs) are synthetic oligodeoxyribonucleotide sequences. They can induce a Th1-type immune response by stimulating Toll-like receptors (TLRs) in mammalian immune cells, thus killing Mtb. However, due to the negative charge and easy degradation of CpG ODNs, it is necessary to deliver them into cells using nanomaterials. PCN-224 (hereinafter referred to as PCN), as a metal-organic framework based on zirconium ions and porphyrin ligands, not only has the advantage of high drug loading capacity, but also the porphyrin molecule in it is a type of photosensitizer, which allows these nanocomposites to play a role in photodynamic therapy (PDT) while delivering CpG ODNs. In addition, since Mtb mainly exists in macrophages, targeting anti-TB agents to macrophages is helpful to improve the anti-TB effect. Phosphatidylserine (PS) is a biological membrane phospholipid that is normally found on the inner side of cell membranes in, for example, plant and mammalian cells. When apoptosis occurs, PS can flip from the inner side of the cell membrane to the surface of the cell membrane, displaying a specific "eat-me" signal that can be recognized by specific receptors on macrophages. Therefore, we can use this macrophage-targeting property of PS to construct bio-inspired targeted drug delivery systems. In this study, we constructed PCN-CpG@PS nanocomposites. PCN-CpG@PS, combining PDT and immunotherapy, is designed to target macrophages at the site of a lesion and kill latent Mtb. We physically characterized the nanocomposites and validated their bactericidal ability in vitro and their ability to stimulate the immune system in vivo. The results demonstrated that the targeted nanocomposites have certain in vitro antituberculosis efficacy with good safety.

16.
Microorganisms ; 11(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37894158

ABSTRACT

BACKGROUND: Leucine-rich repeat-containing protein-25 (LRRC25) can degrade the ISG15 gene in virus-infected cells and prevent overactivation of the type Ⅰ IFN pathway. However, the role of LRRC25 in bacterial infection is still unclear. In this pursuit, the present study aimed to explore the regulatory role and mechanism of LRRC25 in microglia infected with Mycobacterium tuberculosis in a mouse model. METHODS: Q-PCR, WB, and cell immunofluorescence were employed to observe the change in LRRC25 in BV2 cells infected by H37Rv. Additionally, siRNA was designed to target the LRRC25 to inhibit its expression in BV2 cells. Flow cytometry and laser confocal imaging were used to observe the infection of BV2 cells after LRRC25 silencing. Q-PCR and ELISA were used to determine the changes in IFN-γ and ISG15 in the culture supernatant of each group. RESULTS: Following H37Rv infection, it was observed that the expression of LRRC25 was upregulated. Upon silencing LRRC25, the proportion of BV2 cells infected by H37Rv decreased significantly. ELISA analysis showed that IFN-γ and ISG15 levels in cell culture supernatant decreased after H37Rv infection, while they significantly increased after LRRC25 silencing. CONCLUSIONS: This study provides evidence that LRRC25 is the key negative regulator of microglial anti-Mtb immunity. It exerts its function by degrading free ISG15 and inhibiting the secretion of IFN-γ, thereby improving the anti-Mtb immunity of BV2 cells.

17.
Front Public Health ; 11: 1039399, 2023.
Article in English | MEDLINE | ID: mdl-36778546

ABSTRACT

Background and objective: Retreatment pulmonary tuberculosis (PTB) still accounts for a large proportion of tuberculosis, and the treatment outcome is unfavorable. The recurrence of retreatment PTB based on long-term follow-up has not been well demonstrated. This study aimed to evaluate effect of a modified regimen on drug-sensitive retreated pulmonary tuberculosis. Methods: This multicenter cohort study was conducted in 29 hospitals from 23 regions of China from July 1, 2009, to December 31, 2020. Patients were divided into two treatment regimen groups including experimental group [modified regimen (4H-Rt2-E-Z-S(Lfx)/4H-Rt2-E)]and control group [standard regimen (2H-R-E-Z-S/6H-R-E or 3H-R-E-Z/6H-R-E)]. The patients enrolled were followed up of 56 months after successful treatment. We compared the treatment success rate, treatment failure rate, adverse reaction rate, and recurrence rate between two regimens. Multivariate Cox regression model was used to identify the potential risk factors for recurrence after successful treatment with proportional hazards assumptions tested for all variables. Results: A total of 381 patients with retreatment PTB were enrolled, including 244 (64.0%) in the experimental group and 137 (36.0%) in the control group. Overall, the treatment success rate was significant higher in the experimental group than control group (84.0 vs. 74.5%, P = 0.024); no difference was observed in adverse reactions between the two groups (25.8 vs. 21.2%, P > 0.05). A total of 307 patients completed the 56 months of follow-up, including 205 with the modified regimen and 102 with the standard regimen. Among these, 10 cases (3.3%) relapsed, including 3 in the experimental group and 7 in the control group (1.5% vs 6.9%, P = 0.035). Reduced risks of recurrence were observed in patients treated with the modified regimen compared with the standard regimen, and the adjusted hazard ratio was 0.19 (0.04-0.77). Conclusion: The modified retreatment regimen had more favorable treatment effects, including higher treatment success rate and lower recurrence rate in patients with retreated drug-sensitive PTB.


Subject(s)
Antitubercular Agents , Tuberculosis, Pulmonary , Humans , Antitubercular Agents/therapeutic use , Cohort Studies , Treatment Outcome , Tuberculosis, Pulmonary/drug therapy , China
18.
Tuberculosis (Edinb) ; 133: 102172, 2022 03.
Article in English | MEDLINE | ID: mdl-35158297

ABSTRACT

The possible role of efflux pump as a survival mechanism in Mycobacterium tuberculosis (M. tb) is gaining an increasing attention. Previously, Rv1258c (Tap) and its certain mutations confer the clinically relevant drug resistance. In this study, we found new mutations of Rv1258c in G195C, T297P and I328T. Effect of modulating T297P and I328T on the drug resistance by knockout and complement in M. tb H37Rv showed that M. tb ΔRv1258c showed a slightly lower MIC for rifampin, ethambutol, ofloxacin, amikacin, capreomycin and streptomycin than M. tb H37Rv WT and the complement. Rv1258c T297P and Rv1258c I328T showed an increased drug resistance to ethambutol and capreomycin than the complement of Rv1258c WT. Most importantly, M. tb ΔRv1258c exhibited a slow growth in the normal culture medium. TMT-based quantitative proteomics analysis of M. tb ΔRv1258c and WT showed that the knockout of Rv1258c greatly down-regulated the expression of the ribosome system and one of the special five type VII secretion systems, ESX-3, which impaired the bacterial growth. These results indicate that the newly found T297P and I328T mutations of Rv1258c contributed to an increased resistance to ethambutol and capreomycin, and Rv1258c as growth controlling factor influencing the growth of M. tb.


Subject(s)
Bacterial Proteins , Drug Resistance , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Capreomycin/pharmacology , Ethambutol/pharmacology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism
19.
Biomater Sci ; 10(13): 3569-3574, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35635189

ABSTRACT

Programmable cancer therapies may perfectly prevent mutual drug restrictions, however, developing an efficient codelivery system with such an ability remains challenging. We herein first demonstrate the use of supramolecular-mediated dual-functional DNA nanocomposites for programmable chemodynamic therapy (CDT) and chemotherapy (CT), in which a water-soluble cyclodextrin-resveratrol (CD-Res) complex can be facilely encapsulated during the coassembly of Fe2+ and DNA to form the desired spherical nanocomposites. After endocytosis, the released Fe2+ can immediately trigger an endogenous Fenton reaction, inducing ferroptosis for CDT and ˙OH depletion, followed by the sustained release of the protected Res from the CD cavity. This process improves the efficacy of CT by preventing Res from the oxidation of ˙OH. The as-prepared nano-composites can sufficiently accumulate in the tumor, demonstrating an adequate programmable therapeutic performance without serious toxicity. Thus, a facile, fresh and changeable strategy for the design of antitumor therapies is presented.


Subject(s)
Ferroptosis , Nanocomposites , Neoplasms , Cell Line, Tumor , DNA , Humans , Hydrogen Peroxide , Neoplasms/drug therapy
20.
RSC Adv ; 12(18): 11119-11127, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35425048

ABSTRACT

Real-time monitoring of drug release behaviors over extended periods of time is critical in understanding the dynamics of drug progression for personalized chemotherapeutic treatment. In this work, we report a metal-organic framework (MOF)-based nanotheranostic system encapsulated with photothermal agents (CuS) and therapeutic drug (DOX) to achieve the capabilities of real-time drug release monitoring and combined chemo-photothermal therapy. Meanwhile, folic acid-conjugated polyethylene glycol (FA-PEG) antennas were connected to the MOF through coordination interactions, endowing the MOF with an enhanced active targeting effect toward cancer cells. It is anticipated that such a theranostic agent, simultaneously possessing tumor-targeting, real-time drug monitoring and effective treatment, will potentially enhance the performance in cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL