Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Nature ; 611(7935): 326-331, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36174646

ABSTRACT

The Toll/interleukin-1 receptor (TIR) domain is a key component of immune receptors that identify pathogen invasion in bacteria, plants and animals1-3. In the bacterial antiphage system Thoeris, as well as in plants, recognition of infection stimulates TIR domains to produce an immune signalling molecule whose molecular structure remains elusive. This molecule binds and activates the Thoeris immune effector, which then executes the immune function1. We identified a large family of phage-encoded proteins, denoted here as Thoeris anti-defence 1 (Tad1), that inhibit Thoeris immunity. We found that Tad1 proteins are 'sponges' that bind and sequester the immune signalling molecule produced by TIR-domain proteins, thus decoupling phage sensing from immune effector activation and rendering Thoeris inactive. Tad1 can also efficiently sequester molecules derived from a plant TIR-domain protein, and a high-resolution crystal structure of Tad1 bound to a plant-derived molecule showed a unique chemical structure of 1 ''-2' glycocyclic ADPR (gcADPR). Our data furthermore suggest that Thoeris TIR proteins produce a closely related molecule, 1''-3' gcADPR, which activates ThsA an order of magnitude more efficiently than the plant-derived 1''-2' gcADPR. Our results define the chemical structure of a central immune signalling molecule and show a new mode of action by which pathogens can suppress host immunity.


Subject(s)
Bacteria , Bacteriophages , Protein Domains , Receptors, Interleukin-1 , Signal Transduction , Toll-Like Receptors , Viral Proteins , Bacteria/immunology , Bacteria/metabolism , Bacteria/virology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Plant Proteins/antagonists & inhibitors , Plant Proteins/chemistry , Plant Proteins/immunology , Plant Proteins/metabolism , Receptors, Interleukin-1/chemistry , Signal Transduction/immunology , Bacteriophages/chemistry , Bacteriophages/immunology , Bacteriophages/metabolism , Viral Proteins/chemistry , Viral Proteins/immunology , Viral Proteins/metabolism , Toll-Like Receptors/chemistry , Crystallography, X-Ray
2.
Proc Natl Acad Sci U S A ; 116(45): 22556-22566, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31624123

ABSTRACT

The membrane proximal external region (MPER) of HIV-1 envelope glycoprotein (gp) 41 is an attractive vaccine target for elicitation of broadly neutralizing antibodies (bNAbs) by vaccination. However, current details regarding the quaternary structural organization of the MPER within the native prefusion trimer [(gp120/41)3] are elusive and even contradictory, hindering rational MPER immunogen design. To better understand the structural topology of the MPER on the lipid bilayer, the adjacent transmembrane domain (TMD) was appended (MPER-TMD) and studied. Membrane insertion of the MPER-TMD was sensitive both to the TMD sequence and cytoplasmic residues. Antigen binding of MPER-specific bNAbs, in particular 10E8 and DH511.2_K3, was significantly impacted by the presence of the TMD. Furthermore, MPER-TMD assembly into 10-nm diameter nanodiscs revealed a heterogeneous membrane array comprised largely of monomers and dimers, as enumerated by bNAb Fab binding using single-particle electron microscopy analysis, arguing against preferential trimeric association of native MPER and TMD protein segments. Moreover, introduction of isoleucine mutations in the C-terminal heptad repeat to induce an extended MPER α-helical bundle structure yielded an antigenicity profile of cell surface-arrayed Env variants inconsistent with that found in the native prefusion state. In line with these observations, electron paramagnetic resonance analysis suggested that 10E8 inhibits viral membrane fusion by lifting the MPER N-terminal region out of the viral membrane, mandating the exposure of residues that would be occluded by MPER trimerization. Collectively, our data suggest that the MPER is not a stable trimer, but rather a dynamic segment adapted for structural changes accompanying fusion.


Subject(s)
Cell Membrane/virology , HIV Envelope Protein gp41/chemistry , HIV-1/immunology , Antibodies, Neutralizing/immunology , Cell Membrane/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp41/genetics , HIV Envelope Protein gp41/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/chemistry , HIV-1/genetics , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/immunology , Protein Domains
3.
Nat Methods ; 14(1): 49-52, 2017 01.
Article in English | MEDLINE | ID: mdl-27869813

ABSTRACT

We engineered covalently circularized nanodiscs (cNDs) which, compared with standard nanodiscs, exhibit enhanced stability, defined diameter sizes and tunable shapes. Reconstitution into cNDs enhanced the quality of nuclear magnetic resonance spectra for both VDAC-1, a ß-barrel membrane protein, and the G-protein-coupled receptor NTR1, an α-helical membrane protein. In addition, we used cNDs to visualize how simple, nonenveloped viruses translocate their genomes across membranes to initiate infection.


Subject(s)
Lipid Bilayers/chemistry , Nanostructures/chemistry , Receptors, Neurotensin/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Humans , Lipid Bilayers/metabolism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Poliomyelitis/metabolism , Poliomyelitis/virology , Poliovirus/physiology , Virus Internalization
4.
Biochemistry ; 58(10): 1343-1353, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30724554

ABSTRACT

A 29-residue peptide (MP01), identified by in vitro selection for reactivity with a small molecule perfluoroaromatic, was modified and characterized using experimental and computational techniques, with the goal of understanding the molecular basis of its reactivity. These studies identified a six-amino acid point mutant (MP01-Gen4) that exhibited a reaction rate constant of 25.8 ± 1.8 M-1 s-1 at pH 7.4 and room temperature, approximately 2 orders of magnitude greater than that of its progenitor sequence and 3 orders of magnitude greater than background cysteine reactivity. MP01-Gen4 appeared to be conformationally dynamic and exhibited several properties reminiscent of larger protein molecules, including denaturant-sensitive structure and reactivity. We believe the majority of the reaction rate enhancement can be attributed to interaction of MP01-Gen4 with the perfluoroaromatic probe, which was found to stabilize a helical conformation of both MP01-Gen4 and nonreactive Cys-to-Ser or Cys-to-Ala variants. These findings demonstrate the ability of dynamic peptides to access proteinlike reaction mechanisms and the potential of perfluoroaromatic functionality to stabilize small peptide folds.


Subject(s)
Enzyme Stability/genetics , Peptides/chemistry , Peptides/genetics , Amino Acid Sequence/genetics , Amino Acids/genetics , Computer Simulation , Cysteine/chemistry , Mutation/genetics , Peptides/chemical synthesis , Protein Binding/genetics , Protein Conformation
5.
J Virol ; 90(19): 8875-90, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27466419

ABSTRACT

UNLABELLED: An effective preventive vaccine is highly sought after in order to stem the current HIV-1 pandemic. Both conservation of contiguous gp41 membrane-proximal external region (MPER) amino acid sequences across HIV-1 clades and the ability of anti-MPER broadly neutralizing antibodies (BNAbs) to block viral hemifusion/fusion establish the MPER as a prime vaccination target. In earlier studies, we described the development of an MPER vaccine formulation that takes advantage of liposomes to array the MPER on a lipid bilayer surface, paralleling its native configuration on the virus membrane while also incorporating molecular adjuvant and CD4 T cell epitope cargo. Here we demonstrate that several immunizations with MPER/liposomes induce high levels of bone marrow long-lived plasma cell (LLPC) antibody production. Single-cell immunoglobulin gene retrieval analysis shows that these plasma cells are derived from a germ line repertoire of B cells with a diverse representation of immunoglobulin genes, exhibiting antigen-driven positive selection. Characterization of LLPC recombinant monoclonal antibodies (rMAbs) indicates that antigen recognition is achieved through convergence on a common epitopic focus by utilizing various complementarity-determining region H3 (CDRH3) lengths. Importantly, the vast majority of rMAbs produced from these cells lack polyreactivity yet manifest antigen specificity in the context of lipids, shaping MPER-specific paratopes through selective pressure. Taken together, these findings demonstrate that the MPER is a vaccine target with minimal risk of generating off-target autoimmunity. IMPORTANCE: A useful vaccine must generate desired long-term, antigen-specific antibody responses devoid of polyreactivity or autoreactivity. The common polyreactive features of some HIV-1 BNAbs have raised concern about elicitation of anti-MPER antibodies. Utilizing single-LLPC repertoire analysis and biophysical characterization of anti-MPER rMAbs, we show that their fine specificities require a structural fitness of the antibody combining site involving heavy and light chain variable domains shaped by somatic hypermutation and affinity maturation of B cells in the germinal center. Perhaps more importantly, our results demonstrate that the majority of MPER-specific antibodies are not inherently polyspecific and/or autoreactive, suggesting that polyreactivity of MPER-specific antibodies is separable from their antigen specificity.


Subject(s)
HIV Antibodies/immunology , HIV Antibodies/metabolism , HIV Antigens/immunology , HIV Envelope Protein gp41/immunology , Plasma Cells/immunology , Antibodies, Monoclonal/immunology , Epitopes, B-Lymphocyte/immunology , Membrane Lipids/metabolism
6.
J Biol Chem ; 288(44): 31888-901, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24047898

ABSTRACT

Structural characterization of epitope-paratope pairs has contributed to the understanding of antigenicity. By contrast, few structural studies relate to immunogenicity, the process of antigen-induced immune responses in vivo. Using a lipid-arrayed membrane-proximal external region (MPER) of HIV-1 glycoprotein 41 as a model antigen, we investigated the influence of physicochemical properties on immunogenicity in relation to structural modifications of MPER/liposome vaccines. Anchoring the MPER to the membrane via an alkyl tail or transmembrane domain retained the MPER on liposomes in vivo, while preserving MPER secondary structure. However, structural modifications that affected MPER membrane orientation and antigenic residue accessibility strongly impacted induced antibody responses. The solvent-exposed MPER tryptophan residue (Trp-680) was immunodominant, focusing immune responses, despite sequence variability elsewhere. Nonetheless, immunogenicity could be readily manipulated using site-directed mutagenesis or structural constraints to modulate amino acid surface display. These studies provide fundamental insights for immunogen design aimed at targeting B cell antibody responses.


Subject(s)
AIDS Vaccines/immunology , Antigens, Viral/immunology , Epitopes, B-Lymphocyte/immunology , HIV Envelope Protein gp41/immunology , HIV-1/immunology , Peptides/immunology , AIDS Vaccines/chemistry , AIDS Vaccines/genetics , Animals , Antigens, Viral/chemistry , Antigens, Viral/genetics , B-Lymphocytes/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV-1/chemistry , HIV-1/genetics , Humans , Mice , Mice, Inbred BALB C , Mutagenesis, Site-Directed , Peptides/chemistry , Peptides/genetics
7.
bioRxiv ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38293057

ABSTRACT

The transcription factor BCL11A is a critical regulator of the switch from fetal hemoglobin (HbF: α 2 γ 2 ) to adult hemoglobin (HbA: α 2 ß 2 ) during development. BCL11A binds at a cognate recognition site (TGACCA) in the γ-globin gene promoter and represses its expression. DNA-binding is mediated by a triple zinc finger domain, designated ZnF456. Here, we report comprehensive investigation of ZnF456, leveraging X-ray crystallography and NMR to determine the structures in both the presence and absence of DNA. We delve into the dynamics and mode of interaction with DNA. Moreover, we discovered that the last zinc finger of BCL11A (ZnF6) plays a special role in DNA binding and γ-globin gene repression. Our findings help account for some rare γ-globin gene promoter mutations that perturb BCL11A binding and lead to increased HbF in adults (hereditary persistence of fetal hemoglobin). Comprehending the DNA binding mechanism of BCL11A opens avenues for the strategic, structure-based design of novel therapeutics targeting sickle cell disease and ß-thalassemia.

8.
J Immunol ; 185(5): 2951-9, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20660709

ABSTRACT

The alphabeta TCR has recently been suggested to function as an anisotropic mechanosensor during immune surveillance, converting mechanical energy into a biochemical signal upon specific peptide/MHC ligation of the alphabeta clonotype. The heterodimeric CD3epsilongamma and CD3epsilondelta subunits, each composed of two Ig-like ectodomains, form unique side-to-side hydrophobic interfaces involving their paired G-strands, rigid connectors to their respective transmembrane segments. Those dimers are laterally disposed relative to the alphabeta heterodimer within the TCR complex. In this paper, using structure-guided mutational analysis, we investigate the functional consequences of a striking asymmetry in CD3gamma and CD3delta G-strand geometries impacting ectodomain shape. The uniquely kinked conformation of the CD3gamma G-strand is crucial for maximizing Ag-triggered TCR activation and surface TCR assembly/expression, offering a geometry to accommodate juxtaposition of CD3gamma and TCR beta ectodomains and foster quaternary change that cannot be replaced by the isologous CD3delta subunit's extracellular region. TCRbeta and CD3 subunit protein sequence analyses among Gnathostomata species show that the Cbeta FG loop and CD3gamma subunit coevolved, consistent with this notion. Furthermore, restoration of T cell activation and development in CD3gamma(-/-) mouse T lineage cells by interspecies replacement can be rationalized from structural insights on the topology of chimeric mouse/human CD3epsilondelta dimers. Most importantly, our findings imply that CD3gamma and CD3delta evolved from a common precursor gene to optimize peptide/MHC-triggered alphabeta TCR activation.


Subject(s)
CD3 Complex/chemistry , CD3 Complex/physiology , Protein Multimerization , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Amino Acid Sequence , Animals , CD3 Complex/genetics , Evolution, Molecular , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Organ Culture Techniques , Protein Structure, Quaternary , Protein Structure, Tertiary , Receptors, Antigen, T-Cell, alpha-beta/physiology , Sheep , Signal Transduction/genetics , Signal Transduction/immunology
9.
Proc Natl Acad Sci U S A ; 106(22): 9057-62, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19458040

ABSTRACT

A vaccine capable of stimulating protective antiviral antibody responses is needed to curtail the global AIDS epidemic caused by HIV-1. Although rarely elicited during the course of natural infection or upon conventional vaccination, the membrane-proximal ectodomain region (MPER) of the HIV-1 glycoprotein of M(r) 41,000 (gp41) envelope protein subunit is the target of 3 such human broadly neutralizing antibodies (BNAbs): 4E10, 2F5, and Z13e1. How these BNAbs bind to their lipid-embedded epitopes and mediate antiviral activity is unclear, but such information might offer important insight into a worldwide health imperative. Here, EPR and NMR techniques were used to define the manner in which these BNAbs differentially recognize viral membrane-encrypted residues configured within the L-shaped helix-hinge-helix MPER segment. Two distinct modes of antibody-mediated interference of viral infection were identified. 2F5, like 4E10, induces large conformational changes in the MPER relative to the membrane. However, although 4E10 straddles the hinge and extracts residues W672 and F673, 2F5 lifts up residues N-terminal to the hinge region, exposing L669 and W670. In contrast, Z13e1 effects little change in membrane orientation or conformation, but rather immobilizes the MPER hinge through extensive rigidifying surface contacts. Thus, BNAbs disrupt HIV-1 MPER fusogenic functions critical for virus entry into human CD4 T cells and macrophages either by preventing hinge motion or by perturbing MPER orientation. HIV-1 MPER features important for targeted vaccine design have been revealed, the implications of which extend to BNAb targets on other viral fusion proteins.


Subject(s)
HIV Antibodies/immunology , HIV Envelope Protein gp41/antagonists & inhibitors , HIV-1/immunology , Virus Internalization , Amino Acid Sequence , Cell Membrane/immunology , Cell Membrane/virology , Electron Spin Resonance Spectroscopy , Epitopes/chemistry , Epitopes/immunology , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/immunology , Humans , Membrane Fusion/immunology , Neutralization Tests , Nuclear Magnetic Resonance, Biomolecular
10.
Commun Biol ; 5(1): 1042, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180783

ABSTRACT

The human (h) CEACAM1 GFCC' face serves as a binding site for homophilic and heterophilic interactions with various microbial and host ligands. hCEACAM1 has also been observed to form oligomers and micro-clusters on the cell surface which are thought to regulate hCEACAM1-mediated signaling. However, the structural basis for hCEACAM1 higher-order oligomerization is currently unknown. To understand this, we report a hCEACAM1 IgV oligomer crystal structure which shows how GFCC' face-mediated homodimerization enables highly flexible ABED face interactions to arise. Structural modeling and nuclear magnetic resonance (NMR) studies predict that such oligomerization is not impeded by the presence of carbohydrate side-chain modifications. In addition, using UV spectroscopy and NMR studies, we show that oligomerization is further facilitated by the presence of a conserved metal ion (Zn++ or Ni++) binding site on the G strand of the FG loop. Together these studies provide biophysical insights on how GFCC' and ABED face interactions together with metal ion binding may facilitate hCEACAM1 oligomerization beyond dimerization.


Subject(s)
Antigens, CD , Cell Adhesion Molecules , Antigens, CD/metabolism , Binding Sites , Carbohydrates , Cell Adhesion Molecules/metabolism , Humans
11.
Commun Biol ; 4(1): 360, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33742094

ABSTRACT

Human (h) carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) function depends upon IgV-mediated homodimerization or heterodimerization with host ligands, including hCEACAM5, hTIM-3, PD-1, and a variety of microbial pathogens. However, there is little structural information available on how hCEACAM1 transitions between monomeric and dimeric states which in the latter case is critical for initiating hCEACAM1 activities. We therefore mutated residues within the hCEACAM1 IgV GFCC' face including V39, I91, N97, and E99 and examined hCEACAM1 IgV monomer-homodimer exchange using differential scanning fluorimetry, multi-angle light scattering, X-ray crystallography and/or nuclear magnetic resonance. From these studies, we describe hCEACAM1 homodimeric, monomeric and transition states at atomic resolution and its conformational behavior in solution through NMR assignment of the wildtype (WT) hCEACAM1 IgV dimer and N97A mutant monomer. These studies reveal the flexibility of the GFCC' face and its important role in governing the formation of hCEACAM1 dimers and selective heterodimers.


Subject(s)
Antigens, CD/metabolism , Cell Adhesion Molecules/metabolism , Antigens, CD/chemistry , Antigens, CD/genetics , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/genetics , Crystallography, X-Ray , Dynamic Light Scattering , Fluorometry , Humans , Magnetic Resonance Spectroscopy , Mutation , Protein Conformation , Protein Multimerization , Structure-Activity Relationship
12.
Nat Struct Mol Biol ; 28(3): 258-267, 2021 03.
Article in English | MEDLINE | ID: mdl-33633398

ABSTRACT

G-protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane proteins and the targets of over 30% of currently marketed pharmaceuticals. Although several structures have been solved for GPCR-G protein complexes, few are in a lipid membrane environment. Here, we report cryo-EM structures of complexes of neurotensin, neurotensin receptor 1 and Gαi1ß1γ1 in two conformational states, resolved to resolutions of 4.1 and 4.2 Å. The structures, determined in a lipid bilayer without any stabilizing antibodies or nanobodies, reveal an extended network of protein-protein interactions at the GPCR-G protein interface as compared to structures obtained in detergent micelles. The findings show that the lipid membrane modulates the structure and dynamics of complex formation and provide a molecular explanation for the stronger interaction between GPCRs and G proteins in lipid bilayers. We propose an allosteric mechanism for GDP release, providing new insights into the activation of G proteins for downstream signaling.


Subject(s)
Cryoelectron Microscopy , Heterotrimeric GTP-Binding Proteins/metabolism , Heterotrimeric GTP-Binding Proteins/ultrastructure , Lipid Bilayers , Nanostructures/chemistry , Receptors, Neurotensin/metabolism , Receptors, Neurotensin/ultrastructure , Allosteric Regulation , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/ultrastructure , GTP-Binding Protein gamma Subunits/chemistry , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/ultrastructure , Guanosine Diphosphate/metabolism , Heterotrimeric GTP-Binding Proteins/chemistry , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Micelles , Models, Molecular , Neurotensin/chemistry , Neurotensin/metabolism , Protein Conformation , Receptors, Neurotensin/chemistry , Signal Transduction
13.
Biochemistry ; 49(27): 5634-41, 2010 Jul 13.
Article in English | MEDLINE | ID: mdl-20527928

ABSTRACT

Nck is a functionally versatile multidomain adaptor protein consisting of one SH2 and three SH3 domains. In most cases, the SH2 domain mediates binding to tyrosine-phosphorylated receptors or cytosolic proteins, which leads to the formation of larger protein complexes via the SH3 domains. Nck plays a pivotal role in T-cell receptor-mediated reorganization of the actin cytoskeleton as well as in the formation of the immunological synapses. The modular domain structure and the functionality of the individual domains suggest that they might act independently. Here we report an interesting intramolecular interaction within Nck that occurs between a noncanonical yet conserved (K/R)x(K/R)RxxS sequence in the linker between the first and second SH3 domain (SH3.1/SH3.2) and the second SH3 domain (SH3.2). Because this interaction masks the proline-rich sequence binding site of the SH3.2 domain, the intramolecular interaction is self-inhibitory. This intramolecular interaction could, at least partially, explain the remarkable specificity of Nck toward proteins with proline-rich sequences. It may prevent nonspecific low-affinity binding while keeping the site available for high-affinity bivalent ligands that can bind multiple sites in Nck. This indicates that Nck does not simply adopt a "beads on a string" architecture but incorporates a higher-order organization for improved specificity and functionality.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Proteins/metabolism , src Homology Domains/genetics , Base Sequence , Binding Sites/genetics , Carrier Proteins/chemistry , Cytoskeleton/genetics , Cytoskeleton/metabolism , Ligands , Phosphorylation , Proteins/genetics
14.
J Biol Chem ; 284(45): 31028-37, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-19755427

ABSTRACT

Thymus-derived lymphocytes protect mammalian hosts against virus- or cancer-related cellular alterations through immune surveillance, eliminating diseased cells. In this process, T cell receptors (TCRs) mediate both recognition and T cell activation via their dimeric alphabeta, CD3 epsilon gamma, CD3 epsilon delta, and CD3 zeta zeta subunits using an unknown structural mechanism. Here, site-specific binding topology of anti-CD3 monoclonal antibodies (mAbs) and dynamic TCR quaternary change provide key clues. Agonist mAbs footprint to the membrane distal CD3 epsilon lobe that they approach diagonally, adjacent to the lever-like C beta FG loop that facilitates antigen (pMHC)-triggered activation. In contrast, a non-agonist mAb binds to the cleft between CD3 epsilon and CD3 gamma in a perpendicular mode and is stimulatory only subsequent to an external tangential but not a normal force ( approximately 50 piconewtons) applied via optical tweezers. Specific pMHC but not irrelevant pMHC activates a T cell upon application of a similar force. These findings suggest that the TCR is an anisotropic mechanosensor, converting mechanical energy into a biochemical signal upon specific pMHC ligation during immune surveillance. Activating anti-CD3 mAbs mimic this force via their intrinsic binding mode. A common TCR quaternary change rather than conformational alterations can better facilitate structural signal initiation, given the vast array of TCRs and their specific pMHC ligands.


Subject(s)
Mechanotransduction, Cellular , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Animals , Antibodies, Monoclonal/immunology , CD3 Complex/immunology , Cell Line , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Conformation , Protein Binding , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology
15.
J Am Chem Soc ; 132(9): 2945-51, 2010 Mar 10.
Article in English | MEDLINE | ID: mdl-20155902

ABSTRACT

The primary limitation of solution state NMR with larger, highly dynamic, or paramagnetic systems originates from signal losses due to fast transverse relaxation. This is related to the high gyromagnetic ratio gamma of protons, which are usually detected. Thus, it is attractive to consider detection of nuclei with lower gamma, such as (13)C, for extending the size limits of NMR. Here, we present an approach for complete assignment of C(alpha) and N resonances in fast relaxing proteins using a C(alpha) detected 3D CANCA experiment for perdeuterated proteins. The CANCA experiment correlates alpha carbons with the sequentially adjacent and succeeding nitrogen and alpha carbons. This enables elongation of the chain of assigned residues simply by navigating along both nitrogen and carbon dimensions using a "stairway" assignment procedure. The simultaneous use of both C(alpha) and N sequential connectivities makes the experiment more robust than conventional 3D experiments, which rely solely on a single (13)C indirect dimension for sequential information. The 3D CANCA experiment, which is very useful for mainchain assignments of higher molecular weight proteins at high magnetic field, also provides an attractive alterative for smaller proteins. Two versions of the experiment are described for samples that are (13)C labeled either uniformly or at alternate positions for removing one-bond (13)C-(13)C couplings. To achieve both high resolution and sensitivity, extensive nonuniform sampling was employed. Adding longitudinal relaxation enhancement agents can allow for shorter recycling delays, decreased measuring time, or enhanced sensitivity.


Subject(s)
Nerve Tissue Proteins/chemistry , Carbon Isotopes , Magnetic Resonance Spectroscopy/standards , Molecular Weight , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/isolation & purification , Quantum Theory , Reference Standards
16.
J Biomol NMR ; 47(1): 55-63, 2010 May.
Article in English | MEDLINE | ID: mdl-20383561

ABSTRACT

We present a (13)C direct detection CACA-TOCSY experiment for samples with alternate (13)C-(12)C labeling. It provides inter-residue correlations between (13)C(alpha) resonances of residue i and adjacent C(alpha)s at positions i - 1 and i + 1. Furthermore, longer mixing times yield correlations to C(alpha) nuclei separated by more than one residue. The experiment also provides C(alpha)-to-sidechain correlations, some amino acid type identifications and estimates for psi dihedral angles. The power of the experiment derives from the alternate (13)C-(12)C labeling with [1,3-(13)C] glycerol or [2-(13)C] glycerol, which allows utilizing the small scalar (3)J(CC) couplings that are masked by strong (1)J(CC) couplings in uniformly (13)C labeled samples.


Subject(s)
Amino Acids/chemistry , Carbon Isotopes/chemistry , Nerve Tissue Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Recombinant Fusion Proteins/chemistry , Carbon Isotopes/metabolism , Deuterium/chemistry , Deuterium/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Glycerol/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Conformation , Protein Subunits , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
17.
J Biomol NMR ; 47(4): 271-82, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20556482

ABSTRACT

Heteronuclear direct-detection experiments, which utilize the slower relaxation properties of low gamma nuclei, such as (13)C have recently been proposed for sequence-specific assignment and structural analyses of large, unstructured, and/or paramagnetic proteins. Here we present two novel (15)N direct-detection experiments. The CAN experiment sequentially connects amide (15)N resonances using (13)C(alpha) chemical shift matching, and the CON experiment connects the preceding (13)C' nuclei. When starting from the same carbon polarization, the intensities of nitrogen signals detected in the CAN or CON experiments would be expected four times lower than those of carbon resonances observed in the corresponding (13)C-detecting experiment, NCA-DIPAP or NCO-IPAP (Bermel et al. 2006b; Takeuchi et al. 2008). However, the disadvantage due to the lower gamma is counteracted by the slower (15)N transverse relaxation during detection, the possibility for more efficient decoupling in both dimensions, and relaxation optimized properties of the pulse sequences. As a result, the median S/N in the (15)N observe CAN experiment is 16% higher than in the (13)C observe NCA-DIPAP experiment. In addition, significantly higher sensitivity was observed for those residues that are hard to detect in the NCA-DIPAP experiment, such as Gly, Ser and residues with high-field C(alpha) resonances. Both CAN and CON experiments are able to detect Pro resonances that would not be observed in conventional proton-detected experiments. In addition, those experiments are free from problems of incomplete deuterium-to-proton back exchange in amide positions of perdeuterated proteins expressed in D(2)O. Thus, these features and the superior resolution of (15)N-detected experiments provide an attractive alternative for main chain assignments. The experiments are demonstrated with the small model protein GB1 at conditions simulating a 150 kDa protein, and the 52 kDa glutathione S-transferase dimer, GST.


Subject(s)
Carbon Isotopes/chemistry , Nitrogen Isotopes/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Bacterial Proteins/chemistry , Glutathione Transferase/chemistry , Research Design
18.
Nat Struct Mol Biol ; 12(6): 526-32, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15895093

ABSTRACT

Lens epithelium-derived growth factor (LEDGF)/p75 is the dominant binding partner of HIV-1 integrase (IN) in human cells. We have determined the NMR structure of the integrase-binding domain (IBD) in LEDGF and identified amino acid residues essential for the interaction. The IBD is a compact right-handed bundle composed of five alpha-helices. Based on folding topology, the IBD is structurally related to a diverse family of alpha-helical proteins that includes eukaryotic translation initiation factor eIF4G and karyopherin-beta. LEDGF residues essential for the interaction with IN were localized to interhelical loop regions of the bundle structure. Interaction-defective IN mutants were previously shown to cripple replication although they retained catalytic function. The initial structure determination of a host cell factor that tightly binds to a retroviral enzyme lays the groundwork for understanding enzyme-host interactions important for viral replication.


Subject(s)
Growth Substances/chemistry , Growth Substances/metabolism , HIV Integrase/chemistry , HIV Integrase/metabolism , HIV-1/enzymology , Amino Acid Sequence , Animals , Binding Sites , Cloning, Molecular , Fibroblast Growth Factors , Humans , Magnetic Resonance Spectroscopy , Mammals , Models, Molecular , Molecular Sequence Data , Mutagenesis , Open Reading Frames , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Restriction Mapping
19.
Structure ; 15(5): 587-97, 2007 May.
Article in English | MEDLINE | ID: mdl-17502104

ABSTRACT

Calcineurin (Cn) is a serine/threonine protein phosphatase that plays pivotal roles in many physiological processes, including cell proliferation, development, and apoptosis. Most prominently, Cn targets the nuclear factors of activated T cell (NFATs), transcription factors that activate cytokine genes. Calcium-activated Cn dephosphorylates multiple residues within the regulatory domain of NFAT, triggering joint nuclear translocation. This relies crucially on the interaction between the catalytic domain of Cn (CnCat) and the conserved PxIxIT motif located in a region distinct from the dephosphorylation sites of NFAT. Here, we present the structure of the complex between the 39 kDa CnCat and a 14 residue peptide containing a PVIVIT segment that was derived from affinity-driven peptide selection based on the conserved PxIxIT motif of NFATs. The structure of the complex was determined by using NMR assignments and structural constraints and the coordinates of the CnCat crystal structure. The NMR analysis relied on recently developed labeling and spectroscopic techniques. The VIVIT peptide is accommodated in a hydrophobic cleft formed by beta strands 11 and 14, and the loop between beta strands 11 and 12, forming a short parallel beta sheet with the exposed beta strand 14 in Cn. The side chains of conserved residues in the PxIxIT sequences make extensive interactions with conserved residues in Cn, while those of nonconserved residues are solvent exposed. The architecture of the interface explains the diversity of recognition sequences compatible with NFAT function and uncovers a potential targeting site for immune-suppressive agents. The structure reveals that the orientation of the bound PxIxIT directs the phosphorylation sites in NFAT's regulatory domain toward the Cn catalytic site.


Subject(s)
Calcineurin/chemistry , Lymphocyte Activation/physiology , Magnetic Resonance Spectroscopy , NFATC Transcription Factors/chemistry , T-Lymphocytes/metabolism , Binding Sites/physiology , Calcineurin/metabolism , Crystallography, X-Ray , Humans , NFATC Transcription Factors/metabolism , Protein Binding/physiology , T-Lymphocytes/chemistry
20.
Mol Immunol ; 114: 513-523, 2019 10.
Article in English | MEDLINE | ID: mdl-31518855

ABSTRACT

A substantial fraction of eukaryotic proteins is folded and modified in the endoplasmic reticulum (ER) prior to export and secretion. Proteins that enter the ER but fail to fold correctly must be degraded, mostly in a process termed ER-associated degradation (ERAD). Both protein folding in the ER and ERAD are essential for proper immune function. Several E2 and E3 enzymes localize to the ER and are essential for various aspects of ERAD, but their functions and regulation are incompletely understood. Here we identify and characterize single domain antibody fragments derived from the variable domain of alpaca heavy chain-only antibodies (VHHs or nanobodies) that bind to the ER-localized E2 UBC6e, an enzyme implicated in ERAD. One such VHH, VHH05 recognizes a 14 residue stretch and enhances the rate of E1-catalyzed ubiquitin E2 loading in vitroand interferes with phosphorylation of UBC6e in response to cell stress. Identification of the peptide epitope recognized by VHH05 places it outside the E2 catalytic core, close to the position of activation-induced phosphorylation on Ser184. Our data thus suggests a site involved in allosteric regulation of UBC6e's activity. This VHH should be useful not only to dissect the participation of UBC6e in ERAD and in response to cell stress, but also as a high affinity epitope tag-specific reagent of more general utility.


Subject(s)
Epitopes/immunology , Peptides/immunology , Single-Domain Antibodies/immunology , Ubiquitin-Conjugating Enzymes/immunology , Antibodies/immunology , Cell Line, Tumor , Cells, Cultured , Endoplasmic Reticulum-Associated Degradation/immunology , HeLa Cells , Humans , K562 Cells , Phosphorylation/immunology , Ubiquitin/immunology , Ubiquitin-Protein Ligases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL